fbpx
维基百科

拼音é注音ㄜˊ,音同「鹅」;英語:Osmium;舊譯[2]),是一種化學元素,其化學符號Os原子序數为76,原子量190.23 u。鋨是一種堅硬、易碎的鉑系過渡金屬,具有獨特的藍白色光澤。鋨是自然界中密度最高的元素,有22.59 g/cm3。鋨一般以痕量存在於自然中,大部份在鉑礦藏的合金當中,是地殼存量最低的穩定元素之一。鋨與及其他鉑系元素形成的合金具有超強的耐用性和硬度,能用於製造鋼筆筆頭和電觸頭等。[3]但由於鋨金屬堅硬易碎且熔點極高,難以塑形、加工,且在空氣中容易形成具高揮發性和高毒性的四氧化鋨,再加上鋨本身非常稀有且昂貴,因此金屬態的鋨應用很少。

鋨   76Os
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




𨭆
外觀
銀色,藍色光澤
概況
名稱·符號·序數鋨(Osmium)·Os·76
元素類別过渡金属
·週期·8 ·6·d
標準原子質量190.23
电子排布[Xe] 4f14 5d6 6s2
2, 8, 18, 32, 14, 2
歷史
發現史密森·特南特(1803年)
分離史密森·特南特(1803年)
物理性質
物態固體
密度(接近室温
22.59 g·cm−3
熔点時液體密度20 g·cm−3
熔点3306 K,3033 °C,5491 °F
沸點5285 K,5012 °C,9054 °F
熔化热57.85 kJ·mol−1
汽化热738 kJ·mol−1
比熱容24.7 J·mol−1·K−1
蒸氣壓
壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 3160 3423 3751 4148 4638 5256
原子性質
氧化态8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2
(微酸性氧化物)
电负性2.2(鲍林标度)
电离能第一:840 kJ·mol−1
第二:1600 kJ·mol−1
原子半径135 pm
共价半径144±4 pm
雜項
晶体结构六方密堆積
磁序順磁性[1]
電阻率(0 °C)81.2 n Ω·m
熱導率87.6 W·m−1·K−1
膨脹係數(25 °C)5.1 µm·m−1·K−1
聲速(細棒)(20 °C)4940 m·s−1
剪切模量222 GPa
体积模量462 GPa
泊松比0.25
莫氏硬度7.0
布氏硬度3920 MPa
CAS号7440-04-2
最穩定同位素
主条目:鋨的同位素
同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
184Os 0.02% >5.6×1013 β+β+ 1.452 184W
α 2.963 180W
185Os 人造 93.6 d ε 1.013 185Re
186Os 1.59% 2.0×1015 α 2.822 182W
187Os 1.96% 穩定,帶111個中子
188Os 13.24% 穩定,帶112個中子
189Os 16.15% 穩定,帶113個中子
190Os 26.26% 穩定,帶114個中子
191Os 人造 15.4 β 0.314 191Ir
192Os 40.78% >9.8×1012 ββ 0.4135 192Pt
α 0.3622 188W
193Os 人造 30.11天 β 1.141 193Ir
194Os 人造 6年 β 0.097 194Ir

性質

物理性质

 
鋨鑄圓珠

鋨呈藍白色,其密度比稍高,是密度最高的穩定元素。[4]X射線散射數據計算出的密度數值最準確。這種方法得出銥的密度為22.562 ± 0.009 g/cm3,而鋨的密度為22.587 ± 0.009 g/cm3[5]

鋨金屬堅硬,在高溫下可保持光澤。鋨的壓縮性非常低,因此體積模量非常高,在395和462 GPa之間,與鑽石的443 GPa相約。在壓力為4 GPa的情況下,鋨的硬度也比較高。[6][7][8]由於堅硬易碎,蒸氣壓低(鉑系元素中最低),熔點極高(所有元素中第四高),所以固體鋨很難塑形,生產過程十分困難。

化學性质

鋨的氧化態
−2 Na
2
[Os(CO)
4
]
−1 Na
2
[Os
4
(CO)
13
]
0 Os
3
(CO)
12
+1 OsI
+2 OsI
2
+3 OsBr
3
+4 OsO
2
OsCl
4
+5 OsF
5
+6 OsF
6
+7 OsOF
5
+8 OsO
4
, Os(NCH3)
4

鋨可以形成氧化態為−2至+8的化合物。最常見的氧化態有+2、+3、+4和+8。+8態是任何元素可達至的最高氧化態,除鋨以外擁有+8態的只有[9][10][11]𨭆[12][13][14](尚未確定)。[15]氧化態為−1和−2的Na
2
[Os
4
(CO)
13
]
Na
2
[Os(CO)
4
]
反應性很強,可用於合成鋨的原子簇化合物。[16][17]

最常見的+8態化合物是鋨粉末在空氣中形成的四氧化鋨。四氧化鋨是一種淺黃色晶體,揮發性高,可溶於水,味道很強,具有毒性。鋨粉末的味道與四氧化鋨一樣。[18]四氧化鋨與鹼反應會形成紅色的鋨酸OsO
4
(OH)2−
2
,與則形成次氮基鋨酸OsO
3
N
[19][20][21]四氧化鋨在130 °C氣化,是一種強氧化劑。相比之下,二氧化鋨(OsO2)則是黑色的不揮發物質,反應性和毒性也遠低於四氧化鋨。

具有主要用途的鋨化合物只有兩種:四氧化鋨在電子顯微鏡照相中用以對組織染色,並在有機合成過程中作烯烴的氧化劑;不揮發的鋨酸鹽則用在有機氧化反應當中。[22]

鋨可以形成各種鹵化物,包括五氟化鋨(OsF5)、三氯化鋨(OsCl3)、三溴化鋨(OsBr3)、三碘化鋨(OsI3)等等。鋨的氧化態較低時,大直徑的鹵素可以使兩者的化合物更加穩定,所以以上的三鹵化物存在,但三氟化鋨(OsF3)尚未被發現。唯一一種氧化態為+1的鋨化合物是碘化鋨(OsI)。鋨在一些羰基配合物中的氧化態為0,例如十二羰基三鋨Os
3
(CO)
12
)。[19][20][23][24]

鋨在氧化態較低時,強σ供體(如)和π受體(含雜環化合物)都可以增加其穩定性;氧化態較高時,強σ和π供體都可增強穩定性,如O2−
N3−
[25]

雖然鋨能以多種氧化態形成化合物,但是純金屬鋨在標準溫度和壓力下可抗禦所有酸和鹼的侵蝕,甚至包括王水

同位素

鋨共有7種自然產生的同位素,其中6種為穩定同位素:184
Os
187
Os
188
Os
189
Os
190
Os
和(比例最高的)192
Os
186
Os
會進行α衰變,但由於半衰期長達(2.0 ± 1.1)×1015年,所以一般可當做穩定同位素。所有穩定同位素都預測可以進行α衰變,但由於半衰期很長,因而只有186
Os
的衰變得到了實驗證實。理論預測,184
Os
192
Os
可進行雙β衰變,但這尚無實驗證據。[26]

187
Os
187
Re
的衰變產物(半衰期為4.56×1010年),被廣泛用於測定地球岩石以及隕石的年齡(見錸鋨定年法英语Rhenium-osmium dating)。此同位素還可以用於測量大陸風化的強度,及推斷大陸穩定地塊根部的地幔在何時穩定下來。含錸礦石中含有異常高的187
Os
,也是因為這一衰變。[27]然而最為常用的鋨定年法則是銥鋨定年法。這種方法可分析K-T界線上的衝擊石英,也就是6600萬年前恐龍滅絕時所留下的地質特徵。[28]

歷史

1803年,史密森·特南特威廉·海德·沃拉斯頓在英國倫敦發現了鋨元素。[29]鋨的發現與鉑以及其他鉑系元素息息相關。17世紀,人們在哥倫比亞喬科省的銀礦中發現了鉑。[30]化學家後來發現這種金屬不是合金,而是一種新元素,並在1748年發表了這一發現。[31]他們將鉑溶於王水鹽酸硝酸的混合物),以產生穩定的鹽。每一次實驗都有留有少量黑色的不可溶殘留物。[32]約瑟夫·普魯斯特以為殘留物是石墨[32]維多·科萊-德科提爾英语Hippolyte-Victor Collet-Descotils(Victor Collet-Descotils)、福爾克拉伯爵安東萬·弗朗索瓦英语Antoine François, comte de Fourcroy(Antoine François, comte de Fourcroy)和路易-尼古拉·沃克蘭在1803年同樣觀測到這一殘留物,但因未能取得足夠的物質而無法進行更多的實驗。[32]

