fbpx
维基百科

拼音fèi注音ㄈㄟˋ;英語:Fermium),是一種人工合成化學元素,其化學符號Fm原子序數为100,屬於錒系元素超鈾元素,是一種具高度放射性金屬元素。鐨是能夠用中子撞擊較輕元素而產生的最重元素,也就是说它是最後一種能夠大量製成的元素。然而到目前為止,人們仍沒有製成純鐨。[1]鐨一共擁有19種已知的同位素,其中257Fm壽命最長,半衰期為100.5天。

镄   100Fm
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




(Upn)
概況
名稱·符號·序數镄(Fermium)·Fm·100
元素類別錒系元素
·週期·不適用 ·7·f
標準原子質量(257)
电子排布[Rn] 5f12 7s2
2, 8, 18, 32, 30, 8, 2
歷史
發現勞倫斯伯克利國家實驗室(1952年)
物理性質
物態固體
熔点1800 K,1527 °C,2781 °F
蒸氣壓
原子性質
氧化态2, 3
电负性1.3(鲍林标度)
电离能第一:627 kJ·mol−1
雜項
CAS号7440-72-4
最穩定同位素
主条目:镄的同位素
同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
252Fm syn 25.39 h SF - -
α 7.153 248Cf
253Fm syn 3 d ε 0.333 253Es
α 7.197 249Cf
255Fm syn 20.07 h SF - -
α 7.241 251Cf
257Fm syn 100.5 d α 6.864 253Cf
SF - -

鐨是在1952年第一次氫彈爆炸後的輻射落塵中發現的,並以諾貝爾獎得主原子核物理學恩里科·費米(Enrico Fermi)命名。其化學屬性符合較重錒系元素的典型性质,有著形成+3氧化態的趨勢,但也能夠形成+2態。由於產量極少,鐨在基礎科學研究之外沒有任何實際用途。與其他人工合成的同位素一樣,鐨極具放射性,毒性亦很强。

歷史

 
鐨是在「Ivy Mike」核試驗的輻射落塵中首次發現的
 
鐨是以恩里科·費米命名的

鐨是在1952年11月1日第一顆成功引爆的氫彈「常春藤麦克」的輻射落塵中首次發現的。[2][3][4]在對輻射落塵的初步檢驗后,科学家發現了一種新的同位素(244
94
Pu
),其只能通過鈾-238吸收6顆中子,再進行兩次β衰變才會形成。當時一般認為,重原子核吸收中子是一件較罕見的現象,但244
94
Pu
的形成意味著鈾原子核可能會吸收更多的中子,從而產生更重的元素。[4]

第99號元素()很快便在與爆炸雲接觸過的濾紙上被發現了。(244
94
Pu
也是通過飛機搭載濾紙在輻射落塵雲中飛過而發現的。)[4]1952年12月阿伯特·吉奧索等人於伯克利加州大學辨認出鑀元素。[2][5][4]他們發現了同位素253Es(半衰期為20.5天)。該同位素是鈾-238原子核在捕獲15顆中子後形成的,其之後再進行7次β衰變

 

某些238U原子則能夠捕獲17顆中子。[6]

鐨(Z = 100)的發現卻需要更多的研究採樣,因為其產量預計比鑀要少至少一個數量級。故此在核試驗進行地點埃內韋塔克環礁處受污染的珊瑚礁被送到美國加州勞倫斯伯克利國家實驗室進行處理及分析。核試驗後兩個月,研究人員分離了樣本的一部分,並發現它放射高能量的α粒子(7.1 MeV),半衰期大約為1天。如此短的半衰期意味著其肯定源於某種鑀同位素的β衰變,也就是樣本本身必為新的100號元素的某種同位素。很快衰變源便被確認為255Fm(t½ = 20.07(7)小時)。[4]

由於當時正值冷戰時期,該新元素的發現消息以及有關中子捕獲的新數據被美國軍方列為機密,一直到1955年才被公佈。[4][7][8]不過,位於伯克利的團隊自行通過對鈈-239進行中子撞擊,合成了第99和100號元素,並於1954年發佈了研究結果。報告中附有聲明,注明此前已有過對這些元素進行的研究。[9][10]有關「Ivy Mike」核彈的研究在1955年解密。[7]

伯克利的團隊曾擔心,在其機密研究結果公佈之前,別的研究團隊會通過離子撞擊法發現較輕的鐨同位素。[4]事實上,瑞典斯德哥爾摩諾貝爾物理研究所的一個團隊也獨自發現了該元素。他們以氧-16離子撞擊238
92
U
目標,合成了同位素250Fm(t½ = 30分鐘),並於1954年5月發佈了這項發現。[11]但是,人們一般還是承認伯克利團隊較早發現鐨元素,因此該團隊擁有對該元素的命名權。他們決定將其命名為Fermium,以紀念原子彈之父恩里科·費米(Enrico Fermi)。[12][13]

化學

 
用於測量鐨金屬汽化熱的鐨合金

到目前為止,對鐨的化學研究都是在溶液中通過示蹤法進行的,至今沒有製造過任何固體化合物。在一般狀態下,鐨在溶液中呈Fm3+離子態,水合數為16.9,酸度系數為1.6×10−4(pKa = 3.8)。[14][15]Fm3+會和擁有供電子原子(如)的各種有機配位體絡合,而形成的絡合物一般比鐨之前的錒系元素較為穩定。[1]它也會與等配位體形成絡離子,同樣也比所形成的更穩定。[16]人們相信,較重的錒系元素所形成的絡合鍵主要為離子鍵:由於鐨的有效核電荷更高,所以Fm3+離子預計會比其之前的錒系元素所形成的An3+離子小,這使鐨能夠和配位體形成更短、更強的化學鍵。[1]

Fm3+能夠容易地還原為Fm2+[17]比如鐨會和二氯化釤共沉澱。[18][19]鐨的電極電勢預計將和(III)與鐿(II)之間的相似,相對標準電極電勢約為−1.15 V,[20]這與理論計算相符。[21]使用極譜法進行測量,得出Fm2+與Fm0之間的電極電勢為−2.37(10) V。[22]

