fbpx
维基百科

自噬

自噬(英語:autophagy,或稱自體吞噬)是一個涉及到細胞自身結構通過溶酶體機制,負責將受損的細胞器、錯誤折疊的蛋白及其他大分子物質等運送至溶酶體降解並再利用的進化保守過程。自噬是廣泛存在於真核細胞的現象,並且可分為巨自噬、微自噬和分子伴侶介導的自噬三大類。這是一個受到緊密調控的步驟,此步驟是細胞生長、發育穩態中的常規步驟,幫助細胞產物在合成、降解以及接下來的循環中保持一個平衡狀態。目前已有多份研究表明自噬在許多細胞的分化進程中被不同程度地觸發[1],例如參與血管生成[2]、成骨分化[3]、脂肪生成[4]、神經發生[5]等過程。

(A) 自噬示意圖; (B) 果蠅幼蟲的脂肪體自噬結構的電子顯微鏡照片; (C) 螢光標記的自噬體飢餓小鼠肝細胞

自噬效應的發生取決於自噬流過程是否完成,而自噬流的意思是自噬的完整動態過程,包括自噬體形成、自噬體與溶酶體融合及後續內含物的降解和回收[6]

命名為“自噬”(英語:autophagy)是由比利時化學家克里斯汀·德·迪夫在1963年發現的[7]。當代的自噬研究是1990年代酵母的研究人員通過識別的自噬相關基因而被推動[8][9][10][11][12]。其中之一人,日本科學家大隅良典因“對細胞自噬機制的發現”獲得2016年度的诺贝尔生理学或医学奖[13]

歷史 编辑

1962年1月,美國洛克菲勒醫學研究院基思·R·波特和其學生Thomas Ashford報導了添加胰高血糖素後,大鼠細胞中的溶酶體數量增加,並且發現一些向細胞中心移位的溶酶體,包含着線粒體等細胞器的成分。Porter和Ashford錯誤地將數據解釋為溶酶體的形成過程,不認為溶酶體是像線粒體一樣存在於細胞質中的細胞器,並且將觀察到的水解酶理解為是由微體英语Microbody產生的水解酶[14]

1963年,赫魯班(Hruban)、Spargo及其同事等報道了局部細胞質降解的超微結構,該報道參考了1955年德國科學家的損傷誘導融合模型,觀察到了從細胞質融合到生成溶酶體的三個連續步驟,並提出這個過程不僅由損傷階段誘發,而且在細胞分化的生理階段,同樣的過程也在「細胞器處置」和「細胞成分再利用」中行使功能[15]。這篇報道引起了當時也在洛克菲勒醫學研究所工作的克里斯汀·德·迪夫的興趣,與之前Porter和Ashford的看法不同,德迪夫受到這一發現的啟發,把這種現象命名為自噬(autophagy),並提出在胰高血糖素引發的肝細胞降解過程中,溶酶體發揮了功能。他與其學生拉塞爾·德特(Russell Deter)一起證實胰高血糖素誘發的自噬是由溶酶體介導的[16][17],並且在1967年連續發表兩篇文章,他也由此成為第一位報道溶酶體參與細胞內自噬的科學家。這是首次確定溶酶體是細胞內自噬的部位[7][18][19]。1974年德迪夫發現細胞內結構及功能性器官,即溶酶體和過氧物酶體,而與另外兩位科學家共享了該年度的諾貝爾生理學或醫學獎

 
日本生物學家大隅良典在東京工業大學實驗室內的照片

在1990年代,幾組科學家使用發芽酵母獨立地發現了自噬相關基因。值得注意的是,大隅良典(他於2016年獲得了諾貝爾生理學或醫學獎,儘管有人指出該獎項可能更具包容性[20])和Michael Thumm研究了飢餓誘導的非選擇性自噬[9][10][11]。同時,Daniel J Klionsky發現細胞質至液泡傳遞途徑英语Cytoplasm-to-vacuole targeting(CVT),這是選擇性自噬的一種形式[8][12]。他們很快發現他們實際上是從不同的角度看本質上相同的路徑[21][22]。最初,由酵母菌組發現的基因被賦予不同的名稱(APG、AUT、CVT、GSA、PAG、PAZ和PDD)。2003年,有研究人員提出了統一的命名法,即使用ATG表示自噬基因[23]

21世紀初,自噬研究領域經歷快速的發展。ATG基因的知識為科學家提供了更方便的工具,以分析自噬在人類健康和疾病中的功能。1999年,貝絲·萊文(Beth Levine)的小組發表了一項具有里程碑意義的發現[24],將自噬與癌症聯繫起來。迄今為止,癌症與自噬之間的關係仍然是自噬研究的主要主題。自噬在神經退行性變和免疫防禦中的作用也受到了廣泛的關注。2003年,第一屆戈登自噬研究會議(Gordon Research Conference on autophagy)在沃特維爾舉行[25]。2005年,Daniel J Klionsky發行了致力於該領域的科學期刊《自噬》。2007年,首屆Keystone自噬專題討論會在蒙特里舉行[26]。2008年,Carol A Mercer創建了BHMT融合蛋白(GST-BHMT),該蛋白在細胞系中顯示飢餓誘導的位點特異性片段化,而甜菜鹼高半胱氨酸甲基轉移酶英语Betaine—homocysteine S-methyltransferase的降解是一種可用於評估哺乳類動物細胞中自噬通量的代謝酶[27]

巨自噬作用、微自噬作用英语Microautophagy伴侶分子介導自噬作用英语Chaperone-mediated autophagy由自噬相關基因及其相關酶介導[28][29][30]。巨自噬作用細分為本體自噬和選擇性自噬(bulk and selective autophagy)。在選擇性自噬中,又細分為線粒體自噬作用英语Mitophagy[31]、脂自噬作用、過氧化物酶體自噬作用[32]葉綠體自噬作用[33]核糖體自噬作用[34]等。

 
圖中顯示了自噬體的形成,其中高爾基體在左上方,線粒體在右上方,而自噬體則在底部中心
  • 巨自噬作用是主要的自噬途徑,主要用於清除受損的細胞器或未被使用的蛋白質[35]。首先,吞噬細胞將需要降解的物質吞噬,並在受損的細胞器周圍形成自噬體[36]。然後自噬體穿過細胞的細胞質到達溶酶體,兩個細胞器融合。在溶酶體內,自噬體內的內容物通過酸性溶酶體水解酶降解[37]
 
巨自噬與微自噬作用過程的對比
  • 微自噬作用涉及將細胞質內的物質直接吞噬到溶酶體中[38]。這是通過內陷發生的,意味著溶酶體膜向內折疊或細胞向外突出[36]
  • 伴侶分子介導自噬作用(CMA)是一個非常複雜和特異的途徑,涉及到包含hsc70的複合物的識別[36][39]。這意味著蛋白質必須包含hsc70複合物的識別位點,這將使其能夠與該分子伴侶結合,形成CMA-底物/分子伴侶複合物。然後,該複合物移動到溶酶體膜結合蛋白上,該蛋白將識別並與CMA受體結合。底物蛋白在識別後就解折疊,並在溶酶體hsc70分子伴侶的幫助下,跨越溶酶體膜轉運。CMA與其他類型的自噬存在顯著差異,因為它以一種一種的方式轉運蛋白物質,並且對哪種物質穿過溶酶體屏障具有極高的選擇性[35]
  • 線粒體自噬作用是通過自噬選擇性地降解受損或未受損的線粒體。經歷損傷或受壓後,經常發生線粒體缺陷。線粒體吞噬作用促進線粒體的更新,並且防止功能異常的線粒體積聚,從而導致細胞變性。它是由酵母中的Atg3、NIX及其調節物BNIP3在哺乳動物中介導的。線粒體吞噬作用受到PINK1和parkin蛋白的調節[40][41]
  • 脂自噬作用是通過自噬降解脂質[42],該功能在動物真菌細胞中都存在[43]。然而,脂肪吞噬作用在植物細胞中的作用仍然難以捉摸[44]。在脂質吞噬中,靶標是稱為脂質滴(LDs)的脂質結構,具有主要是三酰基甘油(TAGs)核心,以及單層磷脂和膜蛋白組成的球形細胞器。在動物細胞中,主要的脂肪吞噬途徑是通過吞噬細胞吞噬LD,即巨自噬。另一方面,在真菌細胞中,微脂代謝是主要途徑,尤其是在發芽酵母及釀酒酵母中得到了很好的研究[45]。脂吞噬作用最早在小鼠中發現,並且在2009年發表[46]

分子生物學 编辑

屬於絲氨酸/蘇氨酸蛋白激酶的ATG1/ULK1是啟動自噬作用的關鍵蛋白激酶[47]。自噬的初始階段主要是誘導自噬和形成自噬膜,然而自噬膜的形成需要自噬前體(即自噬調控的重要節點)的形成。Beclin1-Vps34復合體是哺乳動物自噬的核心復合物。AtG4參與自噬泡的形成[48],而UVRAG作用於自噬泡成熟及其運輸過程[49],Rubicon負調節其功能[50]。誘導自噬後,在Atg14-Vps15-mVps34復合物作用下,啟動膜泡的成核反應,進一步結合Atg21和Atg24,形成前自噬體[51]

自噬膜泡進一步擴張並包繞底物,最終形成自噬體。Atg12-Atg5復合物系統和LC3-Ⅱ-磷脂酰乙醇胺復合物系統均是泛素化系統,參與着自噬體的形成。目前已知p62英语Nucleoporin 62蛋白會誘導鑲嵌有LC3的自噬體到溶酶體,將其吞噬並清除,與底物結合的p62也能被蛋白水解酶降解,而細胞內的微管骨架其實也會將自噬體運輸到溶酶體,水解酶在二者融合降解自噬體內容物,Rab7及UVRAG英语UVRAG等因子參與此過程。目前已知Rab7與膜泡表面的脂分子尾部作用進行定位,而UVRAG則活化Rab7,將囊泡運送到靶位點[52]

自噬過程通常涉及兩種泛素樣偶聯反應,以維持吞噬體的擴展。第1種反應發生在LC3 (酵母Atg8在哺乳動物中的同源物),LC3對溶酶體的形成是必需的。Atg4切割LC3獲得彌散胞質狀態的LC3-Ⅰ,LC3-Ⅰ其後與磷脂酰乙醇胺偶聯,以形成膜結合狀態的LC3-Ⅱ,LC3-Ⅱ其後定位於自噬體膜。Atg5-Atg12-Atg16L1復合物與前自噬體膜相關聯,通過協助招募LC3延長它們的伸長。隨著吞噬細胞擴大並接近閉合,Atg5-Atg12-Atg16L1復合物從外膜解離,而LC3-Ⅱ仍然與完成的自噬體結合。除此之外,mAtg9是核心Atg蛋白中唯一確定的多次跨膜蛋白,吞噬細胞的延伸也由mAtg9輔助。第2種反應則是在Atg12英语ATG12與Atg5共軛後,Atg16L1與偶聯物Atg12-Atg5結合,形成一個對吞噬細胞成熟至關重要的Atg5-Atg12-Atg16L1復合物[53]

  • ATG8酯化在自噬發生過程中的作用仍未解釋清楚,可以對促進自噬體膜的延伸和閉合起著關鍵作用。ATG8的酯化過程依賴於兩個類泛素化系統的幫助。所有生物中的ATG5-ATG12共價結合復合物對於細胞內ATG8的酯化均是必須的。
  • 在自噬相關基因中,Beclin1、Atg5、Atg12和LC3對自噬的誘導階段十分重要。其中,LC3是自噬的關鍵蛋白,LC3前體正常會被ATG4切掉C端120個氨基酸,而殘片稱為LC3Ⅰ。胞膜形式的LC3Ⅰ在自噬發生時,已活化的LC3-Ⅰ經Atg3泛素化修飾後,與自噬泡膜表面的磷脂酰乙醇胺結合,形成自噬體膜形式且疏水性較強的LC3Ⅱ,並且鉚釘於自噬泡雙層膜結構上,參與細胞自噬。
  • ULK復合物對自噬誘導起始至關重要[54],主要由ULK1/2、自噬相關基因13(ATG13)、ATG101和200 kD家族相互作用蛋白組成[47]。ULK1/2負責募集ATG蛋白,其中ULK1是哺乳動物自噬泡形成所必需的一種蛋白質,其活性缺失時LC3-Ⅱ不能形成,阻礙自噬過程。ULK1激酶復合體能夠促進PI3K和ATG14形成復合物,並且促進Beclin1從Bcl2-Beclin1復合體中解離出來,形成參與自噬體核形成的關鍵因子Beclin1-PI3K-ATG14復合物[48]單磷酸腺苷活化蛋白質激酶英语AMP-activated protein kinase(AMPK)和mTOR都可以催化ULK1的磷酸化[55] 。AMPK在營養充足的條件下失活,mTORC活化並磷酸化ULK1和ATG13,從而抑制自噬起始。AMPK在飢餓條件下活化,同時mTORC失活,已活化的AMPK催化ULK1絲氨酸磷酸化,促進自噬作用。除此之外,ATG13可以由mTORC1英语mTORC1磷酸化並調控ULK復合物的活性,ATG101結合並穩定FIP200,而FIP200則為ULK及ATG13提供支架[56]
  • PI3K復合物由Vps34、Vps15、Beclin1和Atg14蛋白組成,ULK1復合物在膜泡形成後會從由細胞質轉移至內質網,並且增強PI3K復合物的活性,隨後可產生磷脂酰肌醇-3磷酸酯,促進其他效應蛋白與自噬體膜結合,從而啟動膜泡的成核反應,繼而介導前自噬體的形成[57]

功能 编辑

營養不足 编辑

自噬在各種細胞功能中都發揮作用。營養不足會導致高水平的自噬,降解不需要的蛋白質,並且回收氨基酸,以合成對細胞生存至關重要的蛋白質[58][59][60]。在高等真核生物中,自噬作用因動物在出生後切斷了來自胎盤的食物供應而被響應[61][62]。自噬能力降低的突變酵母細胞會在營養缺乏的情況下迅速消失[63]。對APG突變體的研究表明,在飢餓條件下,通過自噬體進行的自噬對於液泡中的蛋白質降解是必不可少的,並且酵母中至少有15個APG基因參與自噬[63]。營養素介導的自噬涉及一種稱為ATG7的基因,因為小鼠研究表明,APG7缺陷型小鼠有着飢餓引起的自噬[62]

異種吞噬 编辑

微生物學中,異種吞噬英语Xenophagy是指感染性顆粒的自噬性降解。細胞自噬機制在先天免疫中發揮重要作用。結核桿菌等細胞內的病原體被靶向降解,當中的細胞機制和調控機制與靶向線粒體降解的機制相同[64] 。這是內共生學說的進一步證據。儘管某些細菌會阻止吞噬體成熟為降解的細胞器,稱為吞噬溶酶體英语Phagolysosome,但是這個過程通常會導致由侵入性微生物帶來的破壞[65]

感染 编辑

水皰性口炎病毒是由自噬體從胞質溶膠中吸收並轉移到內體中,並且在那裡通過TLR7英语TLR7檢測單鏈核糖核酸。在類鐸受體被激活後,細胞內信號級聯反應就會開始,導致干擾素和其他抗病毒細胞因子的誘導。部分病毒和細菌破壞了自噬途徑,以促進自身複製[66]。半乳凝素8已經被鑑定為細胞內的「危險受體」,能夠啟動針對細胞內病原體的自噬。當半乳凝素8與受損的液泡結合時,它會募集CALCOCO2英语CALCOCO2等自噬受體,導致自噬體的形成和細菌的降解[67]

修復機制 编辑

自噬可以降解受損的細胞器、細胞膜蛋白質,而抵制自噬作用被認為是造成受損細胞蓄積和衰老的其中一個主要原因[68]。自噬和自噬調節劑參與溶酶體損傷的反應,通常由半乳凝素-3英语Galectin-3半乳凝素-8英语Galectin-8半乳凝素英语Galectin指導,半乳凝素-8負責募集TRIM16英语TRIM16[69]和NDP52等受體,並直接影響mTOR和AMPK的活性,而mTOR和AMPK分別抑制和激活自噬作用[70]

程序性細胞死亡 编辑

程序性細胞死亡(PCD)的其中一個機制與自噬小體的出現有關,並且依賴於自噬蛋白。這種細胞死亡形式最有可能與形態學上定義為自噬PCD(autophagic PCD)的過程相對應。其中一個問題,是步入死亡過程的細胞中,其自噬的活性是導致其死亡的原因,還是為了防止細胞死亡的一個嘗試。迄今為止,形態學和組織化學研究並未證明自噬過程與細胞死亡之間存在因果關係。最近有論據認為,垂死細胞中的自噬活性可能是一種生存機制[71][72]。對昆蟲變態的研究表明,細胞經歷了一種PCD形式,這種形式與其他形式截然不同。這些已被提議作為自噬作用使細胞死亡的例子[73] 。最近的藥理和生化研究表明,有助細胞生存或致死的自噬可以通過應激期間,尤其是病毒感染後,調控信號的類型和程度來區分[74] 。然而尚未在病毒系統之外觀察到這些發現。

影響自噬的因素及其影響 编辑

力學方面 编辑

  • 左心室心肌組織中,壓力超負荷會導致其蛋白酶的表達量和活性均顯著增強(目前已知蛋白酶的活性與自噬作用存在密切的關係)[75],並且導致小鼠心肌細胞的自噬活性持續地增強,甚至發現升高的情況維持至少3周[76]。許多研究證實心肌細胞的自噬活性因壓力超負荷而提高[77][78][79]。因為壓力超負荷使心肌細胞中,在細胞核周圍逐漸聚集的錯誤折疊蛋白數量增多,並且形成被細胞自噬系統識別並降解的聚集體。其後的科研人員利用動脈結扎的方法,使已經敲除Beclin-1的雜合子小鼠心臟處於壓力超負荷的狀況,最終發現敲除Beclin-1可以減弱壓力超負荷造成的細胞自噬活性提高,並且減弱心肌細胞對壓力超負荷的病理性重建作用,同時又發現在小鼠體內過度表達Beclin-1則造成相反的作用[76]。另一些科研人員進行的實驗也證明了心肌細胞為了維持細胞穩態和心肌的正常結構及功能,而擁有基礎水平的細胞自噬作用。當心肌面對着血流壓力超負荷的狀況時,自噬作用的提升就是心肌應對這種狀況的適應性反應。若然ATG5英语ATG5等自噬相關基因被特異性敲除,小鼠體內會出現左心室擴張及收縮功能減弱等異常現象,甚至在2周後出現了心肌肥大的問題[80]。除此之外,有多份研究指出壓力超負荷的情況消失時,細胞會逐漸回復正常的形態,而自噬則發揮著重要的作用。當去除小鼠主動脈結扎後,會發現心肌細胞逐漸復原,並且觀察到自噬相關標誌分子LC3b-Ⅱ的表達提高,反映自噬作用的活性極大地提升[81]
  • 心肌細胞若然處於去應力負荷的環境,其自噬作用會受到影響,然而自噬作用能其所促進或降低。有些研究人員心肌细胞處於去應力負荷的環境時會萎缩,並且發現LC3b-Ⅱ和Beclin-1的表達提升[82]。然而,科研人員發現有佩戴左心室輔助裝置的心臟衰竭患者,體內心肌細胞自噬的水平會降低,推測可能是因為心肌細胞的能量需求降低,不再需要維持高水平的自噬活性[83]
  • 自噬在力學刺激或衝擊引起的軟骨反應中,發揮重要的作用。最先研究有關方面的研究人員發現遭受40%力學衝擊的細胞的存活率會降低,並且發現細胞外基質硫酸糖胺聚糖逐漸丟失,同時在24小時後檢測到LC3b-Ⅱ的表達提高,然而在48小時後細胞的自噬逐漸受到了抑制[84]。由此可見,自噬作用在軟骨組織面對力學衝擊時,會有一定程度的保護作用,但是在損傷過大時,就會因受到抑制而失去對軟骨組織的保護作用。除此之外,有不少科研人員指出不同時程的力學刺激,對軟骨細胞的自噬影響存在着差異。例如短時程的間歇循環機械張力可以促進軟骨細胞的自噬作用,而長時程則有相反的結果[85]
  • 層流剪切力對血管內皮細胞的自噬的影響在2014年已被證實。其後的研究發現層流剪切力可以促進內皮細胞的自噬活性,可能跟細胞內氧化-抗氧化平衡有關[86],而較小的層流剪切力及震蕩流剪切力卻不能夠促進自噬活性。流動剪切力(即適當的層流剪切力)能夠幫助維持內皮細胞的自噬作用,內皮細胞在加載流動剪切力後會維持靜止狀態,同時自噬的活性逐漸降低到基礎水平[87]。除此之外,有科研人員指出流動剪切力在炎症狀態下,對內皮細胞自噬的促進作用也會增強[88],並且起到抗炎症反應的作用[86]
  • 在受到機械損傷及壓縮損傷時[89],神經細胞會提升自噬的水平[90],在細胞受損早期可以透過抑制細胞凋亡的途徑來保護神經細胞。除此之外,力學因素對肝癌細胞[91]精原瘤英语Seminoma細胞、成纖維細胞[92]足細胞[93]及小梁細胞等細胞自噬的促進作用也被一些研究人員所報道[94]