1803年,史密森·特南特分析了這些殘留物,並推斷其中必含新的金屬元素。沃克朗把該粉末來回在酸鹼中浸洗,[33]取得了一種揮發性氧化物。他認為這是新元素的氧化物,並把新元素命名為「ptene」,源於希臘文的「πτηνος」(ptènos),即「有翼的」。[34][35]特南特則擁有更大量的殘留物,並在不久後辨認出兩種新元素,也就是鋨和銥。[32][33]他再對產物加入氫氧化鈉,在加熱後製成了一種黃色溶液(很可能是順[Os(OH)2O4]2−)。溶液經過酸化後,他用蒸餾法取得了OsO4[34]由於製成的四氧化鋨具有強烈的焦味,所以他把這一新元素命名為現名「osmium」,源於希臘文「οσμή」(osme),即「臭味」。[36]鋨元素的發現被記錄在1804年6月21日致皇家學院的一封信中。[32][37]

和鋨在形成哈柏法中是有效的催化劑,這使該方法可以得到廣泛應用。當時在BASF一個以卡爾·博施為首的團隊購入了世界上大部份的鋨來作催化劑。1908年,同一個團隊發現了使用鐵和氧化鐵的更為便宜的催化劑,因此無須再使用昂貴稀少的鋨元素。[38]

今天,鋨主要是從礦石中提取出來的。[39]

存量

 
含有其他鉑系元素的鉑原石

鋨是地球地殼最稀有的穩定元素,在大陸地殼裡的平均質量比例只有1千億分之5。[40]

鋨在自然中以純金屬或合金的形態出現,尤其是各種比例的銥﹣鋨合金。[33]鎳和礦藏中還含有鋨和銥的硫化物碲化物銻化物砷化物。與其他鉑系元素一樣,鋨可以形成自然鎳合金及銅合金。[41]

地殼中有三種地質結構的鋨含量最高:火成岩撞擊坑以及前二者演化而成的地質結構。最大的已知礦藏有南非的布什維爾德火成雜岩體、[42]俄羅斯諾里爾斯克加拿大索德柏立盆地等。美國有較小的鋨礦藏。[42]前哥倫布時期哥倫比亞喬科省居民所用的沖積層礦藏至今仍是鉑系元素的一大來源。第二大的沖積層礦藏位於俄羅斯烏拉爾山脈[39][43]

生產

 
由化学气相传输法長成的鋨晶體

鋨是開採和提煉過程的副產品。在鎳和銅的電解精煉過程中,金、銀等貴金屬、鉑系元素以及等非金屬元素都會積聚在正電極上。[44][45]這一泥狀物質要進入溶液才可把其中的金屬分離出來。具體方法取決於混合物的成份,但主要有兩種:加入過氧化鈉後溶於王水,或直接溶於氫氯酸的混合溶液。[42][46]鋨、釕、銠和銥不可溶於王水,可從鉑、金等金屬分離開來。銠與熔化的硫酸氫鈉反應後會再分離出來。剩餘的物質中含有釕、鋨和銥,其中銥不可溶於氧化鈉。加入氧化鈉會產生水溶的釕鹽和鋨鹽,而在氧化後,這些鹽會變成揮發性的RuO
4
OsO
4
。氯化銨可將前者沉澱為(NH4)3RuCl6

溶解後的鋨要從其他鉑系元素中分離出來。分離方法包括蒸餾法和用適當的有機溶劑把四氧化鋨提取出來。[47]特南特和沃拉斯頓所用的方法類似於前者。兩種方法所得出的產物與氫進行還原反應,產生粉狀或海綿狀鋨粉末,再經粉末冶金手法進行加工。[48]

鋨生產商和美國地質調查局都沒有公佈鋨的產量數據。1971年發佈的數字當中,[49]單在美國的消耗量共有2000金衡盎司(62公斤),意味著產量低於每年1噸。2012年美國鋨產量的估值為75公斤。[50]

鋨一般以99%或更高纯度的粉末的形式出售。鋨的量度單位可以採用金衡制公制。2012年鋨的價格約為每金衡盎司400美元(每克13美元)。[51][52]

應用

由於鋨的氧化物具有高揮發性和高毒性,而鋨金屬容易形成氧化物,所以其金屬態的應用很少。人們一般使用的是耐用性很強的鋨合金。銥鋨合金非常堅硬,可同其他鉑系金屬用於製造需耐用的鋼筆筆頭、機器樞軸及電觸頭等。1945年至1955年左右的留聲機唱針頭也含有銥鋨合金。雖然鋨合金比鋼和鉻耐用,但是卻遠比藍寶石鑽石遜色,因此最終被淘汰了。[53]

四氧化鋨可用於指紋識別,[54]以及在光學和電子顯微鏡照相中對組織進行染色。四氧化鋨的氧化性很強,所以能與未飽和碳﹣碳鍵反應,從而連接油脂。因此在染色的同時,它還會固定生物膜。鋨原子的電子密度極高,在透射電子顯微鏡(TEM)下能大大提高對比度。未經處理的碳物質在TEM下的對比度很低(見圖)。[22]鐵氰化鋨(OsFeCN)也有染色兼固定的性質。[55]

四氧化鋨和鋨酸鉀是化學合成過程中重要的氧化劑,但都是劇毒。夏普萊斯不對稱雙羥基化反應中,鋨酸將雙鍵轉換為鄰二醇巴里·夏普萊斯因這一發現而在2001年獲得諾貝爾化學獎[56][57]OsO4非常昂貴,所以化學家一般改用KMnO4。雖然產量會降低,但後者的價格遠沒有鋨高。[58]

1898年,奧地利化學家卡爾·奧爾·馮·威爾斯巴赫英语Carl Auer von Welsbach發明了用鋨作為燈絲的電燈,並在1902年推出市場。不過,的熔點是所有金屬中最高的,用於電燈時還能增加光效和延長燈泡壽命,所以在幾年後就把鋨淘汰了。[34]

相似,鋨粉末可有效吸收氫原子,因此有潛力作金屬氫化物電池電極。不過鋨價格高昂,而且會與氫氧化鉀(最常用的電池電解質)反應。[59]

鋨的紫外線反射率很高:鋨對600 Å波長的反射率是金的兩倍。[60]鋨因此被用於大小有限的太空紫外光譜儀。多個太空穿梭機任務曾搭載鍍鋨鏡子進入太空,但不久後人們發現近地軌道中的氧自由基足以破壞鋨塗層。[61]

斯堪的納維亞的某些醫院在對關節炎病人進行滑膜切除術時,[62]需病人服食四氧化鋨(OsO4)。雖然四氧化鋨有毒,但並沒有病人長期副作用的報告,因此某些鋨化合物可能可以和生物體相容。2011年,科學家宣稱鋨(VI)[63]和鋨(II)[64]化合物在活體內有抗癌的作用,且有潛力作抗癌藥物。[65]

安全

鋨金屬粉末可自燃[49]鋨在室溫下會和空氣中的氧反應,形成揮發性四氧化鋨。某些鋨化合物在有氧環境下也會轉變成四氧化鋨。[49]

四氧化鋨的揮發性很高,能輕易穿透皮膚,且經吸入、進食和皮膚接觸後都是毒物。[68]如果空氣中含有低濃度四氧化鋨,會造成淤血及皮膚眼部損害,因此四氧化鋨必須在通風櫃內處理。[18]粟米油等含多元不飽和脂肪植物油可迅速將四氧化鋨還原成相對惰性的化合物。[69]