同位素

 
鐨-257的衰變路徑

目前在NUBASE 2003中列有19種鐨的同位素,[23]質量數從242到260不等[注 1],全部都具有放射性,其中257Fm壽命最長,半衰期有100.5天。253Fm的半衰期為3天,251Fm的為5.3小時,252Fm的為25.4小時,254Fm的為3.2小時,255Fm的為20.1小時,以及256Fm的為2.6小時。剩餘同位素的半衰期長的有30分鐘,短的有以毫秒計的。[23]通過中子捕獲形成的258Fm會進行自發裂變,半衰期只有370(14)毫秒;259Fm及260Fm也極不穩定,並也進行自發裂變(半衰期分別為1.5(3)秒及4毫秒)。[23][注 1]這意味著,中子捕獲是不能用於製造質量數高於257的核素的,除非在核爆炸中產生。由於257Fm是進行α衰變的,而且它不會進行β衰變(這會形成下一個元素:),因此鐨是最後一種能夠以中子捕獲過程產生的元素。[1][24][25]

天然存量

由於鐨的所有同位素半衰期都很短,所以一切原始的鐨核素,也就是在地球形成時可能存在的鐨,至今都已全部衰變了。鐨也可以通過地殼中的錒系元素()發生多次中子捕獲產生,但這發生的可能性極低。因此地球上幾乎所有的鐨都是在科學實驗室、高能核反應爐或是核武器試驗中產生的,並在合成後只存留不超過幾個月的時間。從95號至100號鐨的超鈾元素曾在位於加彭奧克洛天然核反應堆中自然產生,但至今已不再形成了。[26]

合成

 
洗提過程:利用色離法分離Fm(100)、Es(99)、Cf、Bk、Cm及Am。

鐨是在核反應堆中通過對錒系元素進行中子撞擊而產生的。鐨-257是能夠以中子捕獲產生的最重同位素,產量最多達到納克數量級(1×10-9 g)。[注 2][27]鐨元素的主要产自位於美國田納西州橡樹嶺國家實驗室的85 MW高通率同位素反應爐(HFIR)。該反應爐專用於製造超鋦元素( Z > 96)。[28]該實驗室通過對進行輻射,一般每次可生產數十克(1×101 g)、數毫克(1×10-3 g)以及數皮克(1×10-12 g)鐨;[29]或特地為某實驗另外製成數納克(1×10-9 g)[30]或數微克(1×10-6 g)[24]鐨。在一次2至20萬噸級熱核爆炸中產生的鐨元素量估計有數微克,但夾雜在大量殘餘碎片中。在1969年7月16日進行的「Hutch」核試驗中,10公斤的殘餘碎片中提取出40皮克的257Fm。[31]

在產生之後,鐨必須和其他錒系元素及裂變產生的鑭系元素分開,一般利用離子交換層析法,並使用稀釋於α-羥基異丁酸氨溶液中的正離子交換劑(如Dowex 50或TEVA等)。[1][32]正離子越小,它與α-羥基異丁酸負離子所形成的絡合物就越穩定,因此在洗提柱中優先提取這一層。[1]另一種方法則使用分離結晶法。[1][33]

雖然257Fm是最穩定的鐨同位素,半衰期長達100.5天,但是大部分的研究使用的則是255Fm,其半衰期為20.07(7)小時。這是因為後者是255Es(半衰期為39.8(12)天)的衰變產物,並能夠輕易地被分離出來。[1]

在核爆炸中合成

對1千萬噸級核彈「Ivy Mike」的輻射落塵所進行的分析是一項長期項目,其目的為研究在高能核爆中超鈾元素的生產效率。使用核爆的原因如下:把鈾轉變成超鈾元素需要多重中子捕獲,而捕獲概率隨中子通量的提升而增加。核爆炸是最強的中子源,每微秒每平方厘米能夠產生1023個中子(約1029中子/(cm²·s))。相比之下,高通率同位素反應爐的中子通量也只有5×1015中子/(cm²·s)。埃內韋塔克環礁爆炸處隨即設立起了一座實驗室,以對輻射落塵進行初步分析,因為某些同位素在被送到美國本土之前,便可能已經衰變殆盡了。飛機帶著濾紙在核爆之後飛過環礁的上空,並把採回的樣本立即送往該實驗室。起初,人們希望能夠以此發現比鐨更重的元素,但在1954年至1956年於該環礁進行了一系列百萬噸級核試驗之後,卻仍沒有發現這些元素。[34]:39

 
美國進行的「Hutch」和「Cyclamen」核試驗中超鈾元素產量的估值[34]:40

由於相信在局限空間內的核爆可能會增加產生重元素的可能性,因此內華達試驗基地(現內華達國家安全區)又在1960年代進行了地底核試驗,並採集了數據。除了一般的鈾之外,核彈還裝有鎇和釷與鈾的混合物,以及鈈與鎿的混合物。因為裝載的重元素提高了裂變率,並導致較重同位素的流失,試驗結果產量偏少。又由于原子塵分佈在地下300至600米處熔化及汽化了的岩石中,而到如此的深度鑽地取樣又缺乏效率,對產物的提取分離也非常困難。[34]:39-40

在1962至1969年間進行的9次地底核試驗中,[35]最後一次的規模最大,而其超鈾元素產量也最高。在產量與原子質量數的關係圖(左圖)中,質量較低並擁有奇數質量數的同位素有較低的產量,因而在圖中產生鋸齒形的曲線。這是因為擁有奇數核子的同位素有較高的裂變率。[34]:40研究中最大的問題在於採集爆炸後散落在各處的原子塵。載有濾紙的飛機只吸附到總量的4×10-14,而在埃內韋塔克環礁處所採集到的量也只增加了兩個數量級。在「Hutch」核試驗60天後提取的500公斤岩石當中也只有總量的10−7。這500公斤岩石,相比在爆炸7天後取得的0.4公斤石塊,其含超鈾元素的量只不過高出30倍。這證明超鈾元素的量與收集的岩石重量是不成正比的。[34]:43為了加快樣本採集的速度,人們在核試驗之前就在爆炸原點鑽出了若干個豎井,這樣爆炸就會把足夠的樣本從中心通過豎井帶到地表,方便採樣。該方法在「Anacostia」和「Kennebec」核試驗中得到嘗試,並立即為研究提供了數百公斤的物質,但是其中錒系元素的濃度比通過鑽地取得的樣本的少三倍。這種方法雖然能夠有效幫助研究存留時間短的同位素,但卻無法提高整體錒系元素的產量。[34]:44