氨基酸 编辑

  • 當胞內賴氨酸(Lys)不足時,骨骼肌細胞會因自噬-溶酶體途徑被激活而發生自噬,使得自身的蛋白質被降解,以抵抗外部因素引起的氨基酸缺乏,在短時間內維持自身氨基酸的平衡狀態[95]
  • 白胺酸(Leu)是必需的支鏈氨基酸,然而因Leu不能在動物體內合成而只可以從食物中攝取。目前已經有多項研究將Leu剝奪而引起的蛋白質分解與自噬聯繫着, 有研究表明miR-20a和miR-106b(均為miR-17 microRNA家族)可能通過抑制小鼠成肌細胞系C2C12Unc-51樣自噬激活激酶1英语ULK1的表達,調節因Leu被剝奪而誘導的自噬[96]。另外一份研究則發現,自噬-溶酶體系統會攝入Leu後被激活,抑制肌原纖維蛋白質的降解,接着發現,在C2C12細胞(經達爾伯克氏必需基本培養基培養)中,補充Leu 30分鐘之後,LC3-Ⅱ與LC3-Ⅰ的比值顯著降低,顯示補充Leu會顯著抑制C2C12細胞自噬的發生[95]。由於缺乏氨基酸可以誘導細胞發生自噬,所以Leu是一種有效的自噬抑制劑[97]
  • 精氨酸(Arg)是一種半必需氨基酸[98],有研究人員首次發現一般性調控阻遏蛋白質激酶2英语Gcn2可以介導干擾素-γ,響應因缺乏Arg而引起的牛乳腺上皮細胞自噬[99]
  • 麩醯胺酸(Gln)是人體中含量最豐富的非必需氨基酸。有研究發現通過Gln缺乏的培養基處理豬腸道上皮細胞8小時後,細胞數目會顯著減少,同時顯著提升LC3-Ⅱ的表達,故而缺乏Gln會令豬腸道上皮細胞發生自噬[100]

窄譜中波紫外線 编辑

窄譜中波紫外線(NB⁃UVB)可以促進正常黑素細胞發生自噬,使用穿透式電子顯微鏡觀察有關細胞時,發現隨著NB⁃UVB照射劑量的增大,黑素細胞中的黑素小體會增多,而細胞質內出現較多單層膜空泡狀的自噬溶酶體,以及較少的雙層膜自噬體。有研究人員結合他們的研究結果及以往的研究報道,推測NB⁃UVB通過上調黑素細胞自噬水平的途徑,促進黑素細胞存活,並且可以在白癜風治療中發揮作用[101]

懸浮粒子 编辑

2013年,首次報道暴露於PM2.5可以提高A549細胞內的活性氧簇生成,並且促進自噬激活及抑制細胞成活,呈濃度時間依賴性[102]。2014年,有研究證實暴露於PM2.5不僅可以通過死亡受體途徑和線粒體途徑誘導A549細胞凋亡,同時可以誘導A549細胞發生自噬性細胞死亡,並且發現二者存在交互作用[103]。2015年,有研究發現,PM2.5通過AMPK的信號通路,誘導產生自噬體及表達自噬相關蛋白,通過mTOR信號通路抑制細胞自噬,而與MAPK信號通路沒有明顯的相關性[104]。進一步的研究更顯示,暴露於高劑量PM2.5可以促進人類肺上皮細胞BEAS-2B的自噬功能障礙[105]

和運動之關聯 编辑

自噬對於基礎的體內平衡至關重要,並且在運動過程中保持肌肉穩定狀態也非常重要[106][107]。對小鼠的研究表明,自噬對於不斷變化的營養和能量需求至關重要,特別是通過蛋白質進行分解代謝的代謝途徑。2012年,由德克薩斯大學達拉斯西南醫學中心英语University of Texas Southwestern Medical Center進行的一項研究中,測試了具有BCL2英语Bcl-2磷酸化位點突變的小鼠驗證此理論。實驗結果顯示,這些小鼠在急性運動中,表現出耐力下降和葡萄糖代謝改變的情況[106]。另一項則研究表明,膠原蛋白VI基因敲除小鼠的骨骼肌纖維因自噬作用不足而顯示變性的跡象,導致線粒體受損和細胞死亡[108] 。運動誘導的自噬未能成功,然而在運動後以人為的方式進行自噬作用時,可以防止受損的細胞器在缺乏膠原蛋白VI英语Collagen VI的肌肉纖維中積累,並且保持細胞穩態。兩項研究均表明自噬可能有助於運動的有益代謝作用,並且在維持運動過程中的肌肉穩態,尤其是在膠原VI纖維中至關重要[106][107][108]。波恩大學細胞生物學研究所的研究表明,收縮肌肉會誘發伴侶-輔助選擇性自噬英语Chaperone-assisted selective autophagy(CASA),CASA是在機械張力下維持肌肉肌節必需的[109]。CASA分子伴侶複合物識別機械損傷的細胞骨架成分,並且通過蛋白依賴性自噬途徑,將這些細胞骨架成分引導至溶酶體進行處理。這是維持肌肉活動必需的[109][110]

炎症與自噬之間的相互作用 编辑

自噬調節劑控制炎症調節劑,反之亦然[111]。脊椎動物細胞通常會激活炎症,以增強免疫系統處理感染的能力,並且啟動恢復組織結構和功能的過程[112] ,故而至關重要的是將去除細胞和細菌碎片的機制與調節炎症的主要因素結合起來:溶酶體在自噬過程中對細胞成分的降解,可以回收重要的分子,並且產生及積聚物質來幫助細胞應對不斷變化的微環境[113]。控制炎症和自噬的蛋白質形成了一個對組織功能至關重要的網絡,而該網絡在癌症中失調:在癌細胞中,異常表達及突變的蛋白質增加細胞存活,對保護惡性細胞的蛋白水解系統「重新連接」網絡的依賴性[114]。這使癌細胞容易受到自噬調節劑的干預。

臨床意義 编辑

 
關鍵基因表達改變對ER和高爾基體功能、囊泡運輸、mTOR信號傳導和自噬的影響

骨關節炎 编辑

由於自噬隨著年齡的增長而下降,是骨關節炎的主要危險因素,因此自噬在該疾病發展中的作用得到重視。在人類和小鼠的關節軟骨中,參與自噬的蛋白質都隨著年齡的增長而減少[115]。經培養的軟骨外植體,其機械損傷也會減少自噬蛋白[116]。自噬在正常的軟骨中會不斷被激活,但會隨著年齡的增長而受到損害,並且先於軟骨細胞死亡和出現結構受到破壞的現象[117]。因此,自噬參與了關節的正常保護過程。

炎症性腸病 编辑

炎症性腸病(inflammatory bowel disease)是由易感基因、環境和免疫系統之間一系列的相互作用所導致的慢性且易復發的消化系統疾病,包括潰瘍性結腸炎克隆氏症等。功能失調的自噬被認為是炎症性腸病的發病因素。臨床上廣泛使用的炎症性腸病治療劑與自噬均密切相關,均能誘導細胞自噬的發生,包括類固醇5-氨基水楊酸硫銼嘌呤[118]尼古丁目前已被用作潰瘍性結腸炎患者的治療劑[119],咀嚼尼古丁口香糖可以有效控制輕度及中度結腸炎的病症[120]。經尼古丁處理後,細胞內雙層自噬泡及自噬小體的數量明顯增高。尼古丁誘導自噬的分子機制可能與內質網應激相關,或者可能與mTOR信號通路相關[121][122]。目前已有不少研究證實尼古丁與內質網應激存在密切關係,因為他們發現尼古丁上調GRP78/BIP的表達水平,並且直接誘導內質網應激,上調內質網應激標誌物PERK、EIF2A英语EIF2A等的表達或磷酸化修飾。對低濃度尼古丁的研究有助於開發調節自噬治療潰瘍性結腸炎的新治療靶點。

牙周炎 编辑

自噬能促進感染細胞對病原體和毒素的清除,抵抗細菌的入侵。然而,牙齦卟啉單胞菌英语Porphyromonas gingivalis等牙周細菌則可逃避自噬分子的識別,干擾自噬體形成,阻止自噬體和溶酶體融合,甚至可以在自噬體中生存和增殖,利用其中的蛋白質等物質為自身生存提供能量[123]。目前的研究雖提示自噬與牙周炎相關,但沒有充分的證據證實自噬在牙周炎中的作用是保護作用還是病理作用。因為有研究發現牙周炎患者相較於健康人群的外周血單核細胞中,自噬基因表達量更高,而自噬作用被抑制後,出現了細胞存活率降低及凋亡細胞比例增加的情況,表明自噬在牙周炎中的保護作用[124]。然而,有研究得出相反的結果,表明自噬在牙周炎中的病理作用[125]

敗血症及其併發症 编辑

敗血症是感染誘導的失調性宿主免疫反應。目前已知自噬在敗血症進展與器官功能障礙的發生中具有一定保護作用,故而是一個值得研究的治療靶點。大量促炎因子及聚集的白細胞通過炎症信號通路,誘導組織細胞內出現內質網應激及線粒體損傷等,繼而誘發保護性自噬反應,以包裹損傷的細胞器,限制損傷信號的擴散[126]。敗血症時,細胞代謝狀態會出現改變,肝細胞通過自噬來分解胞內有機物,並且產生小分子,以維持代謝需要,而分解的產物(例如糖類脂類及氨基酸等)又可有負反饋的作用,減弱自噬作用的程度[127]。由於一氧化碳能夠增強肺部組織的自噬水平,所以有學者發表了了關於吸入低濃度一氧化碳,以治療敗血症引致的肺部損傷的報道[128]

結核病 编辑

自噬参与到宿主细胞清除胞内致病菌的免疫应答中。結核分枝桿菌是一种胞内寄生菌,目前發現自噬有利於清除結核桿菌[129]

在结核的免疫应答中,γ-干扰素不仅可直接加速巨噬细胞通过MHC-Ⅱ呈递抗原的作用;还可调控巨噬细胞表达IRGM,继而促进巨噬细胞内产生大量的自噬体,启动巨噬细胞的自噬作用。基因型分析发现,IRGM的某些基因型与分支杆菌的易感性明显相关,提示了IRGM基因在抗结核自噬中起到关键性作用。

除此之外,自噬也参与获得性免疫,例如加工抗原并通过MHC-Ⅱ的呈递。与此同时,一些結核桿菌的亚群也会进化出一些机制阻碍宿主细胞对其的自噬作用,达到免疫逃避的效果;有些结核杆菌可通过募集并聚合肌动蛋白以逃避泛肽化;而另一些结核杆菌则“丢卒保帅”的策略,主动脱去被泛肽化的细胞壁;这些策略都能使结核杆菌达到从吞噬体中逃离的效果。

自噬可以增強一線抗結核藥物,例如異煙肼吡嗪酰胺的作用[130]

癌症 编辑

當調節細胞分化的幾種不同途徑被干擾時,通常會發生癌症。自噬在癌症中起著重要作用,既可以預防癌症,也可以促進癌症的發展[131]。自噬可通過促進已飢餓或通過自噬降解凋亡介體的腫瘤細胞的存活,促進癌症的發展。自噬在癌症中的作用已得到高度研究和審查,目前已知自噬既是腫瘤抑制因子,又是腫瘤細胞存活的因素,然而根據幾種模型,自噬更可能被用作抑癌劑。在自噬的後期階段使用氯喹等抑製劑,會增加被抗腫瘤藥殺死的癌細胞數量[132]。 但是對於自噬作用和癌症的因果關係,以目前的研究結果顯示,尚未明瞭,有可能是自噬基因的突變造成癌症,也可能為癌症使得自噬基因的突變,或甚至互為因果關係,還有待後續研究。[133]

  • 抑癌藥:目前已經對小鼠和Beclin1英语BECN1(一種調節自噬的蛋白質)進行了一些實驗。當Beclin1基因變為雜合子時,研究人員發現小鼠體內更容易出現腫瘤[134]。然而,當Beclin1過度表達時,腫瘤的發展就會受到抑制[135] 。在解釋beclin突變體的表型,並且將觀察結果歸因於自噬存在缺陷時應該要格外小心。Beclin1通常是產生磷脂酰肌醇3-磷酸英语Phosphatidylinositol 3-phosphate的必需物質,因此它會影響許多溶酶體和內體功能,包括內吞作用和已活化的內吞降解生長因子受體。有認為Beclin1存在着通過非依賴自噬的途徑,影響癌症發展的可能性,然而事實是Atg7或Atg5等的核心自噬因子(暫時未知會影響其他細胞進程,並且不影響細胞增殖和細胞死亡)敲除各個基因時,顯示出非常不同的表型。此外,Beclin1的完全基因敲落會對胚胎致死,而Atg7或Atg5的敲落對則胚胎無害。壞死和慢性炎症也已顯示出通過自噬而受到限制,有助於防止腫瘤細胞的形成[136]
  • 腫瘤細胞存活率:自噬在腫瘤細胞存活中發揮重要作用。在癌細胞中,自噬被用作一種應對細胞壓力的途徑[137]。例如,miRNA-4673誘導自噬是一種有助癌細胞生存的機制,可以提高癌細胞對放射線的抵抗力[138] 。一旦這些自噬相關基因被抑制,細胞死亡的情況就會加劇[139]。自噬抵消了代謝能的增加。這些代謝壓力包括缺氧、營養缺乏及細胞增殖增加。這些壓力激活自噬,以回收ATP並維持癌細胞的存活[140]。自噬已被證明可以通過維持細胞能量的產生,而使腫瘤細胞持續地生長。通過抑制這些腫瘤細胞中的自噬基因,發現腫瘤消退,並且延長了受腫瘤影響的器官的存活率。此外,也顯示出抑制自噬可以增強抗癌治療的效果[140]
  • 細胞死亡機制:承受極大壓力的細胞會通過細胞凋亡壞死經歷細胞死亡。長時間的自噬激活會導致蛋白質和細胞器的高轉換率。高於生存閾值的比率,可能會殺死具有高凋亡閾值的癌細胞[140][141]。該技術可以用作癌症的治療方法。
  • 治療目標:有研究發現,靶向自噬可能是抗擊癌症的可行治療方法。自噬在腫瘤抑制和腫瘤細胞存活中均起作用。因此,自噬可以用作預防癌症的策略。第一種策略是誘導自噬並增強其腫瘤抑制特性。第二種策略是抑制自噬,從而誘導細胞凋亡[139]。通過研究自噬誘導療法期間的劑量反應抗腫瘤作用,測試了第一種策略。這些療法表明自噬以劑量依賴性方式增加。 這也直接與癌細胞的生長呈劑量依賴性[137][141]。該數據支持將鼓勵自噬的療法的發展。其次,抑制直接誘導自噬的蛋白質途徑也可以用作抗癌治療[139][141]。第二種策略發現自噬是用於維持體內穩態的蛋白質降解系統,並且發現抑制自噬通常會導致細胞凋亡。抑制自噬的風險較高,因為可能導致細胞存活,而不是預計中的細胞死亡[137]
  • 自噬的負調節物mTOR英语mTORCFLAR英语CFLAR表皮生長因子受體等自噬的負調節物,被安排在自噬級聯反應的不同階段發揮作用。自噬消化的最終產物也可以充當負反饋調節機制,以阻止長時間的活動[142]

帕金森氏病 编辑

 
自噬調節對帕金森氏病的影響

帕金森氏病是一種神經退化性疾病,可以肇因於黑質緻密部英语Pars compacta的多巴胺性神經元退化。帕金森氏病的特徵是在受影響的神經元中,包含着細胞無法分解的α-突觸核蛋白英语Alpha-synuclein,其以路易氏體英语Lewy body的形式堆積,故而帕金森氏病被視為一種突觸核蛋白病變。自噬途徑的失調和調節自噬的等位基因的突變被認為會引起神經退化性疾​​病。自噬對神經元的生存至關重要。如果沒有有效的自噬作用,神經元會聚集遍在蛋白化的蛋白質聚集體並降解。蛋白質是已被泛素標記以降解的蛋白質。突觸核蛋白等位基因的突變導致溶酶體pH值升高和水解酶抑制。由實驗結果可知,溶酶體降解能力降低。該疾病涉及多種基因突變,包括功能喪失PTEN誘導激酶-1英语PINK1[143]和Parkin[144] 。這些基因的功能喪失可能導致線粒體積累和蛋白質聚集體受損,而不是導致細胞變性。線粒體參與帕金森氏病。在特發性帕金森氏病中,該病通常是由線粒體功能異常、細胞氧化應激、自噬作用的改變和蛋白質聚集引起的,並會導致線粒體腫脹和去極化[145]

阿茲海默症 编辑

阿茲海默症是一種普遍流行於老年群體,並且以記憶、行為及學習功能障礙為主要特徵的神經退行性疾病[146]。自噬作用的異常是導致阿茲海默症的兩大神經病理改變,即瀰漫於整個大腦皮層的β 澱粉樣蛋白(Aβ)老年斑的形成,以及神經元細胞核周圍堆積的無膜束狀異常纖維包涵體(主要由過度磷酸化Tau蛋白組成)的重要原因[147]。此時的Tau蛋白失去促進微管組裝的生物學活性,並且表現出抗蛋白水解酶的神經毒性[148][149]。細胞囊泡在正常情況下,通過溶酶體途徑的代謝速率很高,故而產生的Aβ量很少,不會造成Aβ的堆積,然而自噬體轉運異常或溶酶體對自噬體內容物降解效率下降,會導致自噬體堆積、大量Aβ及老年斑的形成。Tau蛋白的兩大代謝途徑是自噬-溶酶體和泛素-蛋白體酶體系統[150],並且是在自噬受體NDP52的協助下進行清除。自噬作用參與過度表達Tau蛋白和異常磷酸化Tau蛋白的降解,可以降低磷酸化Tau蛋白寡聚體的水平,不過對內源性Tau蛋白則没有明顯影響,並且發現抑制自噬作用能夠增加Tau蛋白的細胞毒性[151][152]。自噬在阿茲海默症中的作用具有兩面性。在阿茲海默症早期,由蛋白質損傷和聚集等因素誘發的自噬可以發揮保護作用。如果長時間維持這種狀態,或者溶酶體功能出現異常,就會形成神經元萎縮及細胞死亡等病理改變,所以自噬的平衡十分重要[153]

青光眼 编辑

青光眼是一種以視網膜神經節細胞英语Retinal ganglion cell(RGCs)和視神經軸突的逐漸喪失為特徵的神經退行性疾病,並且伴有視野敏感性的喪失[154]。目前已知自噬在青光眼的發生中起着重要的作用,並且因為大量的動物實驗研究指出自噬的激活導致RGCs的凋亡,故而抑制自噬可能是預防青光眼RGCs變性的一個臨床靶點,所以有學者寄望自噬靶向治療能夠成為青光眼視神經退行性疾病的一種治療方法[155]