參考資料

  1. ^ Magnetic susceptibility of the elements and inorganic compounds 互联网档案馆的,存档日期2011-03-03., in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ “銤”亦為化學元素的舊譯,因造成混淆而採用新譯
  3. ^ Hammond "Osmium", C. R., p. 4–25 in Lide, D. R. (编), CRC Handbook of Chemistry and Physics 86th, Boca Raton (FL): CRC Press, 2005, ISBN 0-8493-0486-5 
  4. ^ Arblaster, J. W. (PDF). Platinum Metals Review. 1989, 33 (1): 14–16 [2013-12-25]. (原始内容 (PDF)存档于2012-02-07). 
  5. ^ Arblaster, J. W. . Platinum Metals Review. 1995, 39 (4): 164 [2013-12-25]. (原始内容存档于2011-09-27). 
  6. ^ Weinberger, Michelle; Tolbert, Sarah; Kavner, Abby. Osmium Metal Studied under High Pressure and Nonhydrostatic Stress. Phys. Rev. Lett. 2008, 100 (4): 045506. Bibcode:2008PhRvL.100d5506W. PMID 18352299. doi:10.1103/PhysRevLett.100.045506. 
  7. ^ Cynn, Hyunchae; Klepeis, J. E.; Yeo, C. S.; Young, D. A. Osmium has the Lowest Experimentally Determined Compressibility. Physical Review Letters. 2002, 88 (13): 135701. Bibcode:2002PhRvL..88m5701C. PMID 11955108. doi:10.1103/PhysRevLett.88.135701. 
  8. ^ Sahu, B. R.; Kleinman, L. Osmium Is Not Harder Than Diamond. Physical Review B. 2005, 72 (11): 113106. Bibcode:2005PhRvB..72k3106S. doi:10.1103/PhysRevB.72.113106. 
  9. ^ Selig, H.; Claassen, H. H.; Chernick, C. L.; Malm, J. G.; Huston, J. L. Xenon tetroxide – Preparation + Some Properties. Science. 1964, 143 (3612): 1322–3. Bibcode:1964Sci...143.1322S. JSTOR 1713238. PMID 17799234. doi:10.1126/science.143.3612.1322. 
  10. ^ Huston, J. L.; Studier, M. H.; Sloth, E. N. Xenon tetroxide – Mass Spectrum. Science. 1964, 143 (3611): 1162–3. Bibcode:1964Sci...143.1161H. JSTOR 1712675. PMID 17833897. doi:10.1126/science.143.3611.1161-a. 
  11. ^ Barnard, C. F. J. Oxidation States of Ruthenium and Osmium. Platinum Metals Review. 2004, 48 (4): 157. doi:10.1595/147106704X10801. 
  12. ^ Chemistry of Hassium (PDF). Gesellschaft für Schwerionenforschung mbH. 2002 [2007-01-31]. (原始内容 (PDF)于2012-01-14). 
  13. ^ Gong, Yu; Zhou, Mingfei; Kaupp, Martin; Riedel, Sebastian. Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State +VIII. Angewandte Chemie International Edition. 2009, 48 (42): 7879. doi:10.1002/anie.200902733. 
  14. ^ Domanov, V. P.; Lobanov, Yu. V. Refinement of data on the volatility of octavalent plutonium in the form of tetraoxide PuO4. Radiochemistry (SP MAIK Nauka/Interperiodica). February 2009, 51 (1): 14–17. doi:10.1134/S1066362209010044. 
  15. ^ Domanov, V. P. Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO4. Radiochemistry (SP MAIK Nauka/Interperiodica). January 2013, 55 (1): 46–51. doi:10.1134/S1066362213010098. 
  16. ^ Krause, J.; Siriwardane, Upali; Salupo, Terese A.; Wermer, Joseph R.; Knoeppel, David W.; Shore, Sheldon G. Preparation of [Os3(CO)11]2− and its reactions with Os3(CO)12; structures of [Et4N] [HOs3(CO)11] and H2OsS4(CO). Journal of Organometallic Chemistry. 1993, 454: 263–271. doi:10.1016/0022-328X(93)83250-Y. 
  17. ^ Carter, Willie J.; Kelland, John W.; Okrasinski, Stanley J.; Warner, Keith E.; Norton, Jack R. Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives. Inorganic Chemistry. 1982, 21 (11): 3955–3960. doi:10.1021/ic00141a019. 
  18. ^ 18.0 18.1 Mager Stellman, J. Osmium. Encyclopaedia of Occupational Health and Safety. International Labour Organization. 1998: 63.34. ISBN 978-92-2-109816-4. OCLC 35279504 45066560 请检查|oclc=值 (帮助). 
  19. ^ 19.0 19.1 Holleman, A. F.; Wiberg, E.; Wiberg, N. Inorganic Chemistry, 1st Edition. Academic Press. 2001. ISBN 0-12-352651-5. OCLC 47901436. 
  20. ^ 20.0 20.1 Griffith, W. P. Osmium and its compounds. Quarterly Review of the Chemical Society. 1965, 19 (3): 254–273. doi:10.1039/QR9651900254. 
  21. ^ Subcommittee on Platinum-Group Metals, Committee on Medical and Biologic Effects of Environmental Pollutants, Division of Medical Sciences, Assembly of Life Sciences, National Research Council. Platinum-group metals. National Academy of Sciences. 1977: 55. ISBN 0-309-02640-7. 
  22. ^ 22.0 22.1 Bozzola, John J.; Russell, Lonnie D. Specimen Preparation for Transmission Electron Microscopy. Electron microscopy : principles and techniques for biologists. Sudbury, Mass.: Jones and Bartlett. 1999: 21–31. ISBN 978-0-7637-0192-5. 
  23. ^ Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements 2nd. Oxford:Butterworth-Heinemann. 1997: 1113–1143, 1294. ISBN 0-7506-3365-4. OCLC 213025882 37499934 41901113 请检查|oclc=值 (帮助). 
  24. ^ Gulliver, D. J; Levason, W. The chemistry of ruthenium, osmium, rhodium, iridium, palladium and platinum in the higher oxidation states. Coordination Chemistry Reviews. 1982, 46: 1–127. doi:10.1016/0010-8545(82)85001-7. 
  25. ^ Peter A. Lay; W. Dean Harman. Advances in Inorganic Chemistry. A. G. Sykes. Academic Press. 1992: 221. ISBN 0-12-023637-0. 
  26. ^ Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The NUBASE Evaluation of Nuclear and Decay Properties. Nuclear Physics A (Atomic Mass Data Center). 2003, 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. 
  27. ^ Dąbek, Józef; Halas, Stanislaw. Physical Foundations of Rhenium-Osmium Method – A Review. Geochronometria. 2007, 27: 23–26. doi:10.2478/v10003-007-0011-4. 
  28. ^ Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science. 1980, 208 (4448): 1095–1108. Bibcode:1980Sci...208.1095A. PMID 17783054. doi:10.1126/science.208.4448.1095. 
  29. ^ Venetskii, S. I. Osmium. Metallurgist. 1974, 18 (2): 155–157. doi:10.1007/BF01132596. 
  30. ^ McDonald, M. . Platinum Metals Review. 959, 3 (4): 140–145 [2013-12-25]. (原始内容存档于2011-06-09). 
  31. ^ Juan, J.; de Ulloa, A. Relación histórica del viage a la América Meridional 1. 1748: 606 (西班牙语). 
  32. ^ 32.0 32.1 32.2 32.3 32.4 Hunt, L. B. A History of Iridium (PDF). Platinum Metals Review. 1987, 31 (1): 32–41 [2012-03-15]. (原始内容 (PDF)于2012-03-04). 
  33. ^ 33.0 33.1 33.2 Emsley, J. Osmium. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. 2003: 199–201. ISBN 0-19-850340-7. 
  34. ^ 34.0 34.1 34.2 Griffith, W. P. Bicentenary of Four Platinum Group Metals. Part II: Osmium and iridium – events surrounding their discoveries. Platinum Metals Review. 2004, 48 (4): 182–189. doi:10.1595/147106704X4844. 