儘管這一系列核試驗沒有再產生新的元素(除鑀和鐨外),而所取得的超鈾元素量也不如理想,但其總體產生的稀有重同位素的量卻仍比此前實驗室中能夠合成的要多。在「Hutch」核試驗中取得的6×109257Fm原子被用於研究257Fm的熱中子誘發裂變,並以此產生了新的鐨同位素:258Fm。採集到的還有大量稀有的250Cm同位素,這是很難從249Cm產生的:249Cm的半衰期(64分鐘)相對需數個月時間的反應爐輻射來說太短,但對於核爆炸時間段來說就很長了。[34]:47

毒性

雖然曾接觸過鐨的人寥寥無幾,但是國際放射防護委員會仍為鐨最穩定的兩種同位素提供了每年輻射劑量的建議。鐨-253的進食劑量限度為107 Bq(1 Bq相当於每秒一次衰變),吸入劑量限度為105 Bq;鐨-257的則分別為105 Bq和4000 Bq。[36]

備註與參考資料

備註

  1. ^ 1.0 1.1 同位素260Fm在NUBASE 2003上列出的發現狀態為「未證實」。[23]
  2. ^ 所有原子序Z ≥ 100的元素都只能在粒子加速器中使離子互相撞擊,進行核反應而產生,產量極少(例如,每一小時的持續離子輻射能夠產生100萬顆鍆(Z = 101)原子)。

參考資料

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Silva, Robert J. Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean , 编. (PDF) 3 3rd. Dordrecht: Springer: 1621–1651. 2006. doi:10.1007/1-4020-3598-5_13. (原始内容 (PDF)存档于2010-07-17). 
  2. ^ 2.0 2.1 . [2007-12-07]. (原始内容存档于2007-10-26). 
  3. ^ . National Research Council Canada. [2007-12-02]. (原始内容存档于2010-12-25). 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Ghiorso, Albert. Einsteinium and Fermium. Chemical and Engineering News. 2003, 81 (36) [2013-02-21]. (原始内容于2018-09-06). 
  5. ^ . National Research Council Canada. [2007-12-02]. (原始内容存档于2007-11-15). 
  6. ^ . It's Elemental. Jefferson Lab. [2016-12-02]. (原始内容存档于2021-04-23). 
  7. ^ 7.0 7.1 Ghiorso, A.; Thompson, S.; Higgins, G.; Seaborg, G.; Studier, M.; Fields, P.; Fried, S.; Diamond, H.; Mech, J. New Elements Einsteinium and Fermium, Atomic Numbers 99 and 100. Phys. Rev. 1955, 99 (3): 1048–1049. Bibcode:1955PhRv...99.1048G. doi:10.1103/PhysRev.99.1048. 
  8. ^ Fields, P.; Studier, M.; Diamond, H.; Mech, J.; Inghram, M.; Pyle, G.; Stevens, C.; Fried, S.; Manning, W. Transplutonium Elements in Thermonuclear Test Debris. Physical Review. 1956, 102: 180. Bibcode:1956PhRv..102..180F. doi:10.1103/PhysRev.102.180. 
  9. ^ Thompson, S. G.; Ghiorso, A.; Harvey, B. G.; Choppin, G. R. Transcurium Isotopes Produced in the Neutron Irradiation of Plutonium. Physical Review. 1954, 93 (4): 908. Bibcode:1954PhRv...93..908T. doi:10.1103/PhysRev.93.908. 
  10. ^ Choppin, G. R.; Thompson, S. G.; Ghiorso, A.; Harvey, B. G. Nuclear Properties of Some Isotopes of Californium, Elements 99 and 100. Physical Review. 1954, 94 (4): 1080–1081. Bibcode:1954PhRv...94.1080C. doi:10.1103/PhysRev.94.1080. 
  11. ^ Atterling, Hugo; Forsling, Wilhelm; Holm, Lennart W.; Melander, Lars; Åström, Björn. Element 100 Produced by Means of Cyclotron-Accelerated Oxygen Ions. Physical Review. 1954, 95 (2): 585–586. Bibcode:1954PhRv...95..585A. doi:10.1103/PhysRev.95.585.2. 
  12. ^ . Royal Australian Chemical Institute. [2016-12-02]. (原始内容存档于2017-02-26). 
  13. ^ . Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA. [2016-12-02]. (原始内容存档于2021-05-05). 
  14. ^ Lundqvist, Robert; Hulet, E. K.; Baisden, T. A.; Näsäkkälä, Elina; Wahlberg, Olof. Electromigration Method in Tracer Studies of Complex Chemistry. II. Hydrated Radii and Hydration Numbers of Trivalent Actinides. Acta Chem. Scand., Ser. A. 1981, 35: 653–661. doi:10.3891/acta.chem.scand.35a-0653. 
  15. ^ Hussonnois, H.; Hubert, S.; Aubin, L.; Guillaumont, R.; Boussieres, G. Determination of the first hydrolysis constant of fermium. Radiochemical and Radioanalytical Letters. 1972, 10 (4): 231–238. 
  16. ^ Thompson, S. G.; Harvey, B. G.; Choppin, G. R.; Seaborg, G. T. Chemical Properties of Elements 99 and 100. J. Am. Chem. Soc. 1954, 76 (24): 6229–6236. doi:10.1021/ja01653a004. 
  17. ^ Malý, Jaromír. The amalgamation behaviour of heavy elements 1. Observation of anomalous preference in formation of amalgams of californium, einsteinium, and fermium. Inorg. Nucl. Chem. Lett. 1967, 3 (9): 373–381. doi:10.1016/0020-1650(67)80046-1. 