病毒方面 编辑

自噬作為真核細胞早期的保護防禦機制,可以清除水疱性口炎病毒英语Indiana vesiculovirus(VSV)等病原體,例如VSV的複製過程可被自噬有效抑制。然而,克沙奇病毒B3(CVB3)、丙型肝炎病毒(HCV)、乙型腦炎病毒(JEV)等病毒具有快速進化以應對宿主細胞免疫作用的能力[156],甚至會利用自噬來增強病毒的增殖[157][158][159][160]。在自噬被激活後,乙肝病毒[161]及丙肝病毒[162]會對自噬體的降解產生抑製作用。HPIV 3病毒會抑制自噬体及溶酶體的融合,阻止自噬體的降解,從而提高病毒的增殖[163]T細胞白血病英语T-cell leukemia通過Tax蛋白英语Tax gene product阻斷自噬小體與溶酶體的融合,增加自噬小體的積累,並且促進病毒的複製[164][165]。有關脊髓灰質炎病毒的研究指出,當自噬體與質膜融合時,自噬體內的病毒離子被釋放[166]

性傳播疾病方面 编辑

目前有研究指出自噬在性傳播疾病病原體的在進入宿主細胞後可以激活自噬,但是又可以逃避或抑制自噬,故而針對有關作用機制的研究或能幫助性傳播疾病的治療和預後,以及新型藥物疫苗的研發。許多自噬相關基因都是人類免疫缺陷病毒-1感染依賴因子[167],故而HIV-1的早期複製依賴於自噬。HIV-1許多的病毒蛋白可以透過抑制自噬過程的方式,而在宿主體內持續性複製存活。例如Env編碼的外膜蛋白gp120英语Envelope glycoprotein GP120[168]、反式激活因子Tat英语Tat (HIV)[169]及負性因子調控蛋白Nef[170]等。淋球菌可以抑制自噬流,增強淋球菌在巨噬細胞中的存活能力[171],也可以阻礙自噬小體成熟及自噬小體與溶酶體的融合過程,以逃避自噬介導的殺傷作用[172][173]砂眼衣原體抑制細胞內溶酶體酶的活性,阻礙晚期自噬小體與自噬小體與溶酶體的融合過程,導致自噬的完整性受到抑制,降低自噬的抗感染作用[174]。除此之外,高危型HPV調節細胞內小分子核糖核酸的水平,影響自噬過程。例如miR-224-3p的高表達減少FIP200(參與自噬小體形成的蛋白)的水平,因抑制宿主細胞自噬而促進子宮頸癌的進展[175]

不育症 编辑

自噬在精子發生過程中起着重要作用。精原幹細胞中的缺失或受損可引起不可逆性的弱精子症及無精子症等,導致不育症[176]。當遇精原幹細胞到不利環境時,會為了適應代謝條件的變化而進行細胞自噬調節。例如,有研究指出三鄰甲苯基磷酸酯等生殖毒性物質均可使大鼠精原幹細胞的自噬標誌蛋白及LC3-II/LC3-I 比明顯增加,細胞內含有大量退化細胞器的自噬泡顯著增加[177][178]。而且,精原幹細胞中的自噬作用可以清除錯誤折疊蛋白質,以及受損細胞器,故而對細胞起著保護作用。此外,自噬作用可以促進減數分裂前DNA複製,既為細胞提供氨基酸核苷酸[179][180],也保證基因遺傳的穩定性[181]。PDLIM1蛋白是一種精子細胞骨架組裝的負調控因子,並且是通過自噬途徑而降解,以維持微管結構的組裝[182]。這對精子形成有著重要作用。然而,有研究指出高脂肪食物可誘導小鼠體內的自噬作用被過度激活,導致精子生成存在缺陷[183]

抑鬱症 编辑

自噬可能參與抑鬱症的發生[184],有多個證據提示細胞自噬的異常可能參與抑鬱症的發生[185],例如有研究指出精神分裂症斷裂基因1英语DISC1(一種精神疾病的關鍵易感基因)能被自噬途徑降解[186]、躁狂抑鬱症患者血清中蛋白激酶B(AKT)和mTOR 信使核糖核酸水平下降[187]、雙相抑鬱症患者腦內Bcl-2的水平下降[188],已知Bcl-2是通過與Beclin-1結合從而抑制自噬的發生。自噬對抑鬱症等神經系統疾病的調節作用是正向,抑或負向仍然存有爭議[189]。有研究提示激活自噬能促進突觸的發展[190],另一些研究則證實抗抑鬱藥可以通過抑制自噬,發揮抗抑鬱的作用。

作為藥物靶標 编辑

由於自噬失調與多種疾病的發病機理有關,因此科研人員投入了許多努力來鑑定和表徵可以調節自噬的合成人工合成小分子或天然小分子[191]

例如,巨噬细胞的自噬作用可消灭结核杆菌,对结核病治愈有益。研究人员通过小鼠实验发现,从东革阿里中提取的巴沙克布明A可诱导巨噬细胞自噬从而控制结核杆菌的增殖[192]

以神經退化性疾病來說,增強自噬作用是非常有展望,但需要擔憂的就是目前的藥物都是依賴於溶體活性,但在此類疾病中,溶體往往已經有功能上缺失了,因此可能對於藥物的作用就沒預期那麼好,所以需要警慎選擇目標疾病和階段才可以使藥物有最大的作用效果。 目前自噬調節療法都非選擇性、非特定在自噬作用上,像是mTORC1抑制劑,會抑制其他多種代謝途徑;甚至某些藥物可能同時具有誘導自噬作用和抑制自噬作用。 因此未來在藥物標靶研究上,應該專於在特定自噬作用過程上,避免有影響其他細胞生理機能的情況。

檢測方法 编辑

第一是LC3 turnover實驗,因為單檢測LC3-II的靜態水平並不能夠完全反映細胞內的自噬潮變化,故而需要聯合自噬後期抑制劑如溶酶體抑制劑Bafilomycin A1或CQ,來比較LC3-II在抑制劑加入前後的變化差異。第二是綠色螢光蛋白(GFP)的抗降解性,通過檢測轉染了GFP-LC3的細胞所產生的GFP片段來評判細胞內自噬水平的變化。第三是以p62英语Nucleoporin 62蛋白作為自噬活性指標,經常被科研人員用作自噬水平升高的輔助檢測手段,然而需聯合其他檢測手段進行證實。第四是mRFP-GFP-LC3雙螢光活細胞成像,實時動態監測自噬過程,並且能夠通過顏色變化確定自噬潮水平的高低。第五是使用電子顯微鏡,然而對實驗設備和實驗者的技能與辨別能力要求較高[193],有學者推薦進行雙盲實驗來定量細胞中自噬體或自噬溶酶體數量。第六是流式細胞術,可以檢測各個細胞時相的自噬水平,還可以直接計算出螢光強度和陽性細胞百分比[194],然而在細胞在染色之前,需要使用去垢劑預處理細胞質中的LC3-I。

影響因素 编辑

第一個主要影響因素是培養基的新鮮程度及血清,防止較高溫度下長時間或不適當存儲而導致的左旋麩醯胺酸(L-glutamine)降解,並產生。目前已知氨會因影響溶酶體的pH值而對自噬潮有明顯的抑製作用,並且通過抑制mTORC1促進自噬[195]。此外,血清也對自噬活性也有顯著影響。第二個主要影響因素是培養基的換液時間,因為培養基換液的目的,就是要減弱培養基及細胞代謝產物,對藥物靶點相關信號通路本底產生的影響。