  35. ^ Thomson, T. A System of Chemistry of Inorganic Bodies. Baldwin & Cradock, London; and William Blackwood, Edinburgh. 1831: 693. 
  36. ^ Weeks, M. E. Discovery of the Elements 7. Journal of Chemical Education. 1968: 414–418. ISBN 0-8486-8579-2. OCLC 23991202. 
  37. ^ Tennant, S. On Two Metals, Found in the Black Powder Remaining after the Solution of Platina. Philosophical Transactions of the Royal Society. 1804, 94: 411–418. JSTOR 107152. doi:10.1098/rstl.1804.0018. 
  38. ^ Smil, Vaclav. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press. 2004: 80–86. ISBN 978-0-262-69313-4. 
  39. ^ 39.0 39.1 George, Micheal W. 2006 Minerals Yearbook: Platinum-Group Metals (PDF). United States Geological Survey USGS. [2008-09-16]. (原始内容 (PDF)于2019-01-11). 
  40. ^ Wedepohl, Hans K. The composition of the continental crust. Geochimica et Cosmochimica Acta. 1995, 59 (7): 1217–1232. Bibcode:1995GeCoA..59.1217W. doi:10.1016/0016-7037(95)00038-2. 
  41. ^ Xiao, Z.; Laplante, A. R. Characterizing and recovering the platinum group minerals—a review. Minerals Engineering. 2004, 17 (9–10): 961–979. doi:10.1016/j.mineng.2004.04.001. 
  42. ^ 42.0 42.1 42.2 Seymour, R. J.; O'Farrelly, J. I. Platinum-group metals. Kirk Othmer Encyclopedia of Chemical Technology. Wiley. 2001. doi:10.1002/0471238961.1612012019052513.a01.pub2. 
  43. ^ Commodity Report: Platinum-Group Metals (PDF). United States Geological Survey USGS. [2008-09-16]. (原始内容 (PDF)于2019-01-11). 
  44. ^ George, M. W. Platinum-group metals (PDF). U.S. Geological Survey Mineral Commodity Summaries (USGS Mineral Resources Program). 2008 [2013-12-25]. (原始内容 (PDF)于2019-01-11). 
  45. ^ George, M. W. 2006 Minerals Yearbook: Platinum-Group Metals (PDF). United States Geological Survey USGS. [2008-09-16]. (原始内容 (PDF)于2019-01-11). 
  46. ^ Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; Lang, J.; Kreuzer, T.; Knödler, A.; Starz, K. A.; Dermann, K.; Rothaut, J.; Drieselman, R. Platinum group metals and compounds. Ullmann's Encyclopedia of Industrial Chemistry. Wiley. 2002. doi:10.1002/14356007.a21_075. 
  47. ^ Gilchrist, Raleigh. The Platinum Metals. Chemical Reviews. 1943, 32 (3): 277–372. doi:10.1021/cr60103a002. 
  48. ^ Hunt, L. B.; Lever, F. M. (PDF). Platinum Metals Review. 1969, 13 (4): 126–138 [2008-10-02]. (原始内容 (PDF)存档于2008-10-29). 
  49. ^ 49.0 49.1 49.2 Smith, Ivan C.; Carson, Bonnie L.; Ferguson, Thomas L. Osmium: An Appraisal of Environmental Exposure. Environmental Health Perspectives. 1974, 8: 201–213. JSTOR 3428200. PMC 1474945 . PMID 4470919. doi:10.2307/3428200. 
  50. ^ PLATINUM-GROUP METALS (PDF). USGS. [27 May 2013]. (原始内容 (PDF)于2017-05-13). 
  51. ^ Osmium (页面存档备份,存于互联网档案馆). Los Alamos National Laboratory's Chemistry Division
  52. ^ Live Osmium prices (页面存档备份,存于互联网档案馆). TaxFreeGold.com. Accessed 6 April 2010
  53. ^ Stephen D. Cramer and Bernard S. Covino, Jr.; Bernard S. Covino, Jr. ASM Handbook Volume 13B. Corrosion: Materials. ASM International. 2005. ISBN 978-0-87170-707-9. 
  54. ^ MacDonell, Herbert L. The Use of Hydrogen Fluoride in the Development of Latent Fingerprints Found on Glass Surfaces. The Journal of Criminal Law, Criminology, and Police Science. 1960, 51 (4): 465–470. JSTOR 1140672. doi:10.2307/1140672. 
  55. ^ Chadwick, D. Role of the sarcoplasmic reticulum in smooth muscle. John Wiley and Sons. 2002: 259–264. ISBN 0-470-84479-5. 
  56. ^ Kolb, H. C.; Van Nieuwenhze, M. S.; Sharpless, K. B. Catalytic Asymmetric Dihydroxylation. Chemical Reviews. 1994, 94 (8): 2483–2547. doi:10.1021/cr00032a009. 
  57. ^ Colacot, T. J. (PDF). Platinum Metals Review. 2002, 46 (2): 82–83 [2013-12-25]. (原始内容 (PDF)存档于2013-01-31). 
  58. ^ Osmium tetroxide as a reagent in organic chemistry — Master Organic Chemistry (页面存档备份,存于互联网档案馆). Masterorganicchemistry.com. Retrieved on 2012-12-07.
  59. ^ Antonov, V. E.; Belash, I. T.; Malyshev, V. Yu.; Ponyatovsky, E. G. (PDF). Platinum Metals Revie. 1984, 28 (4): 158–163 [2013-12-25]. (原始内容 (PDF)存档于2013-01-31). 
  60. ^ Torr, Marsha R. Osmium coated diffraction grating in the Space Shuttle environment: performance. Applied Optics. 1985, 24 (18): 2959. Bibcode:1985ApOpt..24.2959T. PMID 18223987. doi:10.1364/AO.24.002959. 
  61. ^ Gull, T. R.; Herzig, H; Osantowski, JF; Toft, AR. Low earth orbit environmental effects on osmium and related optical thin-film coatings. Applied Optics. 1985, 24 (16): 2660. Bibcode:1985ApOpt..24.2660G. PMID 18223936. doi:10.1364/AO.24.002660. 
  62. ^ Sheppeard, H.; D. J. Ward. Intra-articular osmic acid in rheumatoid arthritis: five years' experience. Rheumatology. 1980, 19 (1): 25–29. PMID 7361025. doi:10.1093/rheumatology/19.1.25. 
  63. ^ Lau, T.-C; W.-X. Ni, W.-L. Man, M. T.-W. Cheung, R. W.-Y. Sun, Y.-L. Shu, Y.-W. Lam, C.-M. Che. Osmium(vi) complexes as a new class of potential anti-cancer agents. Chem. Commun. 2011, 47 (7): 2140–2142. doi:10.1039/C0CC04515B. 
  64. ^ Sadler, Peter; Steve D. Shnyder, Ying Fu, Abraha Habtemariam, Sabine H. van Rijt, Patricia A. Cooper, Paul M. Loadman. Anti-colorectal cancer activity of an organometallic osmium arene azopyridine complex. Med. Chem. Commun. 2011, 2 (7): 666–668. doi:10.1039/C1MD00075F. 
  65. ^ Fu, Ying; Romero, María J.; Habtemariam, Abraha; et al. The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(II) arene anticancer complexes. Chemical Science. 2012, 3 (8): 2485–2494. doi:10.1039/C2SC20220D. 
  66. ^ Second LDEF post-retrieval symposium interim results of experiment A0034 (PDF). NASA. [2009-06-06]. (原始内容 (PDF)于2010-05-22). 
  67. ^ Linton, Roger C.; Kamenetzky, Rachel R.; Reynolds, John M.; Burris, Charles L. LDEF experiment A0034: Atomic oxygen stimulated outgassing. In NASA. Langley Research Center (NASA). 1992: 763. Bibcode:1992ldef.symp..763L. 
  68. ^ Luttrell, William E.; Giles, Cory B. Toxic tips: Osmium tetroxide. Journal of Chemical Health and Safety. 2007, 14 (5): 40–41. doi:10.1016/j.jchas.2007.07.003. 
  69. ^ . University of California, San Diego. [2009-06-02]. (原始内容存档于2006-02-21). 