  18. ^ Mikheev, N. B.; Spitsyn, V. I.; Kamenskaya, A. N.; Gvozdec, B. A.; Druin, V. A.; Rumer, I. A.; Dyachkova, R. A.; Rozenkevitch, N. A.; Auerman, L. N. Reduction of fermium to divalent state in chloride aqueous ethanolic solutions. Inorg. Nucl. Chem. Lett. 1972, 8 (11): 929–936. doi:10.1016/0020-1650(72)80202-2. 
  19. ^ Hulet, E. K.; Lougheed, R. W.; Baisden, P. A.; Landrum, J. H.; Wild, J. F.; Lundqvist, R. F. Non-observance of monovalent Md. J. Inorg. Nucl. Chem. 1979, 41 (12): 1743–1747. doi:10.1016/0022-1902(79)80116-5. 
  20. ^ Mikheev, N. B.; Spitsyn, V. I.; Kamenskaya, A. N.; Konovalova, N. A.; Rumer, I. A.; Auerman, L. N.; Podorozhnyi, A. M. Determination of oxidation potential of the pair Fm2+/Fm3+. Inorg. Nucl. Chem. Lett. 1977, 13 (12): 651–656. doi:10.1016/0020-1650(77)80074-3. 
  21. ^ Nugent, L. J. 6th. Bagnall, K. W. (编). MTP International Review of Science, Inorganic Chemistry, series 2 7. Baltimore: University Park Press. 1975: 195–219. 
  22. ^ Samhoun, K.; David, F.; Hahn, R. L.; O'Kelley, G. D.; Tarrant, J. R.; Hobart, D. E. Electrochemical study of mendelevium in aqueous solution: No evidence for monovalent ions. J. Inorg. Nucl. Chem. 1979, 41 (12): 1749–1754. doi:10.1016/0022-1902(79)80117-7. 
  23. ^ 23.0 23.1 23.2 23.3 Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H., (PDF), Nucl. Phys. A, 2003, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001, (原始内容 (PDF)存档于2011-07-20) 
  24. ^ 24.0 24.1 Greenwood, Norman N.; Earnshaw, A. Chemistry of the Elements. Oxford: Pergamon. 1984: 1262. ISBN 0-08-022057-6. 
  25. ^ Sonzogni, Alejandro. . National Nuclear Data Center: Brookhaven National Laboratory. [2008-06-06]. (原始内容存档于2018-06-21). 
  26. ^ Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements New. New York, NY: Oxford University Press. 2011. ISBN 978-0-19-960563-7. 
  27. ^ Luig, Heribert; Keller, Cornelius; Wolf, Walter; Shani, Jashovam; Miska, Horst; Zyball, Alfred; Gervé, Andreas; Balaban, Alexandru T.; Kellerer, Albrecht M. Radionuclides. 2000. doi:10.1002/14356007.a22_499. 
  28. ^ . Oak Ridge National Laboratory. [2010-09-23]. (原始内容存档于2015-02-28). 
  29. ^ Porter, C. E.; Riley, F. D., Jr.; Vandergrift, R. D.; Felker, L. K. Fermium Purification Using Teva Resin Extraction Chromatography. Sep. Sci. Technol. 1997, 32 (1–4): 83–92. doi:10.1080/01496399708003188. 
  30. ^ Sewtz, M.; Backe, H.; Dretzke, A.; Kube, G.; Lauth, W.; Schwamb, P.; Eberhardt, K.; Grüning, C.; Thörle, P. First Observation of Atomic Levels for the Element Fermium (Z = 100). Phys. Rev. Lett. 2003, 90 (16): 163002. Bibcode:2003PhRvL..90p3002S. doi:10.1103/PhysRevLett.90.163002. 
  31. ^ Hoff, R. W.; Hulet, E. K. Engineering with Nuclear Explosives 2: 1283–1294. 1970. 
  32. ^ Choppin, G. R.; Harvey, B. G.; Thompson, S. G. A new eluant for the separation of the actinide elements. J. Inorg. Nucl. Chem. 1956, 2 (1): 66–68. doi:10.1016/0022-1902(56)80105-X. 
  33. ^ Mikheev, N. B.; Kamenskaya, A. N.; Konovalova, N. A.; Rumer, I. A.; Kulyukhin, S. A. High-speed method for the separation of fermium from actinides and lanthanides. Radiokhimiya. 1983, 25 (2): 158–161. 
  34. ^ 34.0 34.1 34.2 34.3 34.4 34.5 34.6 Seaborg, G.T. (编). (PDF). Proceedings of the Symposium Commemorating the 25th Anniversary of Elements 99 and 100. the Symposium Commemorating the 25th Anniversary of Elements 99 and 100. 1978-01-23 [2013-02-21]. (原始内容 (PDF)存档于2011-09-16). 
  35. ^ (PDF). DOE/NV--209-REV 15, December 2000. [2016-12-02]. (原始内容 (PDF)存档于2006-10-12). 
  36. ^ Koch, Lothar. Transuranium Elements, in Ullmann's Encyclopedia of Industrial Chemistry. Wiley. 2000. doi:10.1002/14356007.a27_167. 