參閱 编辑

  • 自噬數據庫英语Autophagy database

參考文獻 编辑

  1. ^ Guan, JL; Simon, AK; Prescott, M; Menendez, JA; Liu, F; Wang, F; Wang, C; Wolvetang, E; Vazquez-Martin, A; Zhang, J. . Autophagy. 2013-06-01, 9 (6): 830–49 [2020-01-28]. PMID 23486312. doi:10.4161/auto.24132. (原始内容存档于2020-01-28). 
  2. ^ Torisu, T; Torisu, K; Lee, IH; Liu, J; Malide, D; Combs, CA; Wu, XS; Rovira, II; Fergusson, MM; Weigert, R; Connelly, PS; Daniels, MP; Komatsu, M; Cao, L; Finkel, T. . Nature medicine. 2013-10, 19 (10): 1281–7 [2020-01-28]. PMID 24056772. doi:10.1038/nm.3288. (原始内容存档于2020-01-28). 
  3. ^ Pantovic, A; Krstic, A; Janjetovic, K; Kocic, J; Harhaji-Trajkovic, L; Bugarski, D; Trajkovic, V. . Bone. 2013-01, 52 (1): 524–31 [2020-01-28]. PMID 23111315. doi:10.1016/j.bone.2012.10.024. (原始内容存档于2020-01-28). 
  4. ^ Nuschke, A; Rodrigues, M; Stolz, DB; Chu, CT; Griffith, L; Wells, A. . Stem cell research & therapy. 2014-12-17, 5 (6): 140 [2020-01-28]. PMID 25523618. doi:10.1186/scrt530. (原始内容存档于2020-01-28). 
  5. ^ Vázquez, P; Arroba, AI; Cecconi, F; de la Rosa, EJ; Boya, P; de Pablo, F. . Autophagy. 2012-02-01, 8 (2): 187–99 [2020-01-28]. PMID 22240590. doi:10.4161/auto.8.2.18535. (原始内容存档于2020-01-28). 
  6. ^ Lu, Y; Dong, S; Hao, B; Li, C; Zhu, K; Guo, W; Wang, Q; Cheung, KH; Wong, CW; Wu, WT; Markus, H; Yue, J. . Autophagy. 2014, 10 (11): 1895–905 [2020-01-28]. PMID 25483964. doi:10.4161/auto.32200. (原始内容存档于2020-01-28). 
  7. ^ 7.0 7.1 Klionsky, DJ. Autophagy revisited: A conversation with Christian de Duve. Autophagy. 2008, 4 (6): 740–3. PMID 18567941. doi:10.4161/auto.6398. 
  8. ^ 8.0 8.1 Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. Journal of Cell Biology. October 1992, 119 (2): 287-99. PMID 1400574. 
  9. ^ 9.0 9.1 Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology. October 1992, 119 (2): 301-11. PMID 1400575. 
  10. ^ 10.0 10.1 Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Letters. August 1994, 349 (2): 275-80. PMID 8050581. 
  11. ^ 11.0 11.1 Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. October 1993, 333 (1-2): 169-74. PMID 8224160. 
  12. ^ 12.0 12.1 Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. Journal of Cell Biology. November 1995, 131 (3): 591-602. PMID 7593182. 
  13. ^ The Nobel Prize in Physiology or Medicine 2016. Nobel Foundation. [3 October 2016]. (原始内容于2016-10-03). 
  14. ^ Ashford TP, Porter KR. Cytoplasmic components in hepatic cell lysosomes. The Journal of Cell Biology. January 1962, 12 (1): 198–202. PMC 2106008 . PMID 13862833. doi:10.1083/jcb.12.1.198. 
  15. ^ Hruban Z, Spargo B, Swift H, Wissler RW, Kleinfeld RG. Focal cytoplasmic degradation. The American Journal of Pathology. June 1963, 42 (6): 657–83. PMC 1949709 . PMID 13955261. 
  16. ^ Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. The Journal of Cell Biology. November 1967, 35 (2): C11–6. PMC 2107130 . PMID 6055998. doi:10.1083/jcb.35.2.c11. 
  17. ^ Deter RL, De Duve C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology. May 1967, 33 (2): 437–49. PMC 2108350 . PMID 4292315. doi:10.1083/jcb.33.2.437. 
  18. ^ de Duve C. Lysosomes revisited. European Journal of Biochemistry. December 1983, 137 (3): 391–7. PMID 6319122. doi:10.1111/j.1432-1033.1983.tb07841.x. 
  19. ^ Dunn WA, Schroder LA, Aris JP. . Wang HG (编). Autophagy and Cancer. Springer. 2013: 3–4 [2020-01-20]. ISBN 9781461465614. (原始内容存档于2021-01-26). 
  20. ^ Van Noorden R, Ledford H. Medicine Nobel for research on how cells 'eat themselves'. Nature. October 2016, 538 (7623): 18–19. Bibcode:2016Natur.538...18V. PMID 27708326. doi:10.1038/nature.2016.20721. 
  21. ^ Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. The Journal of Biological Chemistry. July 1996, 271 (30): 17621–4. PMID 8663607. doi:10.1074/jbc.271.30.17621. 
  22. ^ Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proceedings of the National Academy of Sciences of the United States of America. October 1996, 93 (22): 12304–8. Bibcode:1996PNAS...9312304S. PMC 37986 . PMID 8901576. doi:10.1073/pnas.93.22.12304. 
  23. ^ Klionsky DJ, Cregg JM, Dunn WA, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Developmental Cell. October 2003, 5 (4): 539–45. PMID 14536056. doi:10.1016/s1534-5807(03)00296-x. 
  24. ^ Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. December 1999, 402 (6762): 672–6. Bibcode:1999Natur.402..672L. PMID 10604474. doi:10.1038/45257. 
  25. ^ . [2020-01-20]. (原始内容存档于2016-10-05). 
  26. ^ . [2020-01-20]. (原始内容存档于2018-11-16). 
  27. ^ Mercer, CA; Kaliappan, A; Dennis, PB. . Autophagy. 2008-02, 4 (2): 185–94 [2020-01-26]. PMID 18059170. doi:10.4161/auto.5275. (原始内容存档于2020-01-26). 
  28. ^ Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. The Biochemical Journal. January 2012, 441 (2): 523–40. PMC 3258656 . PMID 22187934. doi:10.1042/BJ20111451. 
  29. ^ Mizushima N, Ohsumi Y, Yoshimori T. Autophagosome formation in mammalian cells. Cell Structure and Function. December 2002, 27 (6): 421–9. PMID 12576635. doi:10.1247/csf.27.421. 
  30. ^ Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology. January 2011, 12 (1): 9–14. PMC 4780047 . PMID 21179058. doi:10.1038/nrm3028. 
  31. ^ Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological Chemistry. July 2012, 393 (7): 547–64. PMC 3630798 . PMID 22944659. doi:10.1515/hsz-2012-0119. 
  32. ^ Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selective degradation of peroxisomes. International Journal of Cell Biology. 2012, 2012: 512721. PMC 3320016 . PMID 22536249. doi:10.1155/2012/512721. 
  33. ^ Lei L. Chlorophagy: Preventing sunburn. Nature Plants. March 2017, 3 (3): 17026. PMID 28248315. doi:10.1038/nplants.2017.26. 
  34. ^ An H, Harper JW. Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nature Cell Biology. February 2018, 20 (2): 135–143. PMC 5786475 . PMID 29230017. doi:10.1038/s41556-017-0007-x. 
  35. ^ 35.0 35.1 Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. January 2011, 469 (7330): 323–35. Bibcode:2011Natur.469..323L. PMC 3131688 . PMID 21248839. doi:10.1038/nature09782. 
  36. ^ 36.0 36.1 36.2 Česen, MH; Pegan, K; Spes, A; Turk, B. . Experimental cell research. 2012-07-01, 318 (11): 1245–51 [2020-03-27]. PMID 22465226. doi:10.1016/j.yexcr.2012.03.005. (原始内容存档于2020-03-27). 
  37. ^ Homma, K.S. . Autophagy Database. 2011, 290 [2012-10-08]. (原始内容存档于2012-08-01). 
  38. ^ Castro-Obregon, Susana. . Nature Education. 2010, 3 (9): 49 [2020-01-20]. (原始内容存档于2020-11-06). 
  39. ^ Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Molecular and Cellular Biology. September 2008, 28 (18): 5747–63. PMC 2546938 . PMID 18644871. doi:10.1128/MCB.02070-07. 
  40. ^ Gegg, ME; Cooper, JM; Chau, KY; Rojo, M; Schapira, AH; Taanman, JW. . Human molecular genetics. 2010-12-15, 19 (24): 4861–70 [2020-01-26]. PMID 20871098. doi:10.1093/hmg/ddq419. (原始内容存档于2020-01-26). 
  41. ^ Geisler, S; Holmström, KM; Skujat, D; Fiesel, FC; Rothfuss, OC; Kahle, PJ; Springer, W. . Nature cell biology. 2010-02, 12 (2): 119–31 [2020-01-26]. PMID 20098416. doi:10.1038/ncb2012. (原始内容存档于2020-01-26). 
  42. ^ Liu K, Czaja MJ. Regulation of lipid stores and metabolism by lipophagy. Cell Death and Differentiation. January 2013, 20 (1): 3–11. PMC 3524634 . PMID 22595754. doi:10.1038/cdd.2012.63. 
  43. ^ Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S, Korolchuk VI. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochimica et Biophysica Acta. April 2016, 1861 (4): 269–84. PMID 26778751. doi:10.1016/j.bbalip.2016.01.006. 
  44. ^ Elander PH, Minina EA, Bozhkov PV. Autophagy in turnover of lipid stores: trans-kingdom comparison. Journal of Experimental Botany. March 2018, 69 (6): 1301–1311. PMID 29309625. doi:10.1093/jxb/erx433. 
  45. ^ van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell. January 2014, 25 (2): 290–301. PMC 3890349 . PMID 24258026. doi:10.1091/mbc.E13-08-0448. 
  46. ^ Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. April 2009, 458 (7242): 1131–5. Bibcode:2009Natur.458.1131S. PMC 2676208 . PMID 19339967. doi:10.1038/nature07976. 
  47. ^ 47.0 47.1 Hosokawa, N; Hara, T; Kaizuka, T; Kishi, C; Takamura, A; Miura, Y; Iemura, S; Natsume, T; Takehana, K; Yamada, N; Guan, JL; Oshiro, N; Mizushima, N. . Molecular biology of the cell. 2009-04, 20 (7): 1981–91 [2020-01-26]. PMID 19211835. doi:10.1091/mbc.e08-12-1248. (原始内容存档于2020-01-26). 
  48. ^ 48.0 48.1 Itakura, E; Kishi, C; Inoue, K; Mizushima, N. . Molecular biology of the cell. 2008-12, 19 (12): 5360–72 [2020-01-26]. PMID 18843052. doi:10.1091/mbc.e08-01-0080. (原始内容存档于2020-01-26). 
  49. ^ Liang, C; Lee, JS; Inn, KS; Gack, MU; Li, Q; Roberts, EA; Vergne, I; Deretic, V; Feng, P; Akazawa, C; Jung, JU. . Nature cell biology. 2008-07, 10 (7): 776–87 [2020-01-26]. PMID 18552835. doi:10.1038/ncb1740. (原始内容存档于2020-01-26). 
  50. ^ Matsunaga, K; Saitoh, T; Tabata, K; Omori, H; Satoh, T; Kurotori, N; Maejima, I; Shirahama-Noda, K; Ichimura, T; Isobe, T; Akira, S; Noda, T; Yoshimori, T. . Nature cell biology. 2009-04, 11 (4): 385–96 [2020-01-26]. PMID 19270696. doi:10.1038/ncb1846. (原始内容存档于2020-01-26). 
  51. ^ He, C; Klionsky, DJ. . Annual review of genetics. 2009, 43: 67–93 [2020-01-26]. PMID 19653858. doi:10.1146/annurev-genet-102808-114910. (原始内容存档于2020-01-26). 
  52. ^ Luo, P; Gao, F; Han, J; Sun, W; Li, Z. . International orthopaedics. 2018-07, 42 (7): 1747–1753 [2020-01-26]. PMID 29797168. doi:10.1007/s00264-018-3994-8. (原始内容存档于2020-01-26). 
  53. ^ Rubinsztein, DC; Shpilka, T; Elazar, Z. . Current biology : CB. 2012-01-10, 22 (1): R29–34 [2020-01-26]. PMID 22240478. doi:10.1016/j.cub.2011.11.034. (原始内容存档于2020-01-26). 
  54. ^ Matsuura, A; Tsukada, M; Wada, Y; Ohsumi, Y. . Gene. 1997-06-19, 192 (2): 245–50 [2020-01-26]. PMID 9224897. doi:10.1016/s0378-1119(97)00084-x. (原始内容存档于2020-01-26). 
  55. ^ Chan EY. Regulation and function of uncoordinated-51 like kinase proteins. Antioxidants & Redox Signaling. September 2012, 17 (5): 775–85. PMID 22074133. doi:10.1089/ars.2011.4396. 
  56. ^ Choi, Y; Bowman, JW; Jung, JU. . Nature reviews. Microbiology. 2018-06, 16 (6): 341–354 [2020-01-26]. PMID 29556036. doi:10.1038/s41579-018-0003-6. (原始内容存档于2020-01-26). 
  57. ^ Ohsumi, Y. . Cell research. 2014-01, 24 (1): 9–23 [2020-01-26]. PMID 24366340. doi:10.1038/cr.2013.169. (原始内容存档于2020-01-26). 
  58. ^ Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryotic Cell. February 2002, 1 (1): 11–21. PMC 118053 . PMID 12455967. doi:10.1128/EC.01.1.11-21.2002. 
  59. ^ Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. December 2000, 290 (5497): 1717–21. Bibcode:2000Sci...290.1717K. PMC 2732363 . PMID 11099404. doi:10.1126/science.290.5497.1717. 
  60. ^ Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell. April 2004, 6 (4): 463–77. PMID 15068787. doi:10.1016/S1534-5807(04)00099-1. 
  61. ^ Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N, et al. The role of autophagy during the early neonatal starvation period. Nature. December 2004, 432 (7020): 1032–6. Bibcode:2004Natur.432.1032K. PMID 15525940. doi:10.1038/nature03029. 
  62. ^ 62.0 62.1 Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Molecular Biology of the Cell. March 2004, 15 (3): 1101–11. PMC 363084 . PMID 14699058. doi:10.1091/mbc.E03-09-0704. 
  63. ^ 63.0 63.1 Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters. October 1993, 333 (1–2): 169–74. PMID 8224160. doi:10.1016/0014-5793(93)80398-E. 
  64. ^ Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. December 2004, 119 (6): 753–66. PMID 15607973. doi:10.1016/j.cell.2004.11.038. 
  65. ^ Deretic V, Delgado M, Vergne I, Master S, De Haro S, Ponpuak M, Singh S. Autophagy in immunity against mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology 335. 2009: 169–88. ISBN 978-3-642-00301-1. PMC 2788935 . PMID 19802565. doi:10.1007/978-3-642-00302-8_8. 
  66. ^ Jackson WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biology. May 2005, 3 (5): e156. PMC 1084330 . PMID 15884975. doi:10.1371/journal.pbio.0030156.   
  67. ^ Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature. January 2012, 482 (7385): 414–8. Bibcode:2012Natur.482..414T. PMC 3343631 . PMID 22246324. doi:10.1038/nature10744. 
  68. ^ Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A. Autophagy and aging: the importance of maintaining "clean" cells. Autophagy. 2005, 1 (3): 131–40. PMID 16874025. doi:10.4161/auto.1.3.2017. 
  69. ^ Chauhan S, Kumar S, Jain A, Ponpuak M, Mudd MH, Kimura T, Choi SW, Peters R, Mandell M, Bruun JA, Johansen T, Deretic V. TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. Developmental Cell. October 2016, 39 (1): 13–27. PMC 5104201 . PMID 27693506. doi:10.1016/j.devcel.2016.08.003. 
  70. ^ Jia J, Abudu YP, Claude-Taupin A, Gu Y, Kumar S, Choi SW, Peters R, Mudd MH, Allers L, Salemi M, Phinney B, Johansen T, Deretic V. Galectins Control mTOR in Response to Endomembrane Damage. Molecular Cell. April 2018, 70 (1): 120–135.e8. PMC 5911935 . PMID 29625033. doi:10.1016/j.molcel.2018.03.009 (英语). 
  71. ^ Tavassoly I. Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells. Springer Theses. Springer International Publishing. 2015. ISBN 978-3-319-14962-2. doi:10.1007/978-3-319-14962-2. 
  72. ^ Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death and Differentiation. November 2005,. 12 Suppl 2 (Suppl 2): 1528–34. PMID 16247500. doi:10.1038/sj.cdd.4401777. 
  73. ^ Schwartz LM, Smith SW, Jones ME, Osborne BA. Do all programmed cell deaths occur via apoptosis?. Proceedings of the National Academy of Sciences of the United States of America. February 1993, 90 (3): 980–4. Bibcode:1993PNAS...90..980S. PMC 45794 . PMID 8430112. doi:10.1073/pnas.90.3.980. 
  74. ^ Datan E, Shirazian A, Benjamin S, Matassov D, Tinari A, Malorni W, Lockshin RA, Garcia-Sastre A, Zakeri Z. mTOR/p70S6K signaling distinguishes routine, maintenance-level autophagy from autophagic cell death during influenza A infection. Virology. March 2014,. 452-453 (March 2014): 175–190. PMC 4005847 . PMID 24606695. doi:10.1016/j.virol.2014.01.008. 
  75. ^ Depre, C; Wang, Q; Yan, L; Hedhli, N; Peter, P; Chen, L; Hong, C; Hittinger, L; Ghaleh, B; Sadoshima, J; Vatner, DE; Vatner, SF; Madura, K. . Circulation. 2006-10-24, 114 (17): 1821–8 [2020-01-25]. PMID 17043166. doi:10.1161/CIRCULATIONAHA.106.637827. (原始内容存档于2020-01-25). 
  76. ^ 76.0 76.1 Zhu, H; Tannous, P; Johnstone, JL; Kong, Y; Shelton, JM; Richardson, JA; Le, V; Levine, B; Rothermel, BA; Hill, JA. . The Journal of clinical investigation. 2007-07, 117 (7): 1782–93 [2020-01-25]. PMID 17607355. doi:10.1172/JCI27523. (原始内容存档于2020-01-25). 
  77. ^ Fu, L; Wei, CC; Powell, PC; Bradley, WE; Collawn, JF; Dell'Italia, LJ. . Journal of molecular and cellular cardiology. 2015-12, 89 (Pt B): 241–250 [2020-01-25]. PMID 26596413. doi:10.1016/j.yjmcc.2015.10.027. (原始内容存档于2021-08-03). 
  78. ^ Lin, L; Liu, X; Xu, J; Weng, L; Ren, J; Ge, J; Zou, Y. . Journal of cellular and molecular medicine. 2015-08, 19 (8): 1929–38 [2020-01-25]. PMID 25946687. doi:10.1111/jcmm.12567. (原始内容存档于2020-01-25). 
  79. ^ Weng, LQ; Zhang, WB; Ye, Y; Yin, PP; Yuan, J; Wang, XX; Kang, L; Jiang, SS; You, JY; Wu, J; Gong, H; Ge, JB; Zou, YZ. . Acta pharmacologica Sinica. 2014-08, 35 (8): 1005–14 [2020-01-25]. PMID 24998254. doi:10.1038/aps.2014.45. (原始内容存档于2020-01-25). 
  80. ^ Nakai, A; Yamaguchi, O; Takeda, T; Higuchi, Y; Hikoso, S; Taniike, M; Omiya, S; Mizote, I; Matsumura, Y; Asahi, M; Nishida, K; Hori, M; Mizushima, N; Otsu, K. . Nature medicine. 2007-05, 13 (5): 619–24 [2020-01-25]. PMID 17450150. doi:10.1038/nm1574. (原始内容存档于2020-01-25). 
  81. ^ Hariharan, N; Ikeda, Y; Hong, C; Alcendor, RR; Usui, S; Gao, S; Maejima, Y; Sadoshima, J. . PloS one. 2013, 8 (1): e51632 [2020-01-25]. PMID 23308102. doi:10.1371/journal.pone.0051632. (原始内容存档于2020-01-25). 
  82. ^ Cao, DJ; Jiang, N; Blagg, A; Johnstone, JL; Gondalia, R; Oh, M; Luo, X; Yang, KC; Shelton, JM; Rothermel, BA; Gillette, TG; Dorn, GW; Hill, JA. . Journal of the American Heart Association. 2013-04-08, 2 (2): e000016 [2020-01-25]. PMID 23568341. doi:10.1161/JAHA.113.000016. (原始内容存档于2020-01-25). 
  83. ^ Kassiotis, C; Ballal, K; Wellnitz, K; Vela, D; Gong, M; Salazar, R; Frazier, OH; Taegtmeyer, H. . Circulation. 2009-09-15, 120 (11 Suppl): S191–7 [2020-01-25]. PMID 19752367. doi:10.1161/CIRCULATIONAHA.108.842252. (原始内容存档于2020-01-25). 
  84. ^ Caramés, B; Taniguchi, N; Seino, D; Blanco, FJ; D'Lima, D; Lotz, M. . Arthritis and rheumatism. 2012-04, 64 (4): 1182–92 [2020-01-25]. PMID 22034068. doi:10.1002/art.33444. (原始内容存档于2020-01-25). 
  85. ^ Xu, Hong-guang; Yu, Yun-fei; Zheng, Quan; Zhang, Wei; Wang, Chuang-dong; Zhao, Xiao-yin; Tong, Wen-xue; Wang, Hong; Liu, Ping; Zhang, Xiao-ling. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification. Bone. 2014-09, 66: 232–239. doi:10.1016/j.bone.2014.06.018. 
  86. ^ 86.0 86.1 Bharath, LP; Mueller, R; Li, Y; Ruan, T; Kunz, D; Goodrich, R; Mills, T; Deeter, L; Sargsyan, A; Anandh Babu, PV; Graham, TE; Symons, JD. . Canadian journal of physiology and pharmacology. 2014-07, 92 (7): 605–12 [2020-01-25]. PMID 24941409. doi:10.1139/cjpp-2014-0017. (原始内容存档于2020-01-25). 
  87. ^ Guo, F; Li, X; Peng, J; Tang, Y; Yang, Q; Liu, L; Wang, Z; Jiang, Z; Xiao, M; Ni, C; Chen, R; Wei, D; Wang, GX. . Annals of biomedical engineering. 2014-09, 42 (9): 1978–88 [2020-01-25]. PMID 24838486. doi:10.1007/s10439-014-1033-5. (原始内容存档于2020-01-25). 
  88. ^ Ding, Z; Liu, S; Deng, X; Fan, Y; Wang, X; Mehta, JL. . International journal of cardiology. 2015-04-01, 184: 86–95 [2020-01-25]. PMID 25697875. doi:10.1016/j.ijcard.2015.01.065. (原始内容存档于2020-01-25). 
  89. ^ Chen, Z; Fu, Q; Shen, B; Huang, X; Wang, K; He, P; Li, F; Zhang, F; Shen, H. . Molecular medicine reports. 2014-06, 9 (6): 2091–6 [2020-01-25]. PMID 24715058. doi:10.3892/mmr.2014.2124. (原始内容存档于2020-01-25). 
  90. ^ Chen, HC; Fong, TH; Hsu, PW; Chiu, WT. . The Journal of surgical research. 2013-01, 179 (1): e203–10 [2020-01-25]. PMID 22482761. doi:10.1016/j.jss.2012.02.023. (原始内容存档于2020-01-25). 
  91. ^ Lien, SC; Chang, SF; Lee, PL; Wei, SY; Chang, MD; Chang, JY; Chiu, JJ. . Biochimica et biophysica acta. 2013-12, 1833 (12): 3124–3133 [2020-01-25]. PMID 24021264. doi:10.1016/j.bbamcr.2013.08.023. (原始内容存档于2020-01-25). 
  92. ^ Chen, H; Chen, L; Cheng, B; Jiang, C. . Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2015, 36 (1): 24–33 [2020-01-25]. PMID 25924624. doi:10.1159/000374050. (原始内容存档于2020-01-25). 
  93. ^ Li, D; Lu, Z; Xu, Z; Ji, J; Zheng, Z; Lin, S; Yan, T. . Bioscience reports. 2016-08, 36 (4) [2020-01-25]. PMID 27129295. doi:10.1042/BSR20160086. (原始内容存档于2021-08-03). 
  94. ^ Porter, KM; Jeyabalan, N; Liton, PB. . Biochimica et biophysica acta. 2014-06, 1843 (6): 1054–62 [2020-01-25]. PMID 24583119. doi:10.1016/j.bbamcr.2014.02.010. (原始内容存档于2020-01-25). 
  95. ^ 95.0 95.1 Sato, T; Ito, Y; Nagasawa, T. . Journal of nutritional science and vitaminology. 2013, 59 (5): 412–9 [2020-01-30]. PMID 24418875. doi:10.3177/jnsv.59.412. (原始内容存档于2020-01-30). 
  96. ^ Wu, Hao; Wang, Fengli; Hu, Shenglan; Yin, Cong; Li, Xiao; Zhao, Shuhong; Wang, Junjun; Yan, Xianghua. MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cellular Signalling. 2012-11, 24 (11): 2179–2186. doi:10.1016/j.cellsig.2012.07.001. 
  97. ^ Rautou, PE; Mansouri, A; Lebrec, D; Durand, F; Valla, D; Moreau, R. . Journal of hepatology. 2010-12, 53 (6): 1123–34 [2020-01-30]. PMID 20810185. doi:10.1016/j.jhep.2010.07.006. (原始内容存档于2020-01-30). 
  98. ^ Kung, HJ; Changou, CA; Li, CF; Ann, DK. Chromatophagy: autophagy goes nuclear and captures broken chromatin during arginine-starvation.. Autophagy. 2015, 11 (2): 419–21. PMID 25650867. doi:10.1080/15548627.2015.1009789. 
  99. ^ Xia, XJ; Gao, YY; Zhang, J; Wang, L; Zhao, S; Che, YY; Ao, CJ; Yang, HJ; Wang, JQ; Lei, LC. . Cell death discovery. 2016, 2: 15065 [2020-01-30]. PMID 27551491. doi:10.1038/cddiscovery.2015.65. (原始内容存档于2020-01-30). 
  100. ^ 朱玉華;薛欣合;周天驕等.谷氨酰胺、精氨酸和亮氨酸缺乏誘導豬腸道上皮細胞自噬的研究.中國畜牧獸醫學會動物營養學分會第十一次全國動物營養學術研討會論文集.長沙:中國畜牧獸醫學會,2012.
  101. ^ 王敏; 耿清偉; 高亞麗; 華優; 宋秀祖. 窄譜中波紫外線對體外培養人黑素细胞自噬水平的影响. 中華皮膚科雜誌. 2018, 51 (9). doi:10.3760/cma.j.issn.0412-4030.2018.09.007. 
  102. ^ Deng, X; Zhang, F; Rui, W; Long, F; Wang, L; Feng, Z; Chen, D; Ding, W. . Toxicology in vitro : an international journal published in association with BIBRA. 2013-09, 27 (6): 1762–70 [2020-02-02]. PMID 23685237. doi:10.1016/j.tiv.2013.05.004. (原始内容存档于2020-02-02). 
  103. ^ Deng, X; Zhang, F; Wang, L; Rui, W; Long, F; Zhao, Y; Chen, D; Ding, W. . Apoptosis : an international journal on programmed cell death. 2014-07, 19 (7): 1099–112 [2020-02-02]. PMID 24722831. doi:10.1007/s10495-014-0980-5. (原始内容存档于2020-02-02). 