外部連結

  • 元素锇在洛斯阿拉莫斯国家实验室的介紹(英文)
  • EnvironmentalChemistry.com —— 锇(英文)
  • 元素锇在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
  • 元素锇在Peter van der Krogt elements site的介紹(英文)
  • WebElements.com – 锇(英文)

拼音, 注音, ㄜˊ, 音同, 英語, osmium, 舊譯銤, 是一種化學元素, 其化學符號为os, 原子序數为76, 原子量為7002190230000000000, 鋨是一種堅硬, 易碎的鉑系過渡金屬, 具有獨特的藍白色光澤, 鋨是自然界中密度最高的元素, 有22, 鋨一般以痕量存在於自然中, 大部份在鉑礦藏的合金當中, 是地殼中存量最低的穩定元素之一, 鋨與鉑, 銥及其他鉑系元素形成的合金具有超強的耐用性和硬度, 能用於製造鋼筆筆頭和電觸頭等, 但由於鋨金屬堅硬易碎且熔點極高, 難以塑形, 加工, 且在空氣. 鋨 拼音 e 注音 ㄜˊ 音同 鹅 英語 Osmium 舊譯銤 2 鐭 是一種化學元素 其化學符號为Os 原子序數为76 原子量為7002190230000000000 190 23 u 鋨是一種堅硬 易碎的鉑系過渡金屬 具有獨特的藍白色光澤 鋨是自然界中密度最高的元素 有22 59 g cm3 鋨一般以痕量存在於自然中 大部份在鉑礦藏的合金當中 是地殼中存量最低的穩定元素之一 鋨與鉑 銥及其他鉑系元素形成的合金具有超強的耐用性和硬度 能用於製造鋼筆筆頭和電觸頭等 3 但由於鋨金屬堅硬易碎且熔點極高 難以塑形 加工 且在空氣中容易形成具高揮發性和高毒性的四氧化鋨 再加上鋨本身非常稀有且昂貴 因此金屬態的鋨應用很少 鋨 76Os氫 非金屬 氦 惰性氣體 鋰 鹼金屬 鈹 鹼土金屬 硼 類金屬 碳 非金屬 氮 非金屬 氧 非金屬 氟 鹵素 氖 惰性氣體 鈉 鹼金屬 鎂 鹼土金屬 鋁 貧金屬 矽 類金屬 磷 非金屬 硫 非金屬 氯 鹵素 氬 惰性氣體 鉀 鹼金屬 鈣 鹼土金屬 鈧 過渡金屬 鈦 過渡金屬 釩 過渡金屬 鉻 過渡金屬 錳 過渡金屬 鐵 過渡金屬 鈷 過渡金屬 鎳 過渡金屬 銅 過渡金屬 鋅 過渡金屬 鎵 貧金屬 鍺 類金屬 砷 類金屬 硒 非金屬 溴 鹵素 氪 惰性氣體 銣 鹼金屬 鍶 鹼土金屬 釔 過渡金屬 鋯 過渡金屬 鈮 過渡金屬 鉬 過渡金屬 鎝 過渡金屬 釕 過渡金屬 銠 過渡金屬 鈀 過渡金屬 銀 過渡金屬 鎘 過渡金屬 銦 貧金屬 錫 貧金屬 銻 類金屬 碲 類金屬 碘 鹵素 氙 惰性氣體 銫 鹼金屬 鋇 鹼土金屬 鑭 鑭系元素 鈰 鑭系元素 鐠 鑭系元素 釹 鑭系元素 鉕 鑭系元素 釤 鑭系元素 銪 鑭系元素 釓 鑭系元素 鋱 鑭系元素 鏑 鑭系元素 鈥 鑭系元素 鉺 鑭系元素 銩 鑭系元素 鐿 鑭系元素 鎦 鑭系元素 鉿 過渡金屬 鉭 過渡金屬 鎢 過渡金屬 錸 過渡金屬 鋨 過渡金屬 銥 過渡金屬 鉑 過渡金屬 金 過渡金屬 汞 過渡金屬 鉈 貧金屬 鉛 貧金屬 鉍 貧金屬 釙 貧金屬 砈 類金屬 氡 惰性氣體 鍅 鹼金屬 鐳 鹼土金屬 錒 錒系元素 釷 錒系元素 鏷 錒系元素 鈾 錒系元素 錼 錒系元素 鈽 錒系元素 鋂 錒系元素 鋦 錒系元素 鉳 錒系元素 鉲 錒系元素 鑀 錒系元素 鐨 錒系元素 鍆 錒系元素 鍩 錒系元素 鐒 錒系元素 鑪 過渡金屬 𨧀 過渡金屬 𨭎 過渡金屬 𨨏 過渡金屬 𨭆 過渡金屬 䥑 預測為過渡金屬 鐽 預測為過渡金屬 錀 預測為過渡金屬 鎶 過渡金屬 鉨 預測為貧金屬 鈇 貧金屬 鏌 預測為貧金屬 鉝 預測為貧金屬 鿬 預測為鹵素 鿫 預測為惰性氣體 釕 鋨 𨭆錸 鋨 銥外觀銀色 藍色光澤概況名稱 符號 序數鋨 Osmium Os 76元素類別过渡金属族 週期 區8 6 d標準原子質量190 23电子排布 Xe 4f14 5d6 6s22 8 18 32 14 2歷史發現史密森 特南特 1803年 分離史密森 特南特 1803年 物理性質物態固體密度 接近室温 22 59 g cm 3熔点時液體密度20 g cm 3熔点3306 K 3033 C 5491 F沸點5285 K 5012 C 9054 F熔化热57 85 kJ mol 1汽化热738 kJ mol 1比熱容24 7 J mol 1 K 1蒸氣壓壓 Pa 1 10 100 1 k 10 k 100 k溫 K 3160 3423 3751 4148 4638 5256原子性質氧化态8 7 6 5 4 3 2 1 0 1 2 微酸性氧化物 电负性2 2 鲍林标度 电离能第一 840 kJ mol 1 第二 1600 kJ mol 1原子半径135 pm共价半径144 4 pm雜項晶体结构六方密堆積磁序順磁性 1 電阻率 0 C 81 2 n W m熱導率87 6 W m 1 K 1膨脹係數 25 C 5 1 µm m 1 K 1聲速 細棒 20 C 4940 m s 1剪切模量222 GPa体积模量462 GPa泊松比0 25莫氏硬度7 0布氏硬度3920 MPaCAS号7440 04 2最穩定同位素主条目 鋨的同位素同位素 丰度 半衰期 t1 2 衰變方式 能量 MeV 產物184Os 0 02 gt 5 6 1013年 b b 1 452 184Wa 2 963 180W185Os 人造 93 6 d e 1 013 185Re186Os 1 59 2 0 1015年 a 2 822 182W187Os 1 96 穩定 帶111個中子188Os 13 24 穩定 帶112個中子189Os 16 15 穩定 帶113個中子190Os 26 26 穩定 帶114個中子191Os 人造 15 4天 b 0 314 191Ir192Os 40 78 gt 9 8 1012年 b b 0 4135 192Pta 0 3622 188W193Os 人造 30 11天 b 1 141 193Ir194Os 人造 6年 b 0 097 194Ir 目录 1 性質 1 1 物理性质 1 2 化學性质 1 3 同位素 2 歷史 3 存量 4 生產 5 應用 6 安全 7 參考資料 8 外部連結性質 编辑物理性质 编辑 鋨鑄圓珠 鋨呈藍白色 其密度比銥稍高 是密度最高的穩定元素 4 從X射線散射數據計算出的密度數值最準確 這種方法得出銥的密度為22 562 0 009 g cm3 而鋨的密度為22 587 0 009 g cm3 5 鋨金屬堅硬 在高溫下可保持光澤 鋨的壓縮性非常低 因此體積模量非常高 在395和462 GPa之間 與鑽石的443 GPa相約 在壓力為4 GPa的情況下 鋨的硬度也比較高 6 7 8 由於堅硬易碎 蒸氣壓低 鉑系元素中最低 熔點極高 所有元素中第四高 所以固體鋨很難塑形 生產過程十分困難 化學性质 编辑 参见 分類 鋨化合物 鋨的氧化態 2 Na2 Os CO 4 1 Na2 Os4 CO 13 0 Os3 CO 12 1 OsI 2 OsI2 3 OsBr3 4 OsO2 OsCl4 5 OsF5 6 OsF6 7 OsOF5 8 OsO4 Os NCH3 4 鋨可以形成氧化態為 2至 8的化合物 最常見的氧化態有 2 3 4和 8 8態是任何元素可達至的最高氧化態 除鋨以外擁有 8態的只有氙 9 10 釕 11 𨭆 12 銥 13 鈈 14 和鋦 尚未確定 15 氧化態為 1和 2的Na2 Os4 CO 13 和Na2 Os CO 4 反應性很強 可用於合成鋨的原子簇化合物 16 17 最常見的 8態化合物是鋨粉末在空氣中形成的四氧化鋨 四氧化鋨是一種淺黃色晶體 揮發性高 可溶於水 味道很強 具有毒性 鋨粉末的味道與四氧化鋨一樣 18 四氧化鋨與鹼反應會形成紅色的鋨酸OsO4 OH 2 2 與氨則形成次氮基鋨酸OsO3 N 19 20 21 四氧化鋨在130 C氣化 是一種強氧化劑 相比之下 二氧化鋨 OsO2 則是黑色的不揮發物質 反應性和毒性也遠低於四氧化鋨 具有主要用途的鋨化合物只有兩種 四氧化鋨在電子顯微鏡照相中用以對組織染色 並在有機合成過程中作烯烴的氧化劑 不揮發的鋨酸鹽則用在有機氧化反應當中 22 鋨可以形成各種鹵化物 包括五氟化鋨 OsF5 三氯化鋨 OsCl3 三溴化鋨 OsBr3 三碘化鋨 OsI3 等等 鋨的氧化態較低時 大直徑的鹵素可以使兩者的化合物更加穩定 所以以上的三鹵化物存在 但三氟化鋨 OsF3 尚未被發現 唯一一種氧化態為 1的鋨化合物是碘化鋨 OsI 鋨在一些羰基配合物中的氧化態為0 例如十二羰基三鋨 Os3 CO 12 19 20 23 24 鋨在氧化態較低時 強s供體 如胺 和p受體 含氮的雜環化合物 都可以增加其穩定性 氧化態較高時 強s和p供體都可增強穩定性 如O2 和N3 25 雖然鋨能以多種氧化態形成化合物 但是純金屬鋨在標準溫度和壓力下可抗禦所有酸和鹼的侵蝕 甚至包括王水 同位素 编辑 主条目 鋨的同位素 鋨共有7種自然產生的同位素 其中6種為穩定同位素 184 Os 187 Os 188 Os 189 Os 190 Os 和 比例最高的 192 Os 186 Os 會進行a衰變 但由於半衰期長達 2 0 1 1 1015年 所以一般可當做穩定同位素 所有穩定同位素都預測可以進行a衰變 但由於半衰期很長 因而只有186 Os 的衰變得到了實驗證實 理論預測 184 Os 和192 Os 可進行雙b衰變 但這尚無實驗證據 26 187 Os 是187 Re 的衰變產物 半衰期為4 56 1010年 被廣泛用於測定地球岩石以及隕石的年齡 見錸鋨定年法 英语 Rhenium osmium dating 此同位素還可以用於測量大陸風化的強度 及推斷大陸穩定地塊根部的地幔在何時穩定下來 含錸礦石中含有異常高的187 Os 也是因為這一衰變 27 然而最為常用的鋨定年法則是銥鋨定年法 這種方法可分析K T界線上的衝擊石英 也就是6600萬年前恐龍滅絕時所留下的地質特徵 28 歷史 编辑1803年 史密森 特南特和威廉 海德 沃拉斯頓在英國倫敦發現了鋨元素 29 鋨的發現與鉑以及其他鉑系元素息息相關 17世紀 人們在哥倫比亞喬科省的銀礦中發現了鉑 30 化學家後來發現這種金屬不是合金 而是一種新元素 並在1748年發表了這一發現 31 他們將鉑溶於王水 鹽酸和硝酸的混合物 以產生穩定的鹽 每一次實驗都有留有少量黑色的不可溶殘留物 32 約瑟夫 普魯斯特以為殘留物是石墨 32 維多 科萊 德科提爾 英语 Hippolyte Victor Collet Descotils Victor Collet Descotils 福爾克拉伯爵安東萬 弗朗索瓦 英语 Antoine Francois comte de Fourcroy Antoine Francois comte de Fourcroy 和路易 尼古拉 沃克蘭在1803年同樣觀測到這一殘留物 但因未能取得足夠的物質而無法進行更多的實驗 32 1803年 史密森 特南特分析了這些殘留物 並推斷其中必含新的金屬元素 沃克朗把該粉末來回在酸鹼中浸洗 33 取得了一種揮發性氧化物 他認為這是新元素的氧化物 並把新元素命名為 ptene 源於希臘文的 