延伸閱讀

  • Robert J. Silva: , in: Lester R. Morss, Norman M. Edelstein, Jean Fuger (Hrsg.): The Chemistry of the Actinide and Transactinide Elements, Springer, Dordrecht 2006; ISBN 978-1-4020-3555-5, p. 1621–1651; doi:10.1007/1-4020-3598-5_13.
  • Seaborg, G.T. (ed.) (1978) Proceedings of the Symposium Commemorating the 25th Anniversary of Elements 99 and 100 (页面存档备份,存于互联网档案馆, 23 January 1978, Report LBL-7701
  • Gmelins Handbuch der anorganischen Chemie, System Nr. 71, Transurane: Teil A 1 II, p. 19–20; Teil A 2, p. 47; Teil B 1, p. 84.

外部連結

  • 元素镄在洛斯阿拉莫斯国家实验室的介紹(英文)
  • EnvironmentalChemistry.com —— 镄(英文)
  • 元素镄在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
  • 元素镄在Peter van der Krogt elements site的介紹(英文)
  • WebElements.com – 镄(英文)

拼音, fèi, 注音, ㄈㄟˋ, 英語, fermium, 是一種人工合成的化學元素, 其化學符號为fm, 原子序數为100, 屬於錒系元素及超鈾元素, 是一種具高度放射性的金屬元素, 鐨是能夠用中子撞擊較輕元素而產生的最重元素, 也就是说它是最後一種能夠大量製成的元素, 然而到目前為止, 人們仍沒有製成純鐨, 鐨一共擁有19種已知的同位素, 其中257fm壽命最長, 半衰期為100, 5天, 100fm氫, 非金屬, 惰性氣體, 鹼金屬, 鹼土金屬, 類金屬, 非金屬, 非金屬, 非金屬, 鹵素, 惰性氣體, . 鐨 拼音 fei 注音 ㄈㄟˋ 英語 Fermium 是一種人工合成的化學元素 其化學符號为Fm 原子序數为100 屬於錒系元素及超鈾元素 是一種具高度放射性的金屬元素 鐨是能夠用中子撞擊較輕元素而產生的最重元素 也就是说它是最後一種能夠大量製成的元素 然而到目前為止 人們仍沒有製成純鐨 1 鐨一共擁有19種已知的同位素 其中257Fm壽命最長 半衰期為100 5天 镄 100Fm氫 非金屬 氦 惰性氣體 鋰 鹼金屬 鈹 鹼土金屬 硼 類金屬 碳 非金屬 氮 非金屬 氧 非金屬 氟 鹵素 氖 惰性氣體 鈉 鹼金屬 鎂 鹼土金屬 鋁 貧金屬 矽 類金屬 磷 非金屬 硫 非金屬 氯 鹵素 氬 惰性氣體 鉀 鹼金屬 鈣 鹼土金屬 鈧 過渡金屬 鈦 過渡金屬 釩 過渡金屬 鉻 過渡金屬 錳 過渡金屬 鐵 過渡金屬 鈷 過渡金屬 鎳 過渡金屬 銅 過渡金屬 鋅 過渡金屬 鎵 貧金屬 鍺 類金屬 砷 類金屬 硒 非金屬 溴 鹵素 氪 惰性氣體 銣 鹼金屬 鍶 鹼土金屬 釔 過渡金屬 鋯 過渡金屬 鈮 過渡金屬 鉬 過渡金屬 鎝 過渡金屬 釕 過渡金屬 銠 過渡金屬 鈀 過渡金屬 銀 過渡金屬 鎘 過渡金屬 銦 貧金屬 錫 貧金屬 銻 類金屬 碲 類金屬 碘 鹵素 氙 惰性氣體 銫 鹼金屬 鋇 鹼土金屬 鑭 鑭系元素 鈰 鑭系元素 鐠 鑭系元素 釹 鑭系元素 鉕 鑭系元素 釤 鑭系元素 銪 鑭系元素 釓 鑭系元素 鋱 鑭系元素 鏑 鑭系元素 鈥 鑭系元素 鉺 鑭系元素 銩 鑭系元素 鐿 鑭系元素 鎦 鑭系元素 鉿 過渡金屬 鉭 過渡金屬 鎢 過渡金屬 錸 過渡金屬 鋨 過渡金屬 銥 過渡金屬 鉑 過渡金屬 金 過渡金屬 汞 過渡金屬 鉈 貧金屬 鉛 貧金屬 鉍 貧金屬 釙 貧金屬 砈 類金屬 氡 惰性氣體 鍅 鹼金屬 鐳 鹼土金屬 錒 錒系元素 釷 錒系元素 鏷 錒系元素 鈾 錒系元素 錼 錒系元素 鈽 錒系元素 鋂 錒系元素 鋦 錒系元素 鉳 錒系元素 鉲 錒系元素 鑀 錒系元素 鐨 錒系元素 鍆 錒系元素 鍩 錒系元素 鐒 錒系元素 鑪 過渡金屬 𨧀 過渡金屬 𨭎 過渡金屬 𨨏 過渡金屬 𨭆 過渡金屬 䥑 預測為過渡金屬 鐽 預測為過渡金屬 錀 預測為過渡金屬 鎶 過渡金屬 鉨 預測為貧金屬 鈇 貧金屬 鏌 預測為貧金屬 鉝 預測為貧金屬 鿬 預測為鹵素 鿫 預測為惰性氣體 鉺 镄 Upn 鑀 镄 鍆概況名稱 符號 序數镄 Fermium Fm 100元素類別錒系元素族 週期 區不適用 7 f標準原子質量 257 电子排布 Rn 5f12 7s22 8 18 32 30 8 2歷史發現勞倫斯伯克利國家實驗室 1952年 物理性質物態固體熔点1800 K 1527 C 2781 F蒸氣壓原子性質氧化态2 3电负性1 3 鲍林标度 电离能第一 627 kJ mol 1雜項CAS号7440 72 4最穩定同位素主条目 镄的同位素同位素 丰度 半衰期 t1 2 衰變方式 能量 MeV 產物252Fm syn 25 39 h SF a 7 153 248Cf253Fm syn 3 d e 0 333 253Esa 7 197 249Cf255Fm syn 20 07 h SF a 7 241 251Cf257Fm syn 100 5 d a 6 864 253CfSF 鐨是在1952年第一次氫彈爆炸後的輻射落塵中發現的 並以諾貝爾獎得主原子核物理學家恩里科 費米 Enrico Fermi 命名 其化學屬性符合較重錒系元素的典型性质 有著形成 3氧化態的趨勢 但也能夠形成 2態 由於產量極少 鐨在基礎科學研究之外沒有任何實際用途 與其他人工合成的同位素一樣 鐨極具放射性 毒性亦很强 目录 1 歷史 2 化學 3 同位素 4 天然存量 5 合成 6 在核爆炸中合成 7 毒性 8 備註與參考資料 8 1 備註 8 2 參考資料 9 延伸閱讀 10 外部連結歷史 编辑 鐨是在 Ivy Mike 核試驗的輻射落塵中首次發現的 鐨是以恩里科 費米命名的 鐨是在1952年11月1日第一顆成功引爆的氫彈 常春藤麦克 的輻射落塵中首次發現的 2 3 4 在對輻射落塵的初步檢驗后 科学家發現了一種新的鈈同位素 24494 Pu 其只能通過鈾 238吸收6顆中子 再進行兩次b 衰變才會形成 當時一般認為 重原子核吸收中子是一件較罕見的現象 但24494 Pu 的形成意味著鈾原子核可能會吸收更多的中子 從而產生更重的元素 4 第99號元素 鑀 很快便在與爆炸雲接觸過的濾紙上被發現了 24494 Pu 也是通過飛機搭載濾紙在輻射落塵雲中飛過而發現的 4 1952年12月阿伯特 吉奧索等人於伯克利加州大學辨認出鑀元素 2 5 4 他們發現了同位素253Es 半衰期為20 5天 該同位素是鈾 238原子核在捕獲15顆中子後形成的 其之後再進行7次b衰變 92 238 U 15 n 7 b 99 253 E s displaystyle mathrm 238 92 U xrightarrow 15n 7 beta 99 253 Es 某些238U原子則能夠捕獲17顆中子 6 鐨 Z 100 的發現卻需要更多的研究採樣 因為其產量預計比鑀要少至少一個數量級 故此在核試驗進行地點埃內韋塔克環礁處受污染的珊瑚礁被送到美國加州勞倫斯伯克利國家實驗室進行處理及分析 核試驗後兩個月 研究人員分離了樣本的一部分 並發現它放射高能量的a粒子 7 1 MeV 半衰期大約為1天 如此短的半衰期意味著其肯定源於某種鑀同位素的b 衰變 也就是樣本本身必為新的100號元素的某種同位素 很快衰變源便被確認為255Fm t 20 07 7 小時 4 由於當時正值冷戰時期 該新元素的發現消息以及有關中子捕獲的新數據被美國軍方列為機密 一直到1955年才被公佈 4 7 8 不過 位於伯克利的團隊自行通過對鈈 239進行中子撞擊 合成了第99和100號元素 並於1954年發佈了研究結果 報告中附有聲明 