  104. ^ Wang, Y; Lin, Z; Huang, H; He, H; Yang, L; Chen, T; Yang, T; Ren, N; Jiang, Y; Xu, W; Kamp, DW; Liu, T; Liu, G. . International journal of clinical and experimental medicine. 2015, 8 (1): 58–72 [2020-02-02]. PMID 25784975. (原始内容存档于2022-06-20). 
  105. ^ Zhou, W; Yuan, X; Zhang, L; Su, B; Tian, D; Li, Y; Zhao, J; Wang, Y; Peng, S. . Ecotoxicology and environmental safety. 2017-11, 145: 605–614 [2020-02-02]. PMID 28802142. doi:10.1016/j.ecoenv.2017.07.047. (原始内容存档于2020-02-02). 
  106. ^ 106.0 106.1 106.2 He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. January 2012, 481 (7382): 511–5. Bibcode:2012Natur.481..511H. PMC 3518436 . PMID 22258505. doi:10.1038/nature10758. 
  107. ^ 107.0 107.1 Nair U, Klionsky DJ. Activation of autophagy is required for muscle homeostasis during physical exercise. Autophagy. December 2011, 7 (12): 1405–6. PMC 3288013 . PMID 22082869. doi:10.4161/auto.7.12.18315. 
  108. ^ 108.0 108.1 Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy. December 2011, 7 (12): 1415–23. PMC 3288016 . PMID 22024752. doi:10.4161/auto.7.12.17877. 
  109. ^ 109.0 109.1 Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Fürst DO, Saftig P, Saint R, Fleischmann BK, Hoch M, Höhfeld J. Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biology. January 2010, 20 (2): 143–8. PMID 20060297. doi:10.1016/j.cub.2009.11.022. 
  110. ^ Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch N, Vakeel P, Stadel D, Haas A, Saftig P, Behrends C, Fürst DO, Volkmer R, Hoffmann B, Kolanus W, Höhfeld J. Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Current Biology. March 2013, 23 (5): 430–5. PMID 23434281. doi:10.1016/j.cub.2013.01.064. 
  111. ^ Cadwell, K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis.. Nature. 2016, 16 (11): 661–675. PMC 5343289 . PMID 27694913. doi:10.1038/nri.2016.100. 
  112. ^ Medzhitov, R. Origin and physiological roles of inflammation.. Nature. 2008, 454 (7203): 428–435. PMID 18650913. doi:10.1038/nature07201. 
  113. ^ Tan, P. Autophagy and Immune-Related Diseases.. Adv Exp Med Biol. Advances in Experimental Medicine and Biology. 2019, 1209: 167–179. ISBN 978-981-15-0605-5. PMID 31728870. doi:10.1007/978-981-15-0606-2_10. 
  114. ^ Varisli, L. Dissecting pharmacological effects of Chloroquine in cancer treatment: interference with inflammatory signaling pathways.. Immunology. 2019. PMID 31782148. doi:10.1111/imm.13160. 
  115. ^ Caramés B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis and Rheumatism. March 2010, 62 (3): 791–801. PMC 2838960 . PMID 20187128. doi:10.1002/art.27305. 
  116. ^ Caramés B, Taniguchi N, Seino D, Blanco FJ, D'Lima D, Lotz M. Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis and Rheumatism. April 2012, 64 (4): 1182–92. PMC 3288456 . PMID 22034068. doi:10.1002/art.33444. 
  117. ^ Caramés B, Olmer M, Kiosses WB, Lotz MK. The relationship of autophagy defects to cartilage damage during joint aging in a mouse model. Arthritis & Rheumatology. June 2015, 67 (6): 1568–76. PMC 4446178 . PMID 25708836. doi:10.1002/art.39073. 
  118. ^ Iida, T; Onodera, K; Nakase, H. . World journal of gastroenterology. 2017-03-21, 23 (11): 1944–1953 [2020-01-23]. PMID 28373760. doi:10.3748/wjg.v23.i11.1944. (原始内容存档于2021-08-03). 
  119. ^ Lunney, PC; Leong, RW. Review article: Ulcerative colitis, smoking and nicotine therapy.. Alimentary pharmacology & therapeutics. 2012-12, 36 (11-12): 997–1008 [2020-01-23]. PMID 23072629. doi:10.1111/apt.12086. 
  120. ^ Berkowitz, L; Schultz, BM; Salazar, GA; Pardo-Roa, C; Sebastián, VP; Álvarez-Lobos, MM; Bueno, SM. Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn's Disease and Ulcerative Colitis.. Frontiers in immunology. 2018, 9: 74 [2020-01-23]. PMID 29441064. doi:10.3389/fimmu.2018.00074. 
  121. ^ Wong, MK; Holloway, AC; Hardy, DB. Nicotine Directly Induces Endoplasmic Reticulum Stress Response in Rat Placental Trophoblast Giant Cells.. Toxicological sciences : an official journal of the Society of Toxicology. 2016-05, 151 (1): 23–34 [2020-01-23]. PMID 26803847. doi:10.1093/toxsci/kfw019. 
  122. ^ Guan, Y; Zhang, L; Li, X; Zhang, X; Liu, S; Gao, N; Li, L; Gao, G; Wei, G; Chen, Z; Zheng, Y; Ma, X; Siwko, S; Chen, JL; Liu, M; Li, D. Repression of Mammalian Target of Rapamycin Complex 1 Inhibits Intestinal Regeneration in Acute Inflammatory Bowel Disease Models.. Journal of immunology (Baltimore, Md. : 1950). 2015-07-01, 195 (1): 339–46 [2020-01-23]. PMID 26026060. doi:10.4049/jimmunol.1303356. 
  123. ^ Bélanger, M; Rodrigues, PH; Dunn WA, Jr; Progulske-Fox, A. Autophagy: a highway for Porphyromonas gingivalis in endothelial cells.. Autophagy. NaN, 2 (3): 165–70 [2020-01-23]. PMID 16874051. doi:10.4161/auto.2828. 
  124. ^ Levine, B; Klionsky, DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy.. Developmental cell. 2004-04, 6 (4): 463–77 [2020-01-23]. PMID 15068787. doi:10.1016/s1534-5807(04)00099-1. 
  125. ^ Tsuda, H; Ochiai, K; Suzuki, N; Otsuka, K. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells.. Journal of periodontal research. 2010-10, 45 (5): 626–34 [2020-01-23]. PMID 20546110. doi:10.1111/j.1600-0765.2010.01277.x. 
  126. ^ Lewis, AJ; Billiar, TR; Rosengart, MR. . Surgical infections. 2016-06, 17 (3): 286–93 [2020-01-25]. PMID 27093228. doi:10.1089/sur.2015.262. (原始内容存档于2020-01-25). 
  127. ^ Madrigal-Matute, J; Cuervo, AM. . Gastroenterology. 2016-02, 150 (2): 328–39 [2020-01-25]. PMID 26453774. doi:10.1053/j.gastro.2015.09.042. (原始内容存档于2020-01-25). 
  128. ^ Hoetzel, A; Dolinay, T; Schmidt, R; Choi, AM; Ryter, SW. . Antioxidants & redox signaling. 2007-11, 9 (11): 2013–26 [2020-01-25]. PMID 17822362. doi:10.1089/ars.2007.1762. (原始内容存档于2020-01-25). 
  129. ^ Chen, S; Yuan, J; Yao, S; Jin, Y; Chen, G; Tian, W; Xi, J; Xu, Z; Weng, D; Chen, J. Lipopolysaccharides may aggravate apoptosis through accumulation of autophagosomes in alveolar macrophages of human silicosis.. Autophagy. 2015, 11 (12): 2346–57 [2020-01-23]. PMID 26553601. doi:10.1080/15548627.2015.1109765. 
  130. ^ Kim, JJ; Lee, HM; Shin, DM; Kim, W; Yuk, JM; Jin, HS; Lee, SH; Cha, GH; Kim, JM; Lee, ZW; Shin, SJ; Yoo, H; Park, YK; Park, JB; Chung, J; Yoshimori, T; Jo, EK. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action.. Cell host & microbe. 2012-05-17, 11 (5): 457–68 [2020-01-23]. PMID 22607799. doi:10.1016/j.chom.2012.03.008. 
  131. ^ Furuya, N., Liang, X.H., and Levin, B. 2004. Autophagy and cancer. In Autophagy. D.J. Klionsky editor. Landes Bioscience. Georgetown, Texas, USA. 244-253.
  132. ^ Vlahopoulos S, Critselis E, Voutsas IF, Perez SA, Moschovi M, Baxevanis CN, Chrousos GP. New use for old drugs? Prospective targets of chloroquines in cancer therapy. Current Drug Targets. 2014, 383 (16): 1564–1576. PMID 25023646. doi:10.2174/1389450115666140714121514. 
  133. ^ Mizushima N, Levine B. Autophagy in Human Diseases. The New England Journal of Medicine. 2020, 383 (16): 1564–1576. PMID 33053285. doi:10.1056/NEJMra2022774. 
  134. ^ Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of Clinical Investigation. December 2003, 112 (12): 1809–20. PMC 297002 . PMID 14638851. doi:10.1172/JCI20039. 
  135. ^ Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. December 1999, 402 (6762): 672–6. Bibcode:1999Natur.402..672L. PMID 10604474. doi:10.1038/45257. 
  136. ^ Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, Moscat J, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. April 2008, 13 (4): 343–54. PMID 18394557. doi:10.1016/j.ccr.2008.02.001. 
  137. ^ 137.0 137.1 137.2 Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Research. January 2001, 61 (2): 439–44. PMID 11212227. 
  138. ^ Dökümcü K, Simonian M, Farahani RM. miR4673 improves fitness profile of neoplastic cells by induction of autophagy. Cell Death & Disease. October 2018, 9 (11): 1068. PMC 6195512 . PMID 30341280. doi:10.1038/s41419-018-1088-6. 
  139. ^ 139.0 139.1 139.2 Jin S, White E. Role of autophagy in cancer: management of metabolic stress. Autophagy. 2007, 3 (1): 28–31. PMC 2770734 . PMID 16969128. doi:10.4161/auto.3269. 
  140. ^ 140.0 140.1 140.2 Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Molecular Cancer Therapeutics. September 2011, 10 (9): 1533–41. PMC 3170456 . PMID 21878654. doi:10.1158/1535-7163.MCT-11-0047. 
  141. ^ 141.0 141.1 141.2 Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ. Dynamic Modeling of the Interaction Between Autophagy and Apoptosis in Mammalian Cells. CPT. April 2015, 4 (4): 263–72. PMC 4429580 . PMID 26225250. doi:10.1002/psp4.29. 
  142. ^ Razaghi A, Heimann K, Schaeffer PM, Gibson SB. Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis. February 2018, 23 (2): 93–112. PMID 29322476. doi:10.1007/s10495-018-1440-4. 
  143. ^ Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science. May 2004, 304 (5674): 1158–60. Bibcode:2004Sci...304.1158V. PMID 15087508. doi:10.1126/science.1096284. 
  144. ^ Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. April 1998, 392 (6676): 605–8. Bibcode:1998Natur.392..605K. PMID 9560156. doi:10.1038/33416. 
  145. ^ Esteves AR, Arduíno DM, Silva DF, Oliveira CR, Cardoso SM. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD. Parkinson's Disease. January 2011, 2011: 693761. PMC 3026982 . PMID 21318163. doi:10.4061/2011/693761. 
  146. ^ Alzheimer’s, Association. . Alzheimer's & dementia : the journal of the Alzheimer's Association. 2015-03, 11 (3): 332–84 [2020-01-25]. PMID 25984581. doi:10.1016/j.jalz.2015.02.003. (原始内容存档于2020-01-25). 
  147. ^ Dronse, J; Fliessbach, K; Bischof, GN; von Reutern, B; Faber, J; Hammes, J; Kuhnert, G; Neumaier, B; Onur, OA; Kukolja, J; van Eimeren, T; Jessen, F; Fink, GR; Klockgether, T; Drzezga, A. . Journal of Alzheimer's disease : JAD. 2017, 55 (2): 465–471 [2020-01-25]. PMID 27802224. doi:10.3233/JAD-160316. (原始内容存档于2020-01-25). 
  148. ^ Ml, Steinhilb; D, Dias-Santagata; Ta, Fulga; Dl, Felch; Mb, Feany. . Molecular biology of the cell. 2007-12, 18 (12) [2020-01-25]. PMID 17928404. (原始内容存档于2020-01-25) (英语). 
  149. ^ Mocanu, MM; Nissen, A; Eckermann, K; Khlistunova, I; Biernat, J; Drexler, D; Petrova, O; Schönig, K; Bujard, H; Mandelkow, E; Zhou, L; Rune, G; Mandelkow, EM. . The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008-01-16, 28 (3): 737–48 [2020-01-25]. PMID 18199773. doi:10.1523/JNEUROSCI.2824-07.2008. (原始内容存档于2020-01-25). 
  150. ^ Lee, MJ; Lee, JH; Rubinsztein, DC. . Progress in neurobiology. 2013-06, 105: 49–59 [2020-01-28]. PMID 23528736. doi:10.1016/j.pneurobio.2013.03.001. (原始内容存档于2020-01-28). 
  151. ^ Chesser, AS; Ganeshan, V; Yang, J; Johnson, GV. . Nutritional neuroscience. 2016, 19 (1): 21–31 [2020-01-28]. PMID 26207957. doi:10.1179/1476830515Y.0000000038. (原始内容存档于2020-01-28). 
  152. ^ Caccamo, A; Magrì, A; Medina, DX; Wisely, EV; López-Aranda, MF; Silva, AJ; Oddo, S. . Aging cell. 2013-06, 12 (3): 370–80 [2020-01-28]. PMID 23425014. doi:10.1111/acel.12057. (原始内容存档于2020-01-28). 
  153. ^ Cherra SJ, 3rd; Chu, CT. . Future neurology. 2008-05, 3 (3): 309–323 [2020-01-28]. PMID 18806889. doi:10.2217/14796708.3.3.309. (原始内容存档于2021-08-03). 
  154. ^ Wang, Y; Xu, K; Zhang, H; Zhao, J; Zhu, X; Wang, Y; Wu, R. . Molecular medicine reports. 2014-09, 10 (3): 1179–83 [2020-01-25]. PMID 24969312. doi:10.3892/mmr.2014.2346. (原始内容存档于2020-01-25). 
  155. ^ Rodríguez-Muela, N; Germain, F; Mariño, G; Fitze, PS; Boya, P. . Cell death and differentiation. 2012-01, 19 (1): 162–9 [2020-01-25]. PMID 21701497. doi:10.1038/cdd.2011.88. (原始内容存档于2020-01-25). 
  156. ^ Randow, F; Münz, C. . Trends in immunology. 2012-10, 33 (10): 475–87 [2020-01-27]. PMID 22796170. doi:10.1016/j.it.2012.06.003. (原始内容存档于2020-01-27). 
  157. ^ Pei, J; Zhao, M; Ye, Z; Gou, H; Wang, J; Yi, L; Dong, X; Liu, W; Luo, Y; Liao, M; Chen, J. . Autophagy. 2014-01, 10 (1): 93–110 [2020-01-27]. PMID 24262968. doi:10.4161/auto.26843. (原始内容存档于2020-01-27). 
  158. ^ Wang, G; Yu, Y; Tu, Y; Tong, J; Liu, Y; Zhang, C; Chang, Y; Wang, S; Jiang, C; Zhou, EM; Cai, X. . PloS one. 2015, 10 (6): e0128292 [2020-01-27]. PMID 26046751. doi:10.1371/journal.pone.0128292. (原始内容存档于2020-01-27). 
  159. ^ Meng, C; Zhou, Z; Jiang, K; Yu, S; Jia, L; Wu, Y; Liu, Y; Meng, S; Ding, C. . Archives of virology. 2012-06, 157 (6): 1011–8 [2020-01-27]. PMID 22398914. doi:10.1007/s00705-012-1270-6. (原始内容存档于2020-01-27). 
  160. ^ Datan, E; Roy, SG; Germain, G; Zali, N; McLean, JE; Golshan, G; Harbajan, S; Lockshin, RA; Zakeri, Z. . Cell death & disease. 2016-03-03, 7: e2127 [2020-01-27]. PMID 26938301. doi:10.1038/cddis.2015.409. (原始内容存档于2020-01-27). 
  161. ^ Sir, D; Tian, Y; Chen, WL; Ann, DK; Yen, TS; Ou, JH. . Proceedings of the National Academy of Sciences of the United States of America. 2010-03-02, 107 (9): 4383–8 [2020-01-27]. PMID 20142477. doi:10.1073/pnas.0911373107. (原始内容存档于2020-01-27). 
  162. ^ Ke, PY; Chen, SS. . The Journal of clinical investigation. 2011-01, 121 (1): 37–56 [2020-01-27]. PMID 21135505. doi:10.1172/JCI41474. (原始内容存档于2020-01-27). 
  163. ^ Levine, B; Mizushima, N; Virgin, HW. . Nature. 2011-01-20, 469 (7330): 323–35 [2020-01-27]. PMID 21248839. doi:10.1038/nature09782. (原始内容存档于2020-01-27). 
  164. ^ Tang, SW; Chen, CY; Klase, Z; Zane, L; Jeang, KT. The cellular autophagy pathway modulates human T-cell leukemia virus type 1 replication.. Journal of virology. 2013-02, 87 (3): 1699–707 [2020-01-27]. PMID 23175371. doi:10.1128/JVI.02147-12. 
  165. ^ Ren, T; Takahashi, Y; Liu, X; Loughran, TP; Sun, SC; Wang, HG; Cheng, H. . Oncogene. 2015-01-15, 34 (3): 334–45 [2020-01-27]. PMID 24362528. doi:10.1038/onc.2013.552. (原始内容存档于2020-01-27). 
  166. ^ Deretic, V; Levine, B. . Autophagy. 2018, 14 (2): 243–251 [2020-01-27]. PMID 29165043. doi:10.1080/15548627.2017.1402992. (原始内容存档于2020-01-27). 
  167. ^ Brass, AL; Dykxhoorn, DM; Benita, Y; Yan, N; Engelman, A; Xavier, RJ; Lieberman, J; Elledge, SJ. . Science (New York, N.Y.). 2008-02-15, 319 (5865): 921–6 [2020-01-27]. PMID 18187620. doi:10.1126/science.1152725. (原始内容存档于2020-01-27). 
  168. ^ Espert, L; Denizot, M; Grimaldi, M; Robert-Hebmann, V; Gay, B; Varbanov, M; Codogno, P; Biard-Piechaczyk, M. . The Journal of clinical investigation. 2006-08, 116 (8): 2161–72 [2020-01-27]. PMID 16886061. doi:10.1172/JCI26185. (原始内容存档于2020-01-27). 
  169. ^ Sagnier, S; Daussy, CF; Borel, S; Robert-Hebmann, V; Faure, M; Blanchet, FP; Beaumelle, B; Biard-Piechaczyk, M; Espert, L. Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes.. Journal of virology. 2015-01, 89 (1): 615–25. PMID 25339774. doi:10.1128/JVI.02174-14. 
  170. ^ Campbell, GR; Rawat, P; Bruckman, RS; Spector, SA. . PLoS pathogens. 2015-06, 11 (6): e1005018 [2020-01-27]. PMID 26115100. doi:10.1371/journal.ppat.1005018. (原始内容存档于2020-01-27). 
  171. ^ Zughaier, SM; Kandler, JL; Balthazar, JT; Shafer, WM. . PloS one. 2015, 10 (12): e0144347 [2020-01-27]. PMID 26641098. doi:10.1371/journal.pone.0144347. (原始内容存档于2020-01-27). 
  172. ^ Kim, WJ; Mai, A; Weyand, NJ; Rendón, MA; Van Doorslaer, K; So, M. . PLoS pathogens. 2019-02, 15 (2): e1007495 [2020-01-27]. PMID 30753248. doi:10.1371/journal.ppat.1007495. (原始内容存档于2020-01-27). 
  173. ^ Lu, P; Wang, S; Lu, Y; Neculai, D; Sun, Q; van der Veen, S. . The Journal of infectious diseases. 2019-01-01, 219 (1): 133–144 [2020-01-27]. PMID 29688440. doi:10.1093/infdis/jiy237. (原始内容存档于2020-01-27). 
  174. ^ Al-Younes, HM; Brinkmann, V; Meyer, TF. . Infection and immunity. 2004-08, 72 (8): 4751–62 [2020-01-27]. PMID 15271937. doi:10.1128/IAI.72.8.4751-4762.2004. (原始内容存档于2020-01-27). 
  175. ^ Fang, W; Shu, S; Yongmei, L; Endong, Z; Lirong, Y; Bei, S. miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200.. Scientific reports. 2016-09-12, 6: 33229. PMID 27615604. doi:10.1038/srep33229. 
  176. ^ Tegelenbosch, RA; de Rooij, DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse.. Mutation research. 1993-12, 290 (2): 193–200 [2020-01-23]. PMID 7694110. doi:10.1016/0027-5107(93)90159-d. 
  177. ^ Liu, ML; Wang, JL; Wei, J; Xu, LL; Yu, M; Liu, XM; Ruan, WL; Chen, JX. Tri-ortho-cresyl phosphate induces autophagy of rat spermatogonial stem cells.. Reproduction (Cambridge, England). 2015-02, 149 (2): 163–70 [2020-01-23]. PMID 25385720. doi:10.1530/REP-14-0446. 
  178. ^ Xu, LL; Liu, ML; Wang, JL; Yu, M; Chen, JX. Saligenin cyclic-o-tolyl phosphate (SCOTP) induces autophagy of rat spermatogonial stem cells.. Reproductive toxicology (Elmsford, N.Y.). 2016-04, 60: 62–8 [2020-01-23]. PMID 26815770. doi:10.1016/j.reprotox.2016.01.004. 
  179. ^ McNally, K; Berg, E; Cortes, DB; Hernandez, V; Mains, PE; McNally, FJ. . Molecular biology of the cell. 2014-04, 25 (7): 1037–49 [2020-01-23]. PMID 24501424. doi:10.1091/mbc.E13-12-0764. (原始内容存档于2021-08-03). 
  180. ^ Kabeya, Y; Mizushima, N; Ueno, T; Yamamoto, A; Kirisako, T; Noda, T; Kominami, E; Ohsumi, Y; Yoshimori, T. . The EMBO journal. 2000-11-01, 19 (21): 5720–8 [2020-01-23]. PMID 11060023. doi:10.1093/emboj/19.21.5720. (原始内容存档于2020-03-02). 
  181. ^ Gallardo Bolaños, JM; Miró Morán, Á; Balao da Silva, CM; Morillo Rodríguez, A; Plaza Dávila, M; Aparicio, IM; Tapia, JA; Ortega Ferrusola, C; Peña, FJ. . PloS one. 2012, 7 (1): e30688 [2020-01-23]. PMID 22292020. doi:10.1371/journal.pone.0030688. (原始内容存档于2021-08-03). 
  182. ^ Zhuo, C; Ji, Y; Chen, Z; Kitazato, K; Xiang, Y; Zhong, M; Wang, Q; Pei, Y; Ju, H; Wang, Y. Proteomics analysis of autophagy-deficient Atg7-/- MEFs reveals a close relationship between F-actin and autophagy.. Biochemical and biophysical research communications. 2013-08-02, 437 (3): 482–8 [2020-01-23]. PMID 23850690. doi:10.1016/j.bbrc.2013.06.111. 
  183. ^ Mu, Y; Yan, WJ; Yin, TL; Zhang, Y; Li, J; Yang, J. Diet-induced obesity impairs spermatogenesis: a potential role for autophagy.. Scientific reports. 2017-03-09, 7: 43475 [2020-01-23]. PMID 28276438. doi:10.1038/srep43475. 
  184. ^ Abelaira, HM; Réus, GZ; Neotti, MV; Quevedo, J. The role of mTOR in depression and antidepressant responses.. Life sciences. 2014-04-17, 101 (1-2): 10–4 [2020-01-24]. PMID 24582593. doi:10.1016/j.lfs.2014.02.014. 
  185. ^ Polajnar, M; Zerovnik, E. Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases.. Journal of cellular and molecular medicine. 2014-09, 18 (9): 1705–11 [2020-01-24]. PMID 25139375. doi:10.1111/jcmm.12349. 
  186. ^ Atkin, TA; Brandon, NJ; Kittler, JT. Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport.. Human molecular genetics. 2012-05-01, 21 (9): 2017–28 [2020-01-24]. PMID 22291444. doi:10.1093/hmg/dds018. 
  187. ^ Machado-Vieira, R; Zanetti, MV; Teixeira, AL; Uno, M; Valiengo, LL; Soeiro-de-Souza, MG; Oba-Shinjo, SM; de Sousa, RT; Zarate CA, Jr; Gattaz, WF; Marie, SK. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder.. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 2015-04, 25 (4): 468–73 [2020-01-24]. PMID 25726893. doi:10.1016/j.euroneuro.2015.02.002. 
  188. ^ Kim, HW; Rapoport, SI; Rao, JS. Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients.. Neurobiology of disease. 2010-03, 37 (3): 596–603 [2020-01-24]. PMID 19945534. doi:10.1016/j.nbd.2009.11.010. 
  189. ^ Son, JH; Shim, JH; Kim, KH; Ha, JY; Han, JY. Neuronal autophagy and neurodegenerative diseases.. Experimental & molecular medicine. 2012-02-29, 44 (2): 89–98 [2020-01-24]. PMID 22257884. doi:10.3858/emm.2012.44.2.031. 
  190. ^ Shen, W; Ganetzky, B. Autophagy promotes synapse development in Drosophila.. The Journal of cell biology. 2009-10-05, 187 (1): 71–9 [2020-01-24]. PMID 19786572. doi:10.1083/jcb.200907109. 
  191. ^ Moosavi, MA; Haghi, A; Rahmati, M; Taniguchi, H; Mocan, A; Echeverría, J; Gupta, VK; Tzvetkov, NT; Atanasov, AG. Phytochemicals as potent modulators of autophagy for cancer therapy.. Cancer letters. 2018-06-28, 424: 46–69 [2020-01-21]. PMID 29474859. doi:10.1016/j.canlet.2018.02.030. 
  192. ^ Hyo-Ji, Lee, Hyun-Jeong, et al. Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages.[J]. PloS one, 2019.
  193. ^ Ylä-Anttila, P; Vihinen, H; Jokitalo, E; Eskelinen, EL. Monitoring autophagy by electron microscopy in Mammalian cells.. Methods in enzymology. 2009, 452: 143–64 [2020-01-24]. PMID 19200881. doi:10.1016/S0076-6879(08)03610-0. 
  194. ^ Eng, KE; Panas, MD; Karlsson Hedestam, GB; McInerney, GM. A novel quantitative flow cytometry-based assay for autophagy.. Autophagy. 2010-07, 6 (5): 634–41 [2020-01-24]. PMID 20458170. doi:10.4161/auto.6.5.12112. 
  195. ^ Li, Z; Ji, X; Wang, W; Liu, J; Liang, X; Wu, H; Liu, J; Eggert, US; Liu, Q; Zhang, X. . PloS one. 2016, 11 (4): e0153526 [2020-01-24]. PMID 27077655. doi:10.1371/journal.pone.0153526. (原始内容存档于2021-08-03). 