pthnos ptenos 即 有翼的 34 35 特南特則擁有更大量的殘留物 並在不久後辨認出兩種新元素 也就是鋨和銥 32 33 他再對產物加入氫氧化鈉 在加熱後製成了一種黃色溶液 很可能是順 Os OH 2O4 2 溶液經過酸化後 他用蒸餾法取得了OsO4 34 由於製成的四氧化鋨具有強烈的焦味 所以他把這一新元素命名為現名 osmium 源於希臘文 osmh osme 即 臭味 36 鋨元素的發現被記錄在1804年6月21日致皇家學院的一封信中 32 37 鈾和鋨在形成氨的哈柏法中是有效的催化劑 這使該方法可以得到廣泛應用 當時在BASF一個以卡爾 博施為首的團隊購入了世界上大部份的鋨來作催化劑 1908年 同一個團隊發現了使用鐵和氧化鐵的更為便宜的催化劑 因此無須再使用昂貴稀少的鋨元素 38 今天 鋨主要是從鉑和鎳礦石中提取出來的 39 存量 编辑 含有其他鉑系元素的鉑原石 鋨是地球地殼中最稀有的穩定元素 在大陸地殼裡的平均質量比例只有1千億分之5 40 鋨在自然中以純金屬或合金的形態出現 尤其是各種比例的銥 鋨合金 33 鎳和銅礦藏中還含有鋨和銥的硫化物 碲化物 銻化物和砷化物 與其他鉑系元素一樣 鋨可以形成自然鎳合金及銅合金 41 地殼中有三種地質結構的鋨含量最高 火成岩 撞擊坑以及前二者演化而成的地質結構 最大的已知礦藏有南非的布什維爾德火成雜岩體 42 俄羅斯的諾里爾斯克及加拿大的索德柏立盆地等 美國有較小的鋨礦藏 42 前哥倫布時期哥倫比亞喬科省居民所用的沖積層礦藏至今仍是鉑系元素的一大來源 第二大的沖積層礦藏位於俄羅斯烏拉爾山脈 39 43 生產 编辑 由化学气相传输法長成的鋨晶體 鋨是鎳和銅開採和提煉過程的副產品 在鎳和銅的電解精煉過程中 金 銀等貴金屬 鉑系元素以及硒和碲等非金屬元素都會積聚在正電極上 44 45 這一泥狀物質要進入溶液才可把其中的金屬分離出來 具體方法取決於混合物的成份 但主要有兩種 加入過氧化鈉後溶於王水 或直接溶於氯和氫氯酸的混合溶液 42 46 鋨 釕 銠和銥不可溶於王水 可從鉑 金等金屬分離開來 銠與熔化的硫酸氫鈉反應後會再分離出來 剩餘的物質中含有釕 鋨和銥 其中銥不可溶於氧化鈉 加入氧化鈉會產生水溶的釕鹽和鋨鹽 而在氧化後 這些鹽會變成揮發性的RuO4 和OsO4 氯化銨可將前者沉澱為 NH4 3RuCl6 溶解後的鋨要從其他鉑系元素中分離出來 分離方法包括蒸餾法和用適當的有機溶劑把四氧化鋨提取出來 47 特南特和沃拉斯頓所用的方法類似於前者 兩種方法所得出的產物與氫進行還原反應 產生粉狀或海綿狀鋨粉末 再經粉末冶金手法進行加工 48 鋨生產商和美國地質調查局都沒有公佈鋨的產量數據 1971年發佈的數字當中 49 單在美國的消耗量共有2000金衡盎司 62公斤 意味著產量低於每年1噸 2012年美國鋨產量的估值為75公斤 50 鋨一般以99 或更高纯度的粉末的形式出售 鋨的量度單位可以採用金衡制或公制 2012年鋨的價格約為每金衡盎司400美元 每克13美元 51 52 應用 编辑由於鋨的氧化物具有高揮發性和高毒性 而鋨金屬容易形成氧化物 所以其金屬態的應用很少 人們一般使用的是耐用性很強的鋨合金 銥鋨合金非常堅硬 可同其他鉑系金屬用於製造需耐用的鋼筆筆頭 機器樞軸及電觸頭等 1945年至1955年左右的留聲機唱針頭也含有銥鋨合金 雖然鋨合金比鋼和鉻耐用 但是卻遠比藍寶石和鑽石遜色 因此最終被淘汰了 53 四氧化鋨可用於指紋識別 54 以及在光學和電子顯微鏡照相中對脂組織進行染色 四氧化鋨的氧化性很強 所以能與未飽和碳 碳鍵反應 從而連接油脂 因此在染色的同時 它還會固定生物膜 鋨原子的電子密度極高 在透射電子顯微鏡 TEM 下能大大提高對比度 未經處理的碳物質在TEM下的對比度很低 見圖 22 鐵氰化鋨 OsFeCN 也有染色兼固定的性質 55 四氧化鋨和鋨酸鉀是化學合成過程中重要的氧化劑 但都是劇毒 夏普萊斯不對稱雙羥基化反應中 鋨酸將雙鍵轉換為鄰二醇 巴里 夏普萊斯因這一發現而在2001年獲得諾貝爾化學獎 56 57 OsO4非常昂貴 所以化學家一般改用KMnO4 雖然產量會降低 但後者的價格遠沒有鋨高 58 1898年 奧地利化學家卡爾 奧爾 馮 威爾斯巴赫 英语 Carl Auer von Welsbach 發明了用鋨作為燈絲的電燈 並在1902年推出市場 不過 鎢的熔點是所有金屬中最高的 用於電燈時還能增加光效和延長燈泡壽命 所以在幾年後就把鋨淘汰了 34 和鈀相似 鋨粉末可有效吸收氫原子 因此有潛力作金屬氫化物電池電極 不過鋨價格高昂 而且會與氫氧化鉀 最常用的電池電解質 反應 59 鋨的紫外線反射率很高 鋨對600 A波長的反射率是金的兩倍 60 鋨因此被用於大小有限的太空紫外光譜儀 多個太空穿梭機任務曾搭載鍍鋨鏡子進入太空 但不久後人們發現近地軌道中的氧自由基足以破壞鋨塗層 61 斯堪的納維亞的某些醫院在對關節炎病人進行滑膜切除術時 62 需病人服食四氧化鋨 OsO4 雖然四氧化鋨有毒 但並沒有病人長期副作用的報告 因此某些鋨化合物可能可以和生物體相容 2011年 科學家宣稱鋨 VI 63 和鋨 II 64 化合物在活體內有抗癌的作用 且有潛力作抗癌藥物 65 夏普萊斯不對稱雙羥基化反應 RL 大取代基 RM 中取代基 RS 小取代基 鋨 銀和金製鏡子在太空任務之後因氧化而變黑 66 67 安全 编辑鋨金屬粉末可自燃 49 鋨在室溫下會和空氣中的氧反應 形成揮發性四氧化鋨 某些鋨化合物在有氧環境下也會轉變成四氧化鋨 49 四氧化鋨的揮發性很高 能輕易穿透皮膚 且經吸入 進食和皮膚接觸後都是毒物 68 如果空氣中含有低濃度四氧化鋨 會造成肺淤血及皮膚和眼部損害 因此四氧化鋨必須在通風櫃內處理 18 粟米油等含多元不飽和脂肪的植物油可迅速將四氧化鋨還原成相對惰性的化合物 69 參考資料 编辑 Magnetic susceptibility of the elements and inorganic compounds 互联网档案馆的存檔 存档日期2011 03 03 in Handbook of Chemistry and Physics 81st edition CRC press 銤 亦為化學元素鋂的舊譯 因造成混淆而採用新譯 Hammond Osmium C R p 4 25 in Lide D R 编 CRC Handbook of Chemistry and Physics 86th Boca Raton FL CRC Press 2005 ISBN 0 8493 0486 5 Arblaster J W Densities of osmium and iridium recalculations based upon a review of the latest crystallographic data PDF Platinum Metals Review 1989 33 1 14 16 2013 12 25 原始内容 PDF 存档于2012 02 07 Arblaster J W Osmium the Densest Metal Known Platinum Metals Review 1995 39 4 164 2013 12 25 原始内容存档于2011 09 27 Weinberger Michelle Tolbert Sarah Kavner Abby Osmium Metal Studied under High Pressure and Nonhydrostatic Stress Phys Rev Lett 2008 100 4 045506 Bibcode 2008PhRvL 100d5506W PMID 18352299 doi 10 1103 PhysRevLett 100 045506 Cynn Hyunchae Klepeis J E Yeo C S Young D A Osmium has the Lowest Experimentally Determined Compressibility Physical Review Letters 2002 88 13 135701 Bibcode 2002PhRvL 88m5701C PMID 11955108 doi 10 1103 PhysRevLett 88 135701 引文使用过时参数coauthors 帮助 Sahu B R Kleinman L Osmium Is Not Harder Than Diamond Physical Review B 2005 72 11 113106 Bibcode 2005PhRvB 72k3106S doi 10 1103 PhysRevB 72 113106 引文使用过时参数coauthors 帮助 Selig H Claassen H H Chernick C L Malm J G Huston J L Xenon tetroxide Preparation Some Properties Science 1964 143 3612 1322 3 Bibcode 1964Sci 143 1322S JSTOR 1713238 PMID 17799234 doi 10 1126 science 143 3612 1322 Huston J L Studier M H Sloth E N Xenon tetroxide Mass Spectrum Science 1964 143 3611 1162 3 Bibcode 1964Sci 143 1161H JSTOR 1712675 PMID 17833897 doi 10 1126 science 143 3611 1161 a Barnard C F J Oxidation States of Ruthenium and Osmium Platinum Metals Review 2004 48 4 157 doi 10 1595 147106704X10801 Chemistry of Hassium PDF Gesellschaft fur Schwerionenforschung mbH 2002 2007 01 31 原始内容存档 PDF 于2012 01 14 Gong Yu Zhou Mingfei Kaupp Martin Riedel Sebastian Formation and Characterization of the Iridium Tetroxide Molecule with Iridium in the Oxidation State VIII Angewandte Chemie International Edition 2009 48 42 7879 doi 10 1002 anie 200902733 Domanov V P Lobanov Yu V Refinement of data on the volatility of octavalent plutonium in the form of tetraoxide PuO4 Radiochemistry SP MAIK Nauka Interperiodica February 2009 51 1 14 17 doi 10 1134 S1066362209010044 