注明此前已有過對這些元素進行的研究 9 10 有關 Ivy Mike 核彈的研究在1955年解密 7 伯克利的團隊曾擔心 在其機密研究結果公佈之前 別的研究團隊會通過離子撞擊法發現較輕的鐨同位素 4 事實上 瑞典斯德哥爾摩諾貝爾物理研究所的一個團隊也獨自發現了該元素 他們以氧 16離子撞擊23892 U 目標 合成了同位素250Fm t 30分鐘 並於1954年5月發佈了這項發現 11 但是 人們一般還是承認伯克利團隊較早發現鐨元素 因此該團隊擁有對該元素的命名權 他們決定將其命名為Fermium 以紀念原子彈之父恩里科 費米 Enrico Fermi 12 13 化學 编辑 用於測量鐨金屬汽化熱的鐨鐿合金 到目前為止 對鐨的化學研究都是在溶液中通過示蹤法進行的 至今沒有製造過任何固體化合物 在一般狀態下 鐨在溶液中呈Fm3 離子態 水合數為16 9 酸度系數為1 6 10 4 pKa 3 8 14 15 Fm3 會和擁有硬供電子原子 如氧 的各種有機配位體絡合 而形成的絡合物一般比鐨之前的錒系元素較為穩定 1 它也會與氯和氮等配位體形成絡離子 同樣也比鑀或鉲所形成的更穩定 16 人們相信 較重的錒系元素所形成的絡合鍵主要為離子鍵 由於鐨的有效核電荷更高 所以Fm3 離子預計會比其之前的錒系元素所形成的An3 離子小 這使鐨能夠和配位體形成更短 更強的化學鍵 1 Fm3 能夠容易地還原為Fm2 17 比如鐨會和二氯化釤共沉澱 18 19 鐨的電極電勢預計將和鐿 III 與鐿 II 之間的相似 相對標準電極電勢約為 1 15 V 20 這與理論計算相符 21 使用極譜法進行測量 得出Fm2 與Fm0之間的電極電勢為 2 37 10 V 22 同位素 编辑主条目 鐨的同位素 鐨 257的衰變路徑 目前在NUBASE 2003中列有19種鐨的同位素 23 質量數從242到260不等 注 1 全部都具有放射性 其中257Fm壽命最長 半衰期有100 5天 253Fm的半衰期為3天 251Fm的為5 3小時 252Fm的為25 4小時 254Fm的為3 2小時 255Fm的為20 1小時 以及256Fm的為2 6小時 剩餘同位素的半衰期長的有30分鐘 短的有以毫秒計的 23 通過中子捕獲形成的258Fm會進行自發裂變 半衰期只有370 14 毫秒 259Fm及260Fm也極不穩定 並也進行自發裂變 半衰期分別為1 5 3 秒及4毫秒 23 注 1 這意味著 中子捕獲是不能用於製造質量數高於257的核素的 除非在核爆炸中產生 由於257Fm是進行a衰變的 而且它不會進行b 衰變 這會形成下一個元素 鍆 因此鐨是最後一種能夠以中子捕獲過程產生的元素 1 24 25 天然存量 编辑由於鐨的所有同位素半衰期都很短 所以一切原始的鐨核素 也就是在地球形成時可能存在的鐨 至今都已全部衰變了 鐨也可以通過地殼中的錒系元素 鈾和釷 發生多次中子捕獲產生 但這發生的可能性極低 因此地球上幾乎所有的鐨都是在科學實驗室 高能核反應爐或是核武器試驗中產生的 並在合成後只存留不超過幾個月的時間 從95號鋂至100號鐨的超鈾元素曾在位於加彭奧克洛的天然核反應堆中自然產生 但至今已不再形成了 26 合成 编辑 洗提過程 利用色離法分離Fm 100 Es 99 Cf Bk Cm及Am 鐨是在核反應堆中通過對錒系元素進行中子撞擊而產生的 鐨 257是能夠以中子捕獲產生的最重同位素 產量最多達到納克數量級 1 10 9 g 注 2 27 鐨元素的主要产自位於美國田納西州橡樹嶺國家實驗室的85 MW高通率同位素反應爐 HFIR 該反應爐專用於製造超鋦元素 Z gt 96 28 該實驗室通過對鋦進行輻射 一般每次可生產數十克 1 101 g 鉲 數毫克 1 10 3 g 錇和鑀以及數皮克 1 10 12 g 鐨 29 或特地為某實驗另外製成數納克 1 10 9 g 30 或數微克 1 10 6 g 24 鐨 在一次2至20萬噸級熱核爆炸中產生的鐨元素量估計有數微克 但夾雜在大量殘餘碎片中 在1969年7月16日進行的 Hutch 核試驗中 10公斤的殘餘碎片中提取出40皮克的257Fm 31 在產生之後 鐨必須和其他錒系元素及裂變產生的鑭系元素分開 一般利用離子交換層析法 並使用稀釋於a 羥基異丁酸氨溶液中的正離子交換劑 如Dowex 50或TEVA等 1 32 正離子越小 它與a 羥基異丁酸負離子所形成的絡合物就越穩定 因此在洗提柱中優先提取這一層 1 另一種方法則使用分離結晶法 1 33 雖然257Fm是最穩定的鐨同位素 半衰期長達100 5天 但是大部分的研究使用的則是255Fm 其半衰期為20 07 7 小時 這是因為後者是255Es 半衰期為39 8 12 天 的衰變產物 並能夠輕易地被分離出來 1 在核爆炸中合成 编辑對1千萬噸級核彈 Ivy Mike 的輻射落塵所進行的分析是一項長期項目 其目的為研究在高能核爆中超鈾元素的生產效率 使用核爆的原因如下 把鈾轉變成超鈾元素需要多重中子捕獲 而捕獲概率隨中子通量的提升而增加 核爆炸是最強的中子源 每微秒每平方厘米能夠產生1023個中子 約1029中子 cm s 相比之下 高通率同位素反應爐的中子通量也只有5 1015中子 cm s 埃內韋塔克環礁爆炸處隨即設立起了一座實驗室 以對輻射落塵進行初步分析 因為某些同位素在被送到美國本土之前 便可能已經衰變殆盡了 飛機帶著濾紙在核爆之後飛過環礁的上空 並把採回的樣本立即送往該實驗室 起初 人們希望能夠以此發現比鐨更重的元素 但在1954年至1956年於該環礁進行了一系列百萬噸級核試驗之後 卻仍沒有發現這些元素 34 39 美國進行的 Hutch 和 Cyclamen 核試驗中超鈾元素產量的估值 34 40 由於相信在局限空間內的核爆可能會增加產生重元素的可能性 因此內華達試驗基地 現內華達國家安全區 又在1960年代進行了地底核試驗 並採集了數據 除了一般的鈾之外 核彈還裝有鎇和釷與鈾的混合物 以及鈈與鎿的混合物 因為裝載的重元素提高了裂變率 並導致較重同位素的流失 試驗結果產量偏少 又由于原子塵分佈在地下300至600米處熔化及汽化了的岩石中 而到如此的深度鑽地取樣又缺乏效率 對產物的提取分離也非常困難 34 39 40在1962至1969年間進行的9次地底核試驗中 35 最後一次的規模最大 而其超鈾元素產量也最高 在產量與原子質量數的關係圖 左圖 中 質量較低並擁有奇數質量數的同位素有較低的產量 因而在圖中產生鋸齒形的曲線 這是因為擁有奇數核子的同位素有較高的裂變率 34 40研究中最大的問題在於採集爆炸後散落在各處的原子塵 載有濾紙的飛機只吸附到總量的4 10 14 而在埃內韋塔克環礁處所採集到的量也只增加了兩個數量級 在 Hutch 核試驗60天後提取的500公斤岩石當中也只有總量的10 7 這500公斤岩石 相比在爆炸7天後取得的0 4公斤石塊 其含超鈾元素的量只不過高出30倍 這證明超鈾元素的量與收集的岩石重量是不成正比的 34 43為了加快樣本採集的速度 人們在核試驗之前就在爆炸原點鑽出了若干個豎井 這樣爆炸就會把足夠的樣本從中心通過豎井帶到地表 方便採樣 該方法在 Anacostia 和 Kennebec 核試驗中得到嘗試 並立即為研究提供了數百公斤的物質 但是其中錒系元素的濃度比通過鑽地取得的樣本的少三倍 這種方法雖然能夠有效幫助研究存留時間短的同位素 但卻無法提高整體錒系元素的產量 34 44儘管這一系列核試驗沒有再產生新的元素 除鑀和鐨外 而所取得的超鈾元素量也不如理想 但其總體產生的稀有重同位素的量卻仍比此前實驗室中能夠合成的要多 在 Hutch 核試驗中取得的6 109顆257Fm原子被用於研究257Fm的熱中子誘發裂變 並以此產生了新的鐨同位素 258Fm 採集到的還有大量稀有的250Cm同位素 這是很難從249Cm產生的 249Cm的半衰期 64分鐘 相對需數個月時間的反應爐輻射來說太短 但對於核爆炸時間段來說就很長了 34 47毒性 编辑雖然曾接觸過鐨的人寥寥無幾 但是國際放射防護委員會仍為鐨最穩定的兩種同位素提供了每年輻射劑量的建議 鐨 253的進食劑量限度為107 Bq 1 Bq相当於每秒一次衰變 吸入劑量限度為105 Bq 鐨 257的則分別為105 Bq和4000 Bq 36 備註與參考資料 编辑備註 编辑 1 0 1 1 