外部鏈接 编辑

  • (英文)Autophagy, a journal produced by Landes Bioscience and edited by DJ Klionsky (页面存档备份,存于互联网档案馆
  • (英文)
  • (英文)Autophagolysosome on Drugs.com (页面存档备份,存于互联网档案馆
  • (英文)HADb, a Human Autophagy dedicated Database (页面存档备份,存于互联网档案馆
  • (英文)
  • (英文)Self-Destructive Behavior in Cells May Hold Key to a Longer Life (页面存档备份,存于互联网档案馆

自噬, 英語, autophagy, 或稱自體吞噬, 是一個涉及到細胞自身結構通過溶酶體機制, 負責將受損的細胞器, 錯誤折疊的蛋白及其他大分子物質等運送至溶酶體降解並再利用的進化保守過程, 是廣泛存在於真核細胞的現象, 並且可分為巨, 微和分子伴侶介導的三大類, 這是一個受到緊密調控的步驟, 此步驟是細胞生長, 發育與穩態中的常規步驟, 幫助細胞產物在合成, 降解以及接下來的循環中保持一個平衡狀態, 目前已有多份研究表明在許多細胞的分化進程中被不同程度地觸發, 例如參與血管生成, 成骨分化, 脂肪生成, 神經發生. 自噬 英語 autophagy 或稱自體吞噬 是一個涉及到細胞自身結構通過溶酶體機制 負責將受損的細胞器 錯誤折疊的蛋白及其他大分子物質等運送至溶酶體降解並再利用的進化保守過程 自噬是廣泛存在於真核細胞的現象 並且可分為巨自噬 微自噬和分子伴侶介導的自噬三大類 這是一個受到緊密調控的步驟 此步驟是細胞生長 發育與穩態中的常規步驟 幫助細胞產物在合成 降解以及接下來的循環中保持一個平衡狀態 目前已有多份研究表明自噬在許多細胞的分化進程中被不同程度地觸發 1 例如參與血管生成 2 成骨分化 3 脂肪生成 4 神經發生 5 等過程 A 自噬示意圖 B 果蠅幼蟲的脂肪體自噬結構的電子顯微鏡照片 C 螢光標記的自噬體飢餓小鼠肝細胞自噬效應的發生取決於自噬流過程是否完成 而自噬流的意思是自噬的完整動態過程 包括自噬體形成 自噬體與溶酶體融合及後續內含物的降解和回收 6 命名為 自噬 英語 autophagy 是由比利時化學家克里斯汀 德 迪夫在1963年發現的 7 當代的自噬研究是1990年代酵母的研究人員通過識別的自噬相關基因而被推動 8 9 10 11 12 其中之一人 日本科學家大隅良典因 對細胞自噬機制的發現 獲得2016年度的诺贝尔生理学或医学奖 13 目录 1 歷史 2 分子生物學 3 功能 3 1 營養不足 3 2 異種吞噬 3 3 感染 3 4 修復機制 3 5 程序性細胞死亡 4 影響自噬的因素及其影響 4 1 力學方面 4 2 氨基酸 4 3 窄譜中波紫外線 4 4 懸浮粒子 5 和運動之關聯 6 炎症與自噬之間的相互作用 7 臨床意義 7 1 骨關節炎 7 2 炎症性腸病 7 3 牙周炎 7 4 敗血症及其併發症 7 5 結核病 7 6 癌症 7 7 帕金森氏病 7 8 阿茲海默症 7 9 青光眼 7 10 病毒方面 7 11 性傳播疾病方面 7 12 不育症 7 13 抑鬱症 7 14 作為藥物靶標 8 檢測方法 8 1 影響因素 9 參閱 10 參考文獻 11 外部鏈接歷史 编辑1962年1月 美國洛克菲勒醫學研究院的基思 R 波特和其學生Thomas Ashford報導了添加胰高血糖素後 大鼠肝細胞中的溶酶體數量增加 並且發現一些向細胞中心移位的溶酶體 包含着線粒體等細胞器的成分 Porter和Ashford錯誤地將數據解釋為溶酶體的形成過程 不認為溶酶體是像線粒體一樣存在於細胞質中的細胞器 並且將觀察到的水解酶理解為是由微體 英语 Microbody 產生的水解酶 14 1963年 赫魯班 Hruban Spargo及其同事等報道了局部細胞質降解的超微結構 該報道參考了1955年德國科學家的損傷誘導融合模型 觀察到了從細胞質融合到生成溶酶體的三個連續步驟 並提出這個過程不僅由損傷階段誘發 而且在細胞分化的生理階段 同樣的過程也在 細胞器處置 和 細胞成分再利用 中行使功能 15 這篇報道引起了當時也在洛克菲勒醫學研究所工作的克里斯汀 德 迪夫的興趣 與之前Porter和Ashford的看法不同 德迪夫受到這一發現的啟發 把這種現象命名為自噬 autophagy 並提出在胰高血糖素引發的肝細胞降解過程中 溶酶體發揮了功能 他與其學生拉塞爾 德特 Russell Deter 一起證實胰高血糖素誘發的自噬是由溶酶體介導的 16 17 並且在1967年連續發表兩篇文章 他也由此成為第一位報道溶酶體參與細胞內自噬的科學家 這是首次確定溶酶體是細胞內自噬的部位 7 18 19 1974年德迪夫發現細胞內結構及功能性器官 即溶酶體和過氧物酶體 而與另外兩位科學家共享了該年度的諾貝爾生理學或醫學獎 nbsp 日本生物學家大隅良典在東京工業大學實驗室內的照片在1990年代 幾組科學家使用發芽酵母獨立地發現了自噬相關基因 值得注意的是 大隅良典 他於2016年獲得了諾貝爾生理學或醫學獎 儘管有人指出該獎項可能更具包容性 20 和Michael Thumm研究了飢餓誘導的非選擇性自噬 9 10 11 同時 Daniel J Klionsky發現細胞質至液泡傳遞途徑 英语 Cytoplasm to vacuole targeting CVT 這是選擇性自噬的一種形式 8 12 他們很快發現他們實際上是從不同的角度看本質上相同的路徑 21 22 最初 由酵母菌組發現的基因被賦予不同的名稱 APG AUT CVT GSA PAG PAZ和PDD 2003年 有研究人員提出了統一的命名法 即使用ATG表示自噬基因 23 21世紀初 自噬研究領域經歷快速的發展 ATG基因的知識為科學家提供了更方便的工具 以分析自噬在人類健康和疾病中的功能 1999年 貝絲 萊文 Beth Levine 的小組發表了一項具有里程碑意義的發現 24 將自噬與癌症聯繫起來 迄今為止 癌症與自噬之間的關係仍然是自噬研究的主要主題 自噬在神經退行性變和免疫防禦中的作用也受到了廣泛的關注 2003年 第一屆戈登自噬研究會議 Gordon Research Conference on autophagy 在沃特維爾舉行 25 2005年 Daniel J Klionsky發行了致力於該領域的科學期刊 自噬 2007年 首屆Keystone自噬專題討論會在蒙特里舉行 26 2008年 Carol A Mercer創建了BHMT融合蛋白 GST BHMT 該蛋白在細胞系中顯示飢餓誘導的位點特異性片段化 而甜菜鹼高半胱氨酸甲基轉移酶 英语 Betaine homocysteine S methyltransferase 的降解是一種可用於評估哺乳類動物細胞中自噬通量的代謝酶 27 巨自噬作用 微自噬作用 英语 Microautophagy 和伴侶分子介導自噬作用 英语 Chaperone mediated autophagy 由自噬相關基因及其相關酶介導 28 29 30 巨自噬作用細分為本體自噬和選擇性自噬 bulk and selective autophagy 在選擇性自噬中 又細分為線粒體自噬作用 英语 Mitophagy 31 脂自噬作用 過氧化物酶體自噬作用 32 葉綠體自噬作用 33 及核糖體自噬作用 34 等 nbsp 圖中顯示了自噬體的形成 其中高爾基體在左上方 線粒體在右上方 而自噬體則在底部中心巨自噬作用是主要的自噬途徑 主要用於清除受損的細胞器或未被使用的蛋白質 35 首先 吞噬細胞將需要降解的物質吞噬 並在受損的細胞器周圍形成自噬體 36 然後自噬體穿過細胞的細胞質到達溶酶體 兩個細胞器融合 在溶酶體內 自噬體內的內容物通過酸性溶酶體水解酶降解 37 nbsp 巨自噬與微自噬作用過程的對比微自噬作用涉及將細胞質內的物質直接吞噬到溶酶體中 38 這是通過內陷發生的 意味著溶酶體膜向內折疊或細胞向外突出 36 伴侶分子介導自噬作用 CMA 是一個非常複雜和特異的途徑 涉及到包含hsc70的複合物的識別 36 39 這意味著蛋白質必須包含hsc70複合物的識別位點 這將使其能夠與該分子伴侶結合 形成CMA 底物 分子伴侶複合物 然後 該複合物移動到溶酶體膜結合蛋白上 該蛋白將識別並與CMA受體結合 底物蛋白在識別後就解折疊 並在溶酶體hsc70分子伴侶的幫助下 跨越溶酶體膜轉運 CMA與其他類型的自噬存在顯著差異 因為它以一種一種的方式轉運蛋白物質 並且對哪種物質穿過溶酶體屏障具有極高的選擇性 35 線粒體自噬作用是通過自噬選擇性地降解受損或未受損的線粒體 經歷損傷或受壓後 經常發生線粒體缺陷 線粒體吞噬作用促進線粒體的更新 並且防止功能異常的線粒體積聚 從而導致細胞變性 它是由酵母中的Atg3 NIX及其調節物BNIP3在哺乳動物中介導的 線粒體吞噬作用受到PINK1和parkin蛋白的調節 40 41 脂自噬作用是通過自噬降解脂質 42 該功能在動物和真菌細胞中都存在 43 然而 脂肪吞噬作用在植物細胞中的作用仍然難以捉摸 44 在脂質吞噬中 靶標是稱為脂質滴 LDs 的脂質結構 具有主要是三酰基甘油 TAGs 核心 以及單層磷脂和膜蛋白組成的球形細胞器 在動物細胞中 主要的脂肪吞噬途徑是通過吞噬細胞吞噬LD 即巨自噬 另一方面 在真菌細胞中 微脂代謝是主要途徑 尤其是在發芽酵母及釀酒酵母中得到了很好的研究 45 脂吞噬作用最早在小鼠中發現 並且在2009年發表 46 分子生物學 编辑屬於絲氨酸 蘇氨酸類蛋白激酶的ATG1 ULK1是啟動自噬作用的關鍵蛋白激酶 47 自噬的初始階段主要是誘導自噬和形成自噬膜 然而自噬膜的形成需要自噬前體 即自噬調控的重要節點 的形成 Beclin1 Vps34復合體是哺乳動物自噬的核心復合物 AtG4參與自噬泡的形成 48 而UVRAG作用於自噬泡成熟及其運輸過程 49 Rubicon負調節其功能 50 誘導自噬後 在Atg14 Vps15 mVps34復合物作用下 啟動膜泡的成核反應 進一步結合Atg21和Atg24 形成前自噬體 51 自噬膜泡進一步擴張並包繞底物 最終形成自噬體 Atg12 Atg5復合物系統和LC3 磷脂酰乙醇胺復合物系統均是泛素化系統 參與着自噬體的形成 目前已知p62 英语 Nucleoporin 62 蛋白會誘導鑲嵌有LC3的自噬體到溶酶體 將其吞噬並清除 與底物結合的p62也能被蛋白水解酶降解 而細胞內的微管骨架其實也會將自噬體運輸到溶酶體 水解酶在二者融合降解自噬體內容物 Rab7及UVRAG 英语 UVRAG 等因子參與此過程 目前已知Rab7與膜泡表面的脂分子尾部作用進行定位 而UVRAG則活化Rab7 將囊泡運送到靶位點 52 自噬過程通常涉及兩種泛素樣偶聯反應 以維持吞噬體的擴展 第1種反應發生在LC3 酵母Atg8在哺乳動物中的同源物 LC3對溶酶體的形成是必需的 Atg4切割LC3獲得彌散胞質狀態的LC3 LC3 其後與磷脂酰乙醇胺偶聯 以形成膜結合狀態的LC3 LC3 其後定位於自噬體膜 Atg5 Atg12 Atg16L1復合物與前自噬體膜相關聯 通過協助招募LC3延長它們的伸長 隨著吞噬細胞擴大並接近閉合 Atg5 Atg12 Atg16L1復合物從外膜解離 而LC3 仍然與完成的自噬體結合 除此之外 mAtg9是核心Atg蛋白中唯一確定的多次跨膜蛋白 吞噬細胞的延伸也由mAtg9輔助 第2種反應則是在Atg12 英语 ATG12 與Atg5共軛後 Atg16L1與偶聯物Atg12 Atg5結合 形成一個對吞噬細胞成熟至關重要的Atg5 Atg12 Atg16L1復合物 53 ATG8酯化在自噬發生過程中的作用仍未解釋清楚 可以對促進自噬體膜的延伸和閉合起著關鍵作用 ATG8的酯化過程依賴於兩個類泛素化系統的幫助 所有生物中的ATG5 ATG12共價結合復合物對於細胞內ATG8的酯化均是必須的 在自噬相關基因中 Beclin1 Atg5 Atg12和LC3對自噬的誘導階段十分重要 其中 LC3是自噬的關鍵蛋白 LC3前體正常會被ATG4切掉C端120個氨基酸 而殘片稱為LC3 胞膜形式的LC3 在自噬發生時 已活化的LC3 經Atg3泛素化修飾後 與自噬泡膜表面的磷脂酰乙醇胺結合 形成自噬體膜形式且疏水性較強的LC3 並且鉚釘於自噬泡雙層膜結構上 參與細胞自噬 ULK復合物對自噬誘導起始至關重要 54 主要由ULK1 2 自噬相關基因13 ATG13 ATG101和200 kD家族相互作用蛋白組成 47 ULK1 2負責募集ATG蛋白 其中ULK1是哺乳動物自噬泡形成所必需的一種蛋白質 其活性缺失時LC3 不能形成 阻礙自噬過程 ULK1激酶復合體能夠促進PI3K和ATG14形成復合物 並且促進Beclin1從Bcl2 Beclin1復合體中解離出來 形成參與自噬體核形成的關鍵因子Beclin1 PI3K ATG14復合物 48 單磷酸腺苷活化蛋白質激酶 英语 AMP activated protein kinase AMPK 和mTOR都可以催化ULK1的磷酸化 55 AMPK在營養充足的條件下失活 mTORC活化並磷酸化ULK1和ATG13 從而抑制自噬起始 AMPK在飢餓條件下活化 同時mTORC失活 已活化的AMPK催化ULK1絲氨酸磷酸化 促進自噬作用 除此之外 ATG13可以由mTORC1 英语 mTORC1 磷酸化並調控ULK復合物的活性 ATG101結合並穩定FIP200 而FIP200則為ULK及ATG13提供支架 56 PI3K復合物由Vps34 Vps15 Beclin1和Atg14蛋白組成 ULK1復合物在膜泡形成後會從由細胞質轉移至內質網 並且增強PI3K復合物的活性 隨後可產生磷脂酰肌醇 3磷酸酯 促進其他效應蛋白與自噬體膜結合 從而啟動膜泡的成核反應 繼而介導前自噬體的形成 57 功能 编辑營養不足 编辑 自噬在各種細胞功能中都發揮作用 營養不足會導致高水平的自噬 降解不需要的蛋白質 並且回收氨基酸 以合成對細胞生存至關重要的蛋白質 58 59 60 在高等真核生物中 自噬作用因動物在出生後切斷了來自胎盤的食物供應而被響應 61 62 自噬能力降低的突變酵母細胞會在營養缺乏的情況下迅速消失 63 對APG突變體的研究表明 在飢餓條件下 通過自噬體進行的自噬對於液泡中的蛋白質降解是必不可少的 並且酵母中至少有15個APG基因參與自噬 63 營養素介導的自噬涉及一種稱為ATG7的基因 因為小鼠研究表明 APG7缺陷型小鼠有着飢餓引起的自噬 62 異種吞噬 编辑 在微生物學中 異種吞噬 英语 Xenophagy 是指感染性顆粒的自噬性降解 細胞自噬機制在先天免疫中發揮重要作用 結核桿菌等細胞內的病原體被靶向降解 當中的細胞機制和調控機制與靶向線粒體降解的機制相同 64 這是內共生學說的進一步證據 儘管某些細菌會阻止吞噬體成熟為降解的細胞器 稱為吞噬溶酶體 英语 Phagolysosome 但是這個過程通常會導致由侵入性微生物帶來的破壞 65 感染 编辑 水皰性口炎病毒是由自噬體從胞質溶膠中吸收並轉移到內體中 並且在那裡通過TLR7 英语 TLR7 檢測單鏈核糖核酸 在類鐸受體被激活後 細胞內信號級聯反應就會開始 導致干擾素和其他抗病毒細胞因子的誘導 部分病毒和細菌破壞了自噬途徑 以促進自身複製 66 半乳凝素8已經被鑑定為細胞內的 危險受體 能夠啟動針對細胞內病原體的自噬 當半乳凝素8與受損的液泡結合時 它會募集CALCOCO2 英语 CALCOCO2 等自噬受體 導致自噬體的形成和細菌的降解 67 修復機制 编辑 自噬可以降解受損的細胞器 細胞膜和蛋白質 而抵制自噬作用被認為是造成受損細胞蓄積和衰老的其中一個主要原因 68 自噬和自噬調節劑參與溶酶體損傷的反應 通常由半乳凝素 3 英语 Galectin 3 和半乳凝素 8 英语 Galectin 8 等半乳凝素 英语 Galectin 指導 半乳凝素 8負責募集TRIM16 英语 TRIM16 69 和NDP52等受體 並直接影響mTOR和AMPK的活性 而mTOR和AMPK分別抑制和激活自噬作用 70 程序性細胞死亡 编辑 程序性細胞死亡 PCD 的其中一個機制與自噬小體的出現有關 並且依賴於自噬蛋白 這種細胞死亡形式最有可能與形態學上定義為自噬PCD autophagic PCD 的過程相對應 其中一個問題 是步入死亡過程的細胞中 其自噬的活性是導致其死亡的原因 還是為了防止細胞死亡的一個嘗試 迄今為止 形態學和組織化學研究並未證明自噬過程與細胞死亡之間存在因果關係 最近有論據認為 垂死細胞中的自噬活性可能是一種生存機制 71 72 對昆蟲變態的研究表明 細胞經歷了一種PCD形式 這種形式與其他形式截然不同 這些已被提議作為自噬作用使細胞死亡的例子 73 最近的藥理和生化研究表明 有助細胞生存或致死的自噬可以通過應激期間 尤其是病毒感染後 調控信號的類型和程度來區分 74 然而尚未在病毒系統之外觀察到這些發現 影響自噬的因素及其影響 编辑力學方面 编辑 左心室心肌組織中 壓力超負荷會導致其蛋白酶的表達量和活性均顯著增強 目前已知蛋白酶的活性與自噬作用存在密切的關係 75 並且導致小鼠心肌細胞的自噬活性持續地增強 甚至發現升高的情況維持至少3周 76 許多研究證實心肌細胞的自噬活性因壓力超負荷而提高 77 78 79 因為壓力超負荷使心肌細胞中 在細胞核周圍逐漸聚集的錯誤折疊蛋白數量增多 並且形成被細胞自噬系統識別並降解的聚集體 其後的科研人員利用動脈結扎的方法 使已經敲除Beclin 1的雜合子小鼠心臟處於壓力超負荷的狀況 最終發現敲除Beclin 1可以減弱壓力超負荷造成的細胞自噬活性提高 並且減弱心肌細胞對壓力超負荷的病理性重建作用 同時又發現在小鼠體內過度表達Beclin 1則造成相反的作用 76 另一些科研人員進行的實驗也證明了心肌細胞為了維持細胞穩態和心肌的正常結構及功能 而擁有基礎水平的細胞自噬作用 當心肌面對着血流壓力超負荷的狀況時 自噬作用的提升就是心肌應對這種狀況的適應性反應 若然ATG5 英语 ATG5 等自噬相關基因被特異性敲除 小鼠體內會出現左心室擴張及收縮功能減弱等異常現象 甚至在2周後出現了心肌肥大的問題 80 除此之外 有多份研究指出壓力超負荷的情況消失時 細胞會逐漸回復正常的形態 而自噬則發揮著重要的作用 當去除小鼠主動脈結扎後 會發現心肌細胞逐漸復原 並且觀察到自噬相關標誌分子LC3b 的表達提高 反映自噬作用的活性極大地提升 81 心肌細胞若然處於去應力負荷的環境 其自噬作用會受到影響 然而自噬作用能其所促進或降低 有些研究人員心肌细胞處於去應力負荷的環境時會萎缩 並且發現LC3b 和Beclin 1的表達提升 82 然而 科研人員發現有佩戴左心室輔助裝置的心臟衰竭患者 體內心肌細胞自噬的水平會降低 推測可能是因為心肌細胞的能量需求降低 不再需要維持高水平的自噬活性 83 自噬在力學刺激或衝擊引起的軟骨反應中 發揮重要的作用 最先研究有關方面的研究人員發現遭受40 力學衝擊的細胞的存活率會降低 並且發現細胞外基質中硫酸化糖胺聚糖逐漸丟失 同時在24小時後檢測到LC3b 的表達提高 然而在48小時後細胞的自噬逐漸受到了抑制 84 由此可見 自噬作用在軟骨組織面對力學衝擊時 會有一定程度的保護作用 但是在損傷過大時 就會因受到抑制而失去對軟骨組織的保護作用 除此之外 有不少科研人員指出不同時程的力學刺激 對軟骨細胞的自噬影響存在着差異 例如短時程的間歇循環機械張力可以促進軟骨細胞的自噬作用 而長時程則有相反的結果 85 層流剪切力對血管內皮細胞的自噬的影響在2014年已被證實 其後的研究發現層流剪切力可以促進內皮細胞的自噬活性 可能跟細胞內氧化 抗氧化平衡有關 86 而較小的層流剪切力及震蕩流剪切力卻不能夠促進自噬活性 流動剪切力 即適當的層流剪切力 能夠幫助維持內皮細胞的自噬作用 內皮細胞在加載流動剪切力後會維持靜止狀態 同時自噬的活性逐漸降低到基礎水平 87 除此之外 有科研人員指出流動剪切力在炎症狀態下 對內皮細胞自噬的促進作用也會增強 88 並且起到抗炎症反應的作用 86 在受到機械損傷及壓縮損傷時 89 神經細胞會提升自噬的水平 90 在細胞受損早期可以透過抑制細胞凋亡的途徑來保護神經細胞 