Domanov V P Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO4 Radiochemistry SP MAIK Nauka Interperiodica January 2013 55 1 46 51 doi 10 1134 S1066362213010098 Krause J Siriwardane Upali Salupo Terese A Wermer Joseph R Knoeppel David W Shore Sheldon G Preparation of Os3 CO 11 2 and its reactions with Os3 CO 12 structures of Et4N HOs3 CO 11 and H2OsS4 CO Journal of Organometallic Chemistry 1993 454 263 271 doi 10 1016 0022 328X 93 83250 Y Carter Willie J Kelland John W Okrasinski Stanley J Warner Keith E Norton Jack R Mononuclear hydrido alkyl carbonyl complexes of osmium and their polynuclear derivatives Inorganic Chemistry 1982 21 11 3955 3960 doi 10 1021 ic00141a019 引文使用过时参数coauthors 帮助 18 0 18 1 Mager Stellman J Osmium Encyclopaedia of Occupational Health and Safety International Labour Organization 1998 63 34 ISBN 978 92 2 109816 4 OCLC 35279504 45066560 请检查 oclc 值 帮助 19 0 19 1 Holleman A F Wiberg E Wiberg N Inorganic Chemistry 1st Edition Academic Press 2001 ISBN 0 12 352651 5 OCLC 47901436 引文使用过时参数coauthors 帮助 20 0 20 1 Griffith W P Osmium and its compounds Quarterly Review of the Chemical Society 1965 19 3 254 273 doi 10 1039 QR9651900254 Subcommittee on Platinum Group Metals Committee on Medical and Biologic Effects of Environmental Pollutants Division of Medical Sciences Assembly of Life Sciences National Research Council Platinum group metals National Academy of Sciences 1977 55 ISBN 0 309 02640 7 22 0 22 1 Bozzola John J Russell Lonnie D Specimen Preparation for Transmission Electron Microscopy Electron microscopy principles and techniques for biologists Sudbury Mass Jones and Bartlett 1999 21 31 ISBN 978 0 7637 0192 5 引文使用过时参数coauthor 帮助 Greenwood N N Earnshaw A Chemistry of the Elements 2nd Oxford Butterworth Heinemann 1997 1113 1143 1294 ISBN 0 7506 3365 4 OCLC 213025882 37499934 41901113 请检查 oclc 值 帮助 引文使用过时参数coauthors 帮助 Gulliver D J Levason W The chemistry of ruthenium osmium rhodium iridium palladium and platinum in the higher oxidation states Coordination Chemistry Reviews 1982 46 1 127 doi 10 1016 0010 8545 82 85001 7 Peter A Lay W Dean Harman Advances in Inorganic Chemistry A G Sykes Academic Press 1992 221 ISBN 0 12 023637 0 Audi G Bersillon O Blachot J Wapstra A H The NUBASE Evaluation of Nuclear and Decay Properties Nuclear Physics A Atomic Mass Data Center 2003 729 3 128 Bibcode 2003NuPhA 729 3A doi 10 1016 j nuclphysa 2003 11 001 Dabek Jozef Halas Stanislaw Physical Foundations of Rhenium Osmium Method A Review Geochronometria 2007 27 23 26 doi 10 2478 v10003 007 0011 4 引文使用过时参数coauthors 帮助 Alvarez L W Alvarez W Asaro F Michel H V Extraterrestrial cause for the Cretaceous Tertiary extinction Science 1980 208 4448 1095 1108 Bibcode 1980Sci 208 1095A PMID 17783054 doi 10 1126 science 208 4448 1095 Venetskii S I Osmium Metallurgist 1974 18 2 155 157 doi 10 1007 BF01132596 McDonald M The Platinum of New Granada Mining and Metallurgy in the Spanish Colonial Empire Platinum Metals Review 959 3 4 140 145 2013 12 25 原始内容存档于2011 06 09 Juan J de Ulloa A Relacion historica del viage a la America Meridional 1 1748 606 西班牙语 32 0 32 1 32 2 32 3 32 4 Hunt L B A History of Iridium PDF Platinum Metals Review 1987 31 1 32 41 2012 03 15 原始内容存档 PDF 于2012 03 04 33 0 33 1 33 2 Emsley J Osmium Nature s Building Blocks An A Z Guide to the Elements Oxford England UK Oxford University Press 2003 199 201 ISBN 0 19 850340 7 34 0 34 1 34 2 Griffith W P Bicentenary of Four Platinum Group Metals Part II Osmium and iridium events surrounding their discoveries Platinum Metals Review 2004 48 4 182 189 doi 10 1595 147106704X4844 Thomson T A System of Chemistry of Inorganic Bodies Baldwin amp Cradock London and William Blackwood Edinburgh 1831 693 Weeks M E Discovery of the Elements 7 Journal of Chemical Education 1968 414 418 ISBN 0 8486 8579 2 OCLC 23991202 Tennant S On Two Metals Found in the Black Powder Remaining after the Solution of Platina Philosophical Transactions of the Royal Society 1804 94 411 418 JSTOR 107152 doi 10 1098 rstl 1804 0018 Smil Vaclav Enriching the Earth Fritz Haber Carl Bosch and the Transformation of World Food Production MIT Press 2004 80 86 ISBN 978 0 262 69313 4 39 0 39 1 George Micheal W 2006 Minerals Yearbook Platinum Group Metals PDF United States Geological Survey USGS 2008 09 16 原始内容存档 PDF 于2019 01 11 Wedepohl Hans K The composition of the continental crust Geochimica et Cosmochimica Acta 1995 59 7 1217 1232 Bibcode 1995GeCoA 59 1217W doi 10 1016 0016 7037 95 00038 2 Xiao Z Laplante A R Characterizing and recovering the platinum group minerals a review Minerals Engineering 2004 17 9 10 961 979 doi 10 1016 j mineng 2004 04 001 引文使用过时参数coauthors 帮助 42 0 42 1 42 2 Seymour R J O Farrelly J I Platinum group metals Kirk Othmer Encyclopedia of Chemical Technology Wiley 