同位素260Fm在NUBASE 2003上列出的發現狀態為 未證實 23 所有原子序Z 100的元素都只能在粒子加速器中使離子互相撞擊 進行核反應而產生 產量極少 例如 每一小時的持續離子輻射能夠產生100萬顆鍆 Z 101 原子 參考資料 编辑 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 Silva Robert J Morss Lester R Edelstein Norman M Fuger Jean 编 The Chemistry of the Actinide and Transactinide Elements PDF 3 3rd Dordrecht Springer 1621 1651 2006 doi 10 1007 1 4020 3598 5 13 原始内容 PDF 存档于2010 07 17 2 0 2 1 Einsteinium 2007 12 07 原始内容存档于2007 10 26 Fermium National Research Council Canada 2007 12 02 原始内容存档于2010 12 25 4 0 4 1 4 2 4 3 4 4 4 5 4 6 Ghiorso Albert Einsteinium and Fermium Chemical and Engineering News 2003 81 36 2013 02 21 原始内容存档于2018 09 06 Einsteinium National Research Council Canada 2007 12 02 原始内容存档于2007 11 15 The Element Fermium It s Elemental Jefferson Lab 2016 12 02 原始内容存档于2021 04 23 7 0 7 1 Ghiorso A Thompson S Higgins G Seaborg G Studier M Fields P Fried S Diamond H Mech J New Elements Einsteinium and Fermium Atomic Numbers 99 and 100 Phys Rev 1955 99 3 1048 1049 Bibcode 1955PhRv 99 1048G doi 10 1103 PhysRev 99 1048 Fields P Studier M Diamond H Mech J Inghram M Pyle G Stevens C Fried S Manning W Transplutonium Elements in Thermonuclear Test Debris Physical Review 1956 102 180 Bibcode 1956PhRv 102 180F doi 10 1103 PhysRev 102 180 Thompson S G Ghiorso A Harvey B G Choppin G R Transcurium Isotopes Produced in the Neutron Irradiation of Plutonium Physical Review 1954 93 4 908 Bibcode 1954PhRv 93 908T doi 10 1103 PhysRev 93 908 Choppin G R Thompson S G Ghiorso A Harvey B G Nuclear Properties of Some Isotopes of Californium Elements 99 and 100 Physical Review 1954 94 4 1080 1081 Bibcode 1954PhRv 94 1080C doi 10 1103 PhysRev 94 1080 Atterling Hugo Forsling Wilhelm Holm Lennart W Melander Lars Astrom Bjorn Element 100 Produced by Means of Cyclotron Accelerated Oxygen Ions Physical Review 1954 95 2 585 586 Bibcode 1954PhRv 95 585A doi 10 1103 PhysRev 95 585 2 FERMIUM Royal Australian Chemical Institute 2016 12 02 原始内容存档于2017 02 26 PERIODIC TABLE OF ELEMENTS LANL Fermium Los Alamos National Security LLC for the U S Department of Energy s NNSA 2016 12 02 原始内容存档于2021 05 05 Lundqvist Robert Hulet E K Baisden T A Nasakkala Elina Wahlberg Olof Electromigration Method in Tracer Studies of Complex Chemistry II Hydrated Radii and Hydration Numbers of Trivalent Actinides Acta Chem Scand Ser A 1981 35 653 661 doi 10 3891 acta chem scand 35a 0653 Hussonnois H Hubert S Aubin L Guillaumont R Boussieres G Determination of the first hydrolysis constant of fermium Radiochemical and Radioanalytical Letters 1972 10 4 231 238 Thompson S G Harvey B G Choppin G R Seaborg G T Chemical Properties of Elements 99 and 100 J Am Chem Soc 1954 76 24 6229 6236 doi 10 1021 ja01653a004 Maly Jaromir The amalgamation behaviour of heavy elements 1 Observation of anomalous preference in formation of amalgams of californium einsteinium and fermium Inorg Nucl Chem Lett 1967 3 9 373 381 doi 10 1016 0020 1650 67 80046 1 Mikheev N B Spitsyn V I Kamenskaya A N Gvozdec B A Druin V A Rumer I A Dyachkova R A Rozenkevitch N A Auerman L N Reduction of fermium to divalent state in chloride aqueous ethanolic solutions Inorg Nucl Chem Lett 1972 8 11 929 936 doi 10 1016 0020 1650 72 80202 2 Hulet E K Lougheed R W Baisden P A Landrum J H Wild J F Lundqvist R F Non observance of monovalent Md J Inorg Nucl Chem 1979 41 12 1743 1747 doi 10 1016 0022 1902 79 80116 5 Mikheev N B Spitsyn V I Kamenskaya A N Konovalova N A Rumer I A Auerman L N Podorozhnyi A M Determination of oxidation potential of the pair Fm2 Fm3 Inorg Nucl