除此之外 力學因素對肝癌細胞 91 精原瘤 英语 Seminoma 細胞 成纖維細胞 92 足細胞 93 及小梁細胞等細胞自噬的促進作用也被一些研究人員所報道 94 氨基酸 编辑 當胞內賴氨酸 Lys 不足時 骨骼肌細胞會因自噬 溶酶體途徑被激活而發生自噬 使得自身的蛋白質被降解 以抵抗外部因素引起的氨基酸缺乏 在短時間內維持自身氨基酸的平衡狀態 95 白胺酸 Leu 是必需的支鏈氨基酸 然而因Leu不能在動物體內合成而只可以從食物中攝取 目前已經有多項研究將Leu剝奪而引起的蛋白質分解與自噬聯繫着 有研究表明miR 20a和miR 106b 均為miR 17 microRNA家族 可能通過抑制小鼠成肌細胞系C2C12中Unc 51樣自噬激活激酶1 英语 ULK1 的表達 調節因Leu被剝奪而誘導的自噬 96 另外一份研究則發現 自噬 溶酶體系統會攝入Leu後被激活 抑制肌原纖維蛋白質的降解 接着發現 在C2C12細胞 經達爾伯克氏必需基本培養基培養 中 補充Leu 30分鐘之後 LC3 與LC3 的比值顯著降低 顯示補充Leu會顯著抑制C2C12細胞自噬的發生 95 由於缺乏氨基酸可以誘導細胞發生自噬 所以Leu是一種有效的自噬抑制劑 97 精氨酸 Arg 是一種半必需氨基酸 98 有研究人員首次發現一般性調控阻遏蛋白質激酶2 英语 Gcn2 可以介導干擾素 g 響應因缺乏Arg而引起的牛乳腺上皮細胞自噬 99 麩醯胺酸 Gln 是人體中含量最豐富的非必需氨基酸 有研究發現通過Gln缺乏的培養基處理豬腸道上皮細胞8小時後 細胞數目會顯著減少 同時顯著提升LC3 的表達 故而缺乏Gln會令豬腸道上皮細胞發生自噬 100 窄譜中波紫外線 编辑 窄譜中波紫外線 NB UVB 可以促進正常黑素細胞發生自噬 使用穿透式電子顯微鏡觀察有關細胞時 發現隨著NB UVB照射劑量的增大 黑素細胞中的黑素小體會增多 而細胞質內出現較多單層膜空泡狀的自噬溶酶體 以及較少的雙層膜自噬體 有研究人員結合他們的研究結果及以往的研究報道 推測NB UVB通過上調黑素細胞自噬水平的途徑 促進黑素細胞存活 並且可以在白癜風治療中發揮作用 101 懸浮粒子 编辑 2013年 首次報道暴露於PM2 5可以提高A549細胞內的活性氧簇生成 並且促進自噬激活及抑制細胞成活 呈濃度和時間依賴性 102 2014年 有研究證實暴露於PM2 5不僅可以通過死亡受體途徑和線粒體途徑誘導A549細胞凋亡 同時可以誘導A549細胞發生自噬性細胞死亡 並且發現二者存在交互作用 103 2015年 有研究發現 PM2 5通過AMPK的信號通路 誘導產生自噬體及表達自噬相關蛋白 通過mTOR信號通路抑制細胞自噬 而與MAPK信號通路沒有明顯的相關性 104 進一步的研究更顯示 暴露於高劑量PM2 5可以促進人類肺上皮細胞BEAS 2B的自噬功能障礙 105 和運動之關聯 编辑自噬對於基礎的體內平衡至關重要 並且在運動過程中保持肌肉穩定狀態也非常重要 106 107 對小鼠的研究表明 自噬對於不斷變化的營養和能量需求至關重要 特別是通過蛋白質進行分解代謝的代謝途徑 2012年 由德克薩斯大學達拉斯西南醫學中心 英语 University of Texas Southwestern Medical Center 進行的一項研究中 測試了具有BCL2 英语 Bcl 2 磷酸化位點突變的小鼠驗證此理論 實驗結果顯示 這些小鼠在急性運動中 表現出耐力下降和葡萄糖代謝改變的情況 106 另一項則研究表明 膠原蛋白VI基因敲除小鼠的骨骼肌纖維因自噬作用不足而顯示變性的跡象 導致線粒體受損和細胞死亡 108 運動誘導的自噬未能成功 然而在運動後以人為的方式進行自噬作用時 可以防止受損的細胞器在缺乏膠原蛋白VI 英语 Collagen VI 的肌肉纖維中積累 並且保持細胞穩態 兩項研究均表明自噬可能有助於運動的有益代謝作用 並且在維持運動過程中的肌肉穩態 尤其是在膠原VI纖維中至關重要 106 107 108 波恩大學細胞生物學研究所的研究表明 收縮肌肉會誘發伴侶 輔助選擇性自噬 英语 Chaperone assisted selective autophagy CASA CASA是在機械張力下維持肌肉肌節必需的 109 CASA分子伴侶複合物識別機械損傷的細胞骨架成分 並且通過蛋白依賴性自噬途徑 將這些細胞骨架成分引導至溶酶體進行處理 這是維持肌肉活動必需的 109 110 炎症與自噬之間的相互作用 编辑自噬調節劑控制炎症調節劑 反之亦然 111 脊椎動物細胞通常會激活炎症 以增強免疫系統處理感染的能力 並且啟動恢復組織結構和功能的過程 112 故而至關重要的是將去除細胞和細菌碎片的機制與調節炎症的主要因素結合起來 溶酶體在自噬過程中對細胞成分的降解 可以回收重要的分子 並且產生及積聚物質來幫助細胞應對不斷變化的微環境 113 控制炎症和自噬的蛋白質形成了一個對組織功能至關重要的網絡 而該網絡在癌症中失調 在癌細胞中 異常表達及突變的蛋白質增加細胞存活 對保護惡性細胞的蛋白水解系統 重新連接 網絡的依賴性 114 這使癌細胞容易受到自噬調節劑的干預 臨床意義 编辑 nbsp 關鍵基因表達改變對ER和高爾基體功能 囊泡運輸 mTOR信號傳導和自噬的影響骨關節炎 编辑 由於自噬隨著年齡的增長而下降 是骨關節炎的主要危險因素 因此自噬在該疾病發展中的作用得到重視 在人類和小鼠的關節軟骨中 參與自噬的蛋白質都隨著年齡的增長而減少 115 經培養的軟骨外植體 其機械損傷也會減少自噬蛋白 116 自噬在正常的軟骨中會不斷被激活 但會隨著年齡的增長而受到損害 並且先於軟骨細胞死亡和出現結構受到破壞的現象 117 因此 自噬參與了關節的正常保護過程 炎症性腸病 编辑 炎症性腸病 inflammatory bowel disease 是由易感基因 環境和免疫系統之間一系列的相互作用所導致的慢性且易復發的消化系統疾病 包括潰瘍性結腸炎和克隆氏症等 功能失調的自噬被認為是炎症性腸病的發病因素 臨床上廣泛使用的炎症性腸病治療劑與自噬均密切相關 均能誘導細胞自噬的發生 包括類固醇 5 氨基水楊酸及硫銼嘌呤等 118 尼古丁目前已被用作潰瘍性結腸炎患者的治療劑 119 咀嚼尼古丁口香糖可以有效控制輕度及中度結腸炎的病症 120 經尼古丁處理後 細胞內雙層自噬泡及自噬小體的數量明顯增高 尼古丁誘導自噬的分子機制可能與內質網應激相關 或者可能與mTOR信號通路相關 121 122 目前已有不少研究證實尼古丁與內質網應激存在密切關係 因為他們發現尼古丁上調GRP78 BIP的表達水平 並且直接誘導內質網應激 上調內質網應激標誌物PERK EIF2A 英语 EIF2A 等的表達或磷酸化修飾 對低濃度尼古丁的研究有助於開發調節自噬治療潰瘍性結腸炎的新治療靶點 牙周炎 编辑 自噬能促進感染細胞對病原體和毒素的清除 抵抗細菌的入侵 然而 牙齦卟啉單胞菌 英语 Porphyromonas gingivalis 等牙周細菌則可逃避自噬分子的識別 干擾自噬體形成 阻止自噬體和溶酶體融合 甚至可以在自噬體中生存和增殖 利用其中的蛋白質等物質為自身生存提供能量 123 目前的研究雖提示自噬與牙周炎相關 但沒有充分的證據證實自噬在牙周炎中的作用是保護作用還是病理作用 因為有研究發現牙周炎患者相較於健康人群的外周血單核細胞中 自噬基因表達量更高 而自噬作用被抑制後 出現了細胞存活率降低及凋亡細胞比例增加的情況 表明自噬在牙周炎中的保護作用 124 然而 有研究得出相反的結果 表明自噬在牙周炎中的病理作用 125 敗血症及其併發症 编辑 敗血症是感染誘導的失調性宿主免疫反應 目前已知自噬在敗血症進展與器官功能障礙的發生中具有一定保護作用 故而是一個值得研究的治療靶點 大量促炎因子及聚集的白細胞通過炎症信號通路 誘導組織細胞內出現內質網應激及線粒體損傷等 繼而誘發保護性自噬反應 以包裹損傷的細胞器 限制損傷信號的擴散 126 敗血症時 肝細胞代謝狀態會出現改變 肝細胞通過自噬來分解胞內有機物 並且產生小分子 以維持代謝需要 而分解的產物 例如糖類 脂類及氨基酸等 又可有負反饋的作用 減弱自噬作用的程度 127 由於一氧化碳能夠增強肺部組織的自噬水平 所以有學者發表了了關於吸入低濃度一氧化碳 以治療敗血症引致的肺部損傷的報道 128 結核病 编辑 自噬参与到宿主细胞清除胞内致病菌的免疫应答中 結核分枝桿菌是一种胞内寄生菌 目前發現自噬有利於清除結核桿菌 129 在结核的免疫应答中 g 干扰素不仅可直接加速巨噬细胞通过MHC 呈递抗原的作用 还可调控巨噬细胞表达IRGM 继而促进巨噬细胞内产生大量的自噬体 启动巨噬细胞的自噬作用 基因型分析发现 IRGM的某些基因型与分支杆菌的易感性明显相关 提示了IRGM基因在抗结核自噬中起到关键性作用 除此之外 自噬也参与获得性免疫 例如加工抗原并通过MHC 的呈递 与此同时 一些結核桿菌的亚群也会进化出一些机制阻碍宿主细胞对其的自噬作用 达到免疫逃避的效果 有些结核杆菌可通过募集并聚合肌动蛋白以逃避泛肽化 而另一些结核杆菌则 丢卒保帅 的策略 主动脱去被泛肽化的细胞壁 这些策略都能使结核杆菌达到从吞噬体中逃离的效果 自噬可以增強一線抗結核藥物 例如異煙肼和吡嗪酰胺的作用 130 癌症 编辑 當調節細胞分化的幾種不同途徑被干擾時 通常會發生癌症 自噬在癌症中起著重要作用 既可以預防癌症 也可以促進癌症的發展 131 自噬可通過促進已飢餓或通過自噬降解凋亡介體的腫瘤細胞的存活 促進癌症的發展 自噬在癌症中的作用已得到高度研究和審查 目前已知自噬既是腫瘤抑制因子 又是腫瘤細胞存活的因素 然而根據幾種模型 自噬更可能被用作抑癌劑 在自噬的後期階段使用氯喹等抑製劑 會增加被抗腫瘤藥殺死的癌細胞數量 132 但是對於自噬作用和癌症的因果關係 以目前的研究結果顯示 尚未明瞭 有可能是自噬基因的突變造成癌症 也可能為癌症使得自噬基因的突變 或甚至互為因果關係 還有待後續研究 133 抑癌藥 目前已經對小鼠和Beclin1 英语 BECN1 一種調節自噬的蛋白質 進行了一些實驗 當Beclin1基因變為雜合子時 研究人員發現小鼠體內更容易出現腫瘤 134 然而 當Beclin1過度表達時 腫瘤的發展就會受到抑制 135 在解釋beclin突變體的表型 並且將觀察結果歸因於自噬存在缺陷時應該要格外小心 Beclin1通常是產生磷脂酰肌醇3 磷酸 英语 Phosphatidylinositol 3 phosphate 的必需物質 因此它會影響許多溶酶體和內體功能 包括內吞作用和已活化的內吞降解生長因子受體 有認為Beclin1存在着通過非依賴自噬的途徑 影響癌症發展的可能性 然而事實是Atg7或Atg5等的核心自噬因子 暫時未知會影響其他細胞進程 並且不影響細胞增殖和細胞死亡 敲除各個基因時 顯示出非常不同的表型 此外 Beclin1的完全基因敲落會對胚胎致死 而Atg7或Atg5的敲落對則胚胎無害 壞死和慢性炎症也已顯示出通過自噬而受到限制 有助於防止腫瘤細胞的形成 136 腫瘤細胞存活率 自噬在腫瘤細胞存活中發揮重要作用 在癌細胞中 自噬被用作一種應對細胞壓力的途徑 137 例如 miRNA 4673誘導自噬是一種有助癌細胞生存的機制 可以提高癌細胞對放射線的抵抗力 138 一旦這些自噬相關基因被抑制 細胞死亡的情況就會加劇 139 自噬抵消了代謝能的增加 這些代謝壓力包括缺氧 營養缺乏及細胞增殖增加 這些壓力激活自噬 以回收ATP並維持癌細胞的存活 140 自噬已被證明可以通過維持細胞能量的產生 而使腫瘤細胞持續地生長 通過抑制這些腫瘤細胞中的自噬基因 發現腫瘤消退 並且延長了受腫瘤影響的器官的存活率 此外 也顯示出抑制自噬可以增強抗癌治療的效果 140 細胞死亡機制 承受極大壓力的細胞會通過細胞凋亡或壞死經歷細胞死亡 長時間的自噬激活會導致蛋白質和細胞器的高轉換率 高於生存閾值的比率 可能會殺死具有高凋亡閾值的癌細胞 140 141 該技術可以用作癌症的治療方法 治療目標 有研究發現 靶向自噬可能是抗擊癌症的可行治療方法 自噬在腫瘤抑制和腫瘤細胞存活中均起作用 因此 自噬可以用作預防癌症的策略 第一種策略是誘導自噬並增強其腫瘤抑制特性 第二種策略是抑制自噬 從而誘導細胞凋亡 139 通過研究自噬誘導療法期間的劑量反應抗腫瘤作用 測試了第一種策略 這些療法表明自噬以劑量依賴性方式增加 這也直接與癌細胞的生長呈劑量依賴性 137 141 該數據支持將鼓勵自噬的療法的發展 其次 抑制直接誘導自噬的蛋白質途徑也可以用作抗癌治療 139 141 第二種策略發現自噬是用於維持體內穩態的蛋白質降解系統 並且發現抑制自噬通常會導致細胞凋亡 抑制自噬的風險較高 因為可能導致細胞存活 而不是預計中的細胞死亡 137 自噬的負調節物 mTOR 英语 mTOR CFLAR 英语 CFLAR 和表皮生長因子受體等自噬的負調節物 被安排在自噬級聯反應的不同階段發揮作用 自噬消化的最終產物也可以充當負反饋調節機制 以阻止長時間的活動 142 帕金森氏病 编辑 nbsp 自噬調節對帕金森氏病的影響帕金森氏病是一種神經退化性疾病 可以肇因於黑質緻密部 英语 Pars compacta 的多巴胺性神經元退化 帕金森氏病的特徵是在受影響的神經元中 包含着細胞無法分解的a 突觸核蛋白 英语 Alpha synuclein 其以路易氏體 英语 Lewy body 的形式堆積 故而帕金森氏病被視為一種突觸核蛋白病變 自噬途徑的失調和調節自噬的等位基因的突變被認為會引起神經退化性疾 病 自噬對神經元的生存至關重要 如果沒有有效的自噬作用 神經元會聚集遍在蛋白化的蛋白質聚集體並降解 蛋白質是已被泛素標記以降解的蛋白質 突觸核蛋白等位基因的突變導致溶酶體pH值升高和水解酶抑制 由實驗結果可知 溶酶體降解能力降低 該疾病涉及多種基因突變 包括功能喪失PTEN誘導激酶 1 英语 PINK1 143 和Parkin 144 這些基因的功能喪失可能導致線粒體積累和蛋白質聚集體受損 而不是導致細胞變性 線粒體參與帕金森氏病 在特發性帕金森氏病中 該病通常是由線粒體功能異常 細胞氧化應激 自噬作用的改變和蛋白質聚集引起的 並會導致線粒體腫脹和去極化 145 阿茲海默症 编辑 阿茲海默症是一種普遍流行於老年群體 並且以記憶 行為及學習功能障礙為主要特徵的神經退行性疾病 146 自噬作用的異常是導致阿茲海默症的兩大神經病理改變 即瀰漫於整個大腦皮層的b 澱粉樣蛋白 Ab 老年斑的形成 以及神經元細胞核周圍堆積的無膜束狀異常纖維包涵體 主要由過度磷酸化Tau蛋白組成 的重要原因 147 此時的Tau蛋白失去促進微管組裝的生物學活性 並且表現出抗蛋白水解酶的神經毒性 148 149 細胞囊泡在正常情況下 通過溶酶體途徑的代謝速率很高 故而產生的Ab量很少 不會造成Ab的堆積 然而自噬體轉運異常或溶酶體對自噬體內容物降解效率下降 會導致自噬體堆積 大量Ab及老年斑的形成 Tau蛋白的兩大代謝途徑是自噬 溶酶體和泛素 蛋白體酶體系統 150 並且是在自噬受體NDP52的協助下進行清除 自噬作用參與過度表達Tau蛋白和異常磷酸化Tau蛋白的降解 可以降低磷酸化Tau蛋白寡聚體的水平 不過對內源性Tau蛋白則没有明顯影響 並且發現抑制自噬作用能夠增加Tau蛋白的細胞毒性 151 152 自噬在阿茲海默症中的作用具有兩面性 在阿茲海默症早期 由蛋白質損傷和聚集等因素誘發的自噬可以發揮保護作用 如果長時間維持這種狀態 或者溶酶體功能出現異常 就會形成神經元萎縮及細胞死亡等病理改變 所以自噬的平衡十分重要 153 青光眼 编辑 青光眼是一種以視網膜神經節細胞 英语 Retinal ganglion cell RGCs 和視神經軸突的逐漸喪失為特徵的神經退行性疾病 並且伴有視野敏感性的喪失 154 目前已知自噬在青光眼的發生中起着重要的作用 並且因為大量的動物實驗研究指出自噬的激活導致RGCs的凋亡 故而抑制自噬可能是預防青光眼RGCs變性的一個臨床靶點 所以有學者寄望自噬靶向治療能夠成為青光眼視神經退行性疾病的一種治療方法 155 病毒方面 编辑 自噬作為真核細胞早期的保護防禦機制 可以清除水疱性口炎病毒 英语 Indiana vesiculovirus VSV 等病原體 例如VSV的複製過程可被自噬有效抑制 然而 克沙奇病毒B3 CVB3 丙型肝炎病毒 HCV 乙型腦炎病毒 JEV 等病毒具有快速進化以應對宿主細胞免疫作用的能力 156 甚至會利用自噬來增強病毒的增殖 157 158 159 160 在自噬被激活後 乙肝病毒 161 及丙肝病毒 162 會對自噬體的降解產生抑製作用 HPIV 3病毒會抑制自噬体及溶酶體的融合 阻止自噬體的降解 從而提高病毒的增殖 163 T細胞白血病 英语 T cell leukemia 通過Tax蛋白 英语 Tax gene product 阻斷自噬小體與溶酶體的融合 增加自噬小體的積累 並且促進病毒的複製 164 165 有關脊髓灰質炎病毒的研究指出 當自噬體與質膜融合時 自噬體內的病毒離子被釋放 166 性傳播疾病方面 编辑 目前有研究指出自噬在性傳播疾病病原體的在進入宿主細胞後可以激活自噬 但是又可以逃避或抑制自噬 故而針對有關作用機制的研究或能幫助性傳播疾病的治療和預後 以及新型藥物與疫苗的研發 許多自噬相關基因都是人類免疫缺陷病毒 1感染依賴因子 167 故而HIV 1的早期複製依賴於自噬 HIV 1許多的病毒蛋白可以透過抑制自噬過程的方式 而在宿主體內持續性複製存活 例如Env 編碼的外膜蛋白gp120 英语 Envelope glycoprotein GP120 168 反式激活因子Tat 英语 Tat HIV 169 及負性因子調控蛋白Nef 170 等 淋球菌可以抑制自噬流 增強淋球菌在巨噬細胞中的存活能力 171 也可以阻礙自噬小體成熟及自噬小體與溶酶體的融合過程 以逃避自噬介導的殺傷作用 172 173 砂眼衣原體抑制細胞內溶酶體酶的活性 阻礙晚期自噬小體與自噬小體與溶酶體的融合過程 導致自噬的完整性受到抑制 降低自噬的抗感染作用 174 除此之外 高危型HPV調節細胞內小分子核糖核酸的水平 影響自噬過程 例如miR 224 3p的高表達減少FIP200 參與自噬小體形成的蛋白 的水平 因抑制宿主細胞自噬而促進子宮頸癌的進展 175 不育症 编辑 自噬在精子發生過程中起着重要作用 精原幹細胞中的缺失或受損可引起不可逆性的弱精子症及無精子症等 導致不育症 176 當遇精原幹細胞到不利環境時 會為了適應代謝條件的變化而進行細胞自噬調節 例如 有研究指出三鄰甲苯基磷酸酯等生殖毒性物質均可使大鼠精原幹細胞的自噬標誌蛋白及LC3 II LC3 I 比明顯增加 細胞內含有大量退化細胞器的自噬泡顯著增加 177 178 而且 精原幹細胞中的自噬作用可以清除錯誤折疊蛋白質 以及受損細胞器 故而對細胞起著保護作用 此外 自噬作用可以促進減數分裂前DNA複製 既為細胞提供氨基酸及核苷酸等 179 180 也保證基因遺傳的穩定性 181 PDLIM1蛋白是一種精子細胞骨架組裝的負調控因子 並且是通過自噬途徑而降解 以維持微管結構的組裝 182 這對精子形成有著重要作用 然而 有研究指出高脂肪食物可誘導小鼠體內的自噬作用被過度激活 導致精子生成存在缺陷 183 抑鬱症 编辑 自噬可能參與抑鬱症的發生 184 有多個證據提示細胞自噬的異常可能參與抑鬱症的發生 185 例如有研究指出精神分裂症斷裂基因1 英语 DISC1 一種精神疾病的關鍵易感基因 能被自噬途徑降解 186 躁狂抑鬱症患者血清中蛋白激酶B AKT 和mTOR 信使核糖核酸水平下降 187 雙相抑鬱症患者腦內Bcl 2的水平下降 188 已知Bcl 2是通過與Beclin 1結合從而抑制自噬的發生 自噬對抑鬱症等神經系統疾病的調節作用是正向 抑或負向仍然存有爭議 189 有研究提示激活自噬能促進突觸的發展 190 另一些研究則證實抗抑鬱藥可以通過抑制自噬 發揮抗抑鬱的作用 作為藥物靶標 编辑 由於自噬失調與多種疾病的發病機理有關 因此科研人員投入了許多努力來鑑定和表徵可以調節自噬的合成人工合成小分子或天然小分子 191 例如 巨噬细胞的自噬作用可消灭结核杆菌 对结核病治愈有益 研究人员通过小鼠实验发现 从东革阿里中提取的巴沙克布明A可诱导巨噬细胞自噬从而控制结核杆菌的增殖 192 以神經退化性疾病來說 增強自噬作用是非常有展望 