2001 doi 10 1002 0471238961 1612012019052513 a01 pub2 引文使用过时参数coauthors 帮助 Commodity Report Platinum Group Metals PDF United States Geological Survey USGS 2008 09 16 原始内容存档 PDF 于2019 01 11 George M W Platinum group metals PDF U S Geological Survey Mineral Commodity Summaries USGS Mineral Resources Program 2008 2013 12 25 原始内容存档 PDF 于2019 01 11 George M W 2006 Minerals Yearbook Platinum Group Metals PDF United States Geological Survey USGS 2008 09 16 原始内容存档 PDF 于2019 01 11 Renner H Schlamp G Kleinwachter I Drost E Luschow H M Tews P Panster P Diehl M Lang J Kreuzer T Knodler A Starz K A Dermann K Rothaut J Drieselman R Platinum group metals and compounds Ullmann s Encyclopedia of Industrial Chemistry Wiley 2002 doi 10 1002 14356007 a21 075 Gilchrist Raleigh The Platinum Metals Chemical Reviews 1943 32 3 277 372 doi 10 1021 cr60103a002 Hunt L B Lever F M Platinum Metals A Survey of Productive Resources to industrial Uses PDF Platinum Metals Review 1969 13 4 126 138 2008 10 02 原始内容 PDF 存档于2008 10 29 引文使用过时参数coauthors 帮助 49 0 49 1 49 2 Smith Ivan C Carson Bonnie L Ferguson Thomas L Osmium An Appraisal of Environmental Exposure Environmental Health Perspectives 1974 8 201 213 JSTOR 3428200 PMC 1474945 PMID 4470919 doi 10 2307 3428200 引文使用过时参数coauthors 帮助 PLATINUM GROUP METALS PDF USGS 27 May 2013 原始内容存档 PDF 于2017 05 13 Osmium 页面存档备份 存于互联网档案馆 Los Alamos National Laboratory s Chemistry Division Live Osmium prices 页面存档备份 存于互联网档案馆 TaxFreeGold com Accessed 6 April 2010 Stephen D Cramer and Bernard S Covino Jr Bernard S Covino Jr ASM Handbook Volume 13B Corrosion Materials ASM International 2005 ISBN 978 0 87170 707 9 引文使用过时参数coauthors 帮助 MacDonell Herbert L The Use of Hydrogen Fluoride in the Development of Latent Fingerprints Found on Glass Surfaces The Journal of Criminal Law Criminology and Police Science 1960 51 4 465 470 JSTOR 1140672 doi 10 2307 1140672 Chadwick D Role of the sarcoplasmic reticulum in smooth muscle John Wiley and Sons 2002 259 264 ISBN 0 470 84479 5 Kolb H C Van Nieuwenhze M S Sharpless K B Catalytic Asymmetric Dihydroxylation Chemical Reviews 1994 94 8 2483 2547 doi 10 1021 cr00032a009 引文使用过时参数coauthors 帮助 Colacot T J 2001 Nobel Prize in Chemistry PDF Platinum Metals Review 2002 46 2 82 83 2013 12 25 原始内容 PDF 存档于2013 01 31 Osmium tetroxide as a reagent in organic chemistry Master Organic Chemistry 页面存档备份 存于互联网档案馆 Masterorganicchemistry com Retrieved on 2012 12 07 Antonov V E Belash I T Malyshev V Yu Ponyatovsky E G The Solubility of Hydrogen in the Platinum Metals under High Pressure PDF Platinum Metals Revie 1984 28 4 158 163 2013 12 25 原始内容 PDF 存档于2013 01 31 引文使用过时参数coauthors 帮助 Torr Marsha R Osmium coated diffraction grating in the Space Shuttle environment performance Applied Optics 1985 24 18 2959 Bibcode 1985ApOpt 24 2959T PMID 18223987 doi 10 1364 AO 24 002959 Gull T R Herzig H Osantowski JF Toft AR Low earth orbit environmental effects on osmium and related optical thin film coatings Applied Optics 1985 24 16 2660 Bibcode 1985ApOpt 24 2660G PMID 18223936 doi 10 1364 AO 24 002660 Sheppeard H D J Ward Intra articular osmic acid in rheumatoid arthritis five years experience Rheumatology 1980 19 1 25 29 PMID 7361025 doi 10 1093 rheumatology 19 1 25 引文使用过时参数coauthors 帮助 Lau T C W X Ni W L Man M T W Cheung R W Y Sun Y L Shu Y W Lam C M Che Osmium vi complexes as a new class of potential anti cancer agents Chem Commun 2011 47 7 2140 2142 doi 10 1039 C0CC04515B 引文使用过时参数coauthors 帮助 Sadler Peter Steve D Shnyder Ying Fu Abraha Habtemariam Sabine H van Rijt Patricia A Cooper Paul M Loadman Anti colorectal cancer activity of an organometallic osmium arene azopyridine complex Med Chem Commun 2011 2 7 666 668 doi 10 1039 C1MD00075F 引文使用过时参数coauthors 帮助 Fu Ying Romero Maria J Habtemariam Abraha et al The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium II arene anticancer complexes Chemical Science 2012 3 8 2485 2494 doi 10 1039 C2SC20220D Second LDEF post retrieval symposium interim results of experiment A0034 PDF NASA 2009 06 06 原始内容存档 PDF 于2010 05 22 Linton Roger C Kamenetzky Rachel R Reynolds John M Burris Charles L LDEF experiment A0034 Atomic oxygen stimulated outgassing In NASA Langley Research Center NASA 1992 763 Bibcode 1992ldef symp 763L Luttrell William E Giles Cory B Toxic tips Osmium tetroxide Journal of Chemical Health and Safety 2007 14 5 40 41 doi 10 1016 j jchas 2007 07 003 引文使用过时参数coauthors 帮助 How to Handle Osmium Tetroxide University of California San Diego 2009 06 02 原始内容存档于2006 02 21 外部連結 编辑元素锇在洛斯阿拉莫斯国家实验室的介紹 英文 EnvironmentalChemistry com 锇 英文 元素锇在The Periodic Table of Videos 諾丁漢大學 的介紹 英文 元素锇在Peter van der Krogt elements site的介紹 英文 WebElements com 锇 英文 取自 https zh wikipedia org w index php title 锇 amp oldid 75469136, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。