Chem Lett 1977 13 12 651 656 doi 10 1016 0020 1650 77 80074 3 Nugent L J 6th Bagnall K W 编 MTP International Review of Science Inorganic Chemistry series 2 7 Baltimore University Park Press 1975 195 219 Samhoun K David F Hahn R L O Kelley G D Tarrant J R Hobart D E Electrochemical study of mendelevium in aqueous solution No evidence for monovalent ions J Inorg Nucl Chem 1979 41 12 1749 1754 doi 10 1016 0022 1902 79 80117 7 23 0 23 1 23 2 23 3 Audi G Bersillon O Blachot J Wapstra A H The NUBASE evaluation of nuclear and decay properties PDF Nucl Phys A 2003 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 原始内容 PDF 存档于2011 07 20 24 0 24 1 Greenwood Norman N Earnshaw A Chemistry of the Elements Oxford Pergamon 1984 1262 ISBN 0 08 022057 6 Sonzogni Alejandro Interactive Chart of Nuclides National Nuclear Data Center Brookhaven National Laboratory 2008 06 06 原始内容存档于2018 06 21 Emsley John Nature s Building Blocks An A Z Guide to the Elements New New York NY Oxford University Press 2011 ISBN 978 0 19 960563 7 Luig Heribert Keller Cornelius Wolf Walter Shani Jashovam Miska Horst Zyball Alfred Gerve Andreas Balaban Alexandru T Kellerer Albrecht M Radionuclides 2000 doi 10 1002 14356007 a22 499 High Flux Isotope Reactor Oak Ridge National Laboratory 2010 09 23 原始内容存档于2015 02 28 Porter C E Riley F D Jr Vandergrift R D Felker L K Fermium Purification Using Teva Resin Extraction Chromatography Sep Sci Technol 1997 32 1 4 83 92 doi 10 1080 01496399708003188 Sewtz M Backe H Dretzke A Kube G Lauth W Schwamb P Eberhardt K Gruning C Thorle P First Observation of Atomic Levels for the Element Fermium Z 100 Phys Rev Lett 2003 90 16 163002 Bibcode 2003PhRvL 90p3002S doi 10 1103 PhysRevLett 90 163002 Hoff R W Hulet E K Engineering with Nuclear Explosives 2 1283 1294 1970 Choppin G R Harvey B G Thompson S G A new eluant for the separation of the actinide elements J Inorg Nucl Chem 1956 2 1 66 68 doi 10 1016 0022 1902 56 80105 X Mikheev N B Kamenskaya A N Konovalova N A Rumer I A Kulyukhin S A High speed method for the separation of fermium from actinides and lanthanides Radiokhimiya 1983 25 2 158 161 34 0 34 1 34 2 34 3 34 4 34 5 34 6 Seaborg G T 编 Report LBL 7701 PDF Proceedings of the Symposium Commemorating the 25th Anniversary of Elements 99 and 100 the Symposium Commemorating the 25th Anniversary of Elements 99 and 100 1978 01 23 2013 02 21 原始内容 PDF 存档于2011 09 16 引文格式1维护 日期与年 link United States Nuclear Tests July 1945 through September 1992 PDF DOE NV 209 REV 15 December 2000 2016 12 02 原始内容 PDF 存档于2006 10 12 Koch Lothar Transuranium Elements in Ullmann s Encyclopedia of Industrial Chemistry Wiley 2000 doi 10 1002 14356007 a27 167 延伸閱讀 编辑维基共享资源中相关的多媒体资源 镄查看维基词典中的词条 fermium Robert J Silva Fermium Mendelevium Nobelium and Lawrencium in Lester R Morss Norman M Edelstein Jean Fuger Hrsg The Chemistry of the Actinide and Transactinide Elements Springer Dordrecht 2006 ISBN 978 1 4020 3555 5 p 1621 1651 doi 10 1007 1 4020 3598 5 13 Seaborg G T ed 1978 Proceedings of the Symposium Commemorating the 25th Anniversary of Elements 99 and 100 页面存档备份 存于互联网档案馆 23 January 1978 Report LBL 7701 Gmelins Handbuch der anorganischen Chemie System Nr 71 Transurane Teil A 1 II p 19 20 Teil A 2 p 47 Teil B 1 p 84 外部連結 编辑元素镄在洛斯阿拉莫斯国家实验室的介紹 英文 EnvironmentalChemistry com 镄 英文 元素镄在The Periodic Table of Videos 諾丁漢大學 的介紹 英文 元素镄在Peter van der Krogt elements site的介紹 英文 WebElements com 镄 英文 取自 https zh wikipedia org w index php title 镄 amp oldid 73002220, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。