但需要擔憂的就是目前的藥物都是依賴於溶體活性 但在此類疾病中 溶體往往已經有功能上缺失了 因此可能對於藥物的作用就沒預期那麼好 所以需要警慎選擇目標疾病和階段才可以使藥物有最大的作用效果 目前自噬調節療法都非選擇性 非特定在自噬作用上 像是mTORC1抑制劑 會抑制其他多種代謝途徑 甚至某些藥物可能同時具有誘導自噬作用和抑制自噬作用 因此未來在藥物標靶研究上 應該專於在特定自噬作用過程上 避免有影響其他細胞生理機能的情況 檢測方法 编辑第一是LC3 turnover實驗 因為單檢測LC3 II的靜態水平並不能夠完全反映細胞內的自噬潮變化 故而需要聯合自噬後期抑制劑如溶酶體抑制劑Bafilomycin A1或CQ 來比較LC3 II在抑制劑加入前後的變化差異 第二是綠色螢光蛋白 GFP 的抗降解性 通過檢測轉染了GFP LC3的細胞所產生的GFP片段來評判細胞內自噬水平的變化 第三是以p62 英语 Nucleoporin 62 蛋白作為自噬活性指標 經常被科研人員用作自噬水平升高的輔助檢測手段 然而需聯合其他檢測手段進行證實 第四是mRFP GFP LC3雙螢光活細胞成像 實時動態監測自噬過程 並且能夠通過顏色變化確定自噬潮水平的高低 第五是使用電子顯微鏡 然而對實驗設備和實驗者的技能與辨別能力要求較高 193 有學者推薦進行雙盲實驗來定量細胞中自噬體或自噬溶酶體數量 第六是流式細胞術 可以檢測各個細胞時相的自噬水平 還可以直接計算出螢光強度和陽性細胞百分比 194 然而在細胞在染色之前 需要使用去垢劑預處理細胞質中的LC3 I 影響因素 编辑 第一個主要影響因素是培養基的新鮮程度及血清 防止較高溫度下長時間或不適當存儲而導致的左旋麩醯胺酸 L glutamine 降解 並產生氨 目前已知氨會因影響溶酶體的pH值而對自噬潮有明顯的抑製作用 並且通過抑制mTORC1促進自噬 195 此外 血清也對自噬活性也有顯著影響 第二個主要影響因素是培養基的換液時間 因為培養基換液的目的 就是要減弱培養基及細胞代謝產物 對藥物靶點相關信號通路本底產生的影響 參閱 编辑自噬數據庫 英语 Autophagy database 參考文獻 编辑 Guan JL Simon AK Prescott M Menendez JA Liu F Wang F Wang C Wolvetang E Vazquez Martin A Zhang J Autophagy in stem cells Autophagy 2013 06 01 9 6 830 49 2020 01 28 PMID 23486312 doi 10 4161 auto 24132 原始内容存档于2020 01 28 Torisu T Torisu K Lee IH Liu J Malide D Combs CA Wu XS Rovira II Fergusson MM Weigert R Connelly PS Daniels MP Komatsu M Cao L Finkel T Autophagy regulates endothelial cell processing maturation and secretion of von Willebrand factor Nature medicine 2013 10 19 10 1281 7 2020 01 28 PMID 24056772 doi 10 1038 nm 3288 原始内容存档于2020 01 28 Pantovic A Krstic A Janjetovic K Kocic J Harhaji Trajkovic L Bugarski D Trajkovic V Coordinated time dependent modulation of AMPK Akt mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells Bone 2013 01 52 1 524 31 2020 01 28 PMID 23111315 doi 10 1016 j bone 2012 10 024 原始内容存档于2020 01 28 Nuschke A Rodrigues M Stolz DB Chu CT Griffith L Wells A Human mesenchymal stem cells multipotent stromal cells consume accumulated autophagosomes early in differentiation Stem cell research amp therapy 2014 12 17 5 6 140 2020 01 28 PMID 25523618 doi 10 1186 scrt530 原始内容存档于2020 01 28 Vazquez P Arroba AI Cecconi F de la Rosa EJ Boya P de Pablo F Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells Autophagy 2012 02 01 8 2 187 99 2020 01 28 PMID 22240590 doi 10 4161 auto 8 2 18535 原始内容存档于2020 01 28 Lu Y Dong S Hao B Li C Zhu K Guo W Wang Q Cheung KH Wong CW Wu WT Markus H Yue J Vacuolin 1 potently and reversibly inhibits autophagosome lysosome fusion by activating RAB5A Autophagy 2014 10 11 1895 905 2020 01 28 PMID 25483964 doi 10 4161 auto 32200 原始内容存档于2020 01 28 7 0 7 1 Klionsky DJ Autophagy revisited A conversation with Christian de Duve Autophagy 2008 4 6 740 3 PMID 18567941 doi 10 4161 auto 6398 8 0 8 1 Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway Journal of Cell Biology October 1992 119 2 287 99 PMID 1400574 9 0 9 1 Autophagy in yeast demonstrated with proteinase deficient mutants and conditions for its induction Journal of Cell Biology October 1992 119 2 301 11 PMID 1400575 10 0 10 1 Isolation of autophagocytosis mutants of Saccharomyces cerevisiae FEBS Letters August 1994 349 2 275 80 PMID 8050581 11 0 11 1 Isolation and characterization of autophagy defective mutants of Saccharomyces cerevisiae FEBS Letters October 1993 333 1 2 169 74 PMID 8224160 12 0 12 1 Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway Journal of Cell Biology November 1995 131 3 591 602 PMID 7593182 The Nobel Prize in Physiology or Medicine 2016 Nobel Foundation 3 October 2016 原始内容存档于2016 10 03 Ashford TP Porter KR Cytoplasmic components in hepatic cell lysosomes The Journal of Cell Biology January 1962 12 1 198 202 PMC 2106008 nbsp PMID 13862833 doi 10 1083 jcb 12 1 198 Hruban Z Spargo B Swift H Wissler RW Kleinfeld RG Focal cytoplasmic degradation The American Journal of Pathology June 1963 42 6 657 83 PMC 1949709 nbsp PMID 13955261 Deter RL Baudhuin P De Duve C Participation of lysosomes in cellular autophagy induced in rat liver by glucagon The Journal of Cell Biology November 1967 35 2 C11 6 PMC 2107130 nbsp PMID 6055998 doi 10 1083 jcb 35 2 c11 Deter RL De Duve C Influence of glucagon an inducer of cellular autophagy on some physical properties of rat liver lysosomes The Journal of Cell Biology May 1967 33 2 437 49 PMC 2108350 nbsp PMID 4292315 doi 10 1083 jcb 33 2 437 de Duve C Lysosomes revisited European Journal of Biochemistry December 1983 137 3 391 7 PMID 6319122 doi 10 1111 j 1432 1033 1983 tb07841 x Dunn WA Schroder LA Aris JP Historical overview of autophagy Wang HG 编 Autophagy and Cancer Springer 2013 3 4 2020 01 20 ISBN 9781461465614 原始内容存档于2021 01 26 Van Noorden R Ledford H Medicine Nobel for research on how cells eat themselves Nature October 2016 538 7623 18 19 Bibcode 2016Natur 538 18V PMID 27708326 doi 10 1038 nature 2016 20721 Harding TM Hefner Gravink A Thumm M Klionsky DJ Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway The Journal of Biological Chemistry July 1996 271 30 17621 4 PMID 8663607 doi 10 1074 jbc 271 30 17621 Scott SV Hefner Gravink A Morano KA Noda T Ohsumi Y Klionsky DJ Cytoplasm to vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole Proceedings of the National Academy of Sciences of the United States of America October 1996 93 22 12304 8 Bibcode 1996PNAS 9312304S PMC 37986 nbsp PMID 8901576 doi 10 1073 pnas 93 22 12304 Klionsky DJ Cregg JM Dunn WA Emr SD Sakai Y Sandoval IV Sibirny A Subramani S Thumm M Veenhuis M Ohsumi Y A unified nomenclature for yeast autophagy related genes Developmental Cell October 2003 5 4 539 45 PMID 14536056 doi 10 1016 s1534 5807 03 00296 x Liang XH Jackson S Seaman M Brown K Kempkes B Hibshoosh H Levine B Induction of autophagy and inhibition of tumorigenesis by beclin 1 Nature December 1999 402 6762 672 6 Bibcode 1999Natur 402 672L PMID 10604474 doi 10 1038 45257 Autophagy in Stress Development amp Disease 2003 Gordon Research Conference 2020 01 20 原始内容存档于2016 10 05 Autophagy in Health and Disease Z3 2007 Keystone Symposia on Molecular and Cellular Biology 2020 01 20 原始内容存档于2018 11 16 Mercer CA Kaliappan A Dennis PB Macroautophagy dependent intralysosomal cleavage of a betaine homocysteine methyltransferase fusion protein requires stable multimerization Autophagy 2008 02 4 2 185 94 2020 01 26 PMID 18059170 doi 10 4161 auto 5275 原始内容存档于2020 01 26 Lee J Giordano S Zhang J Autophagy mitochondria and oxidative stress cross talk and redox signalling The Biochemical Journal January 2012 441 2 523 40 PMC 3258656 nbsp PMID 22187934 doi 10 1042 BJ20111451 Mizushima N Ohsumi Y Yoshimori T Autophagosome formation in mammalian cells Cell Structure and Function December 2002 27 6 421 9 PMID 12576635 doi 10 1247 csf 27 421 Youle RJ Narendra DP Mechanisms of mitophagy Nature Reviews Molecular Cell Biology January 2011 12 1 9 14 PMC 4780047 nbsp PMID 21179058 doi 10 1038 nrm3028 Ding WX Yin XM Mitophagy mechanisms pathophysiological roles and analysis Biological Chemistry July 2012 393 7 547 64 PMC 3630798 nbsp PMID 22944659 doi 10 1515 hsz 2012 0119 Till A Lakhani R Burnett SF Subramani S Pexophagy the selective degradation of peroxisomes International Journal of Cell Biology 2012 2012 512721 PMC 3320016 nbsp PMID 22536249 doi 10 1155 2012 512721 Lei L Chlorophagy Preventing sunburn Nature Plants March 2017 3 3 17026 PMID 28248315 doi 10 1038 nplants 2017 26 An H Harper JW Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy Nature Cell Biology February 2018 20 2 135 143 PMC 5786475 nbsp PMID 29230017 doi 10 1038 s41556 017 0007 x 35 0 35 1 Levine B Mizushima N Virgin HW Autophagy in immunity and inflammation Nature January 2011 469 7330 323 35 Bibcode 2011Natur 469 323L PMC 3131688 nbsp PMID 21248839 doi 10 1038 nature09782 36 0 36 1 36 2 Cesen MH Pegan K Spes A Turk B Lysosomal pathways to cell death and their therapeutic applications Experimental cell research 2012 07 01 318 11 1245 51 2020 03 27 PMID 22465226 doi 10 1016 j yexcr 2012 03 005 原始内容存档于2020 03 27 Homma K S List of autophagy related proteins and 3D structures Autophagy Database 2011 290 2012 10 08 原始内容存档于2012 08 01 Castro Obregon Susana The Discovery of Lysosomes and Autophagy Nature Education 2010 3 9 49 2020 01 20 原始内容存档于2020 11 06 Bandyopadhyay U Kaushik S Varticovski L Cuervo AM The chaperone mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane Molecular and Cellular Biology September 2008 28 18 5747 63 PMC 2546938 nbsp PMID 18644871 doi 10 1128 MCB 02070 07 Gegg ME Cooper JM Chau KY Rojo M Schapira AH Taanman JW Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1 parkin dependent manner upon induction of mitophagy Human molecular genetics 2010 12 15 19 24 4861 70 2020 01 26 PMID 20871098 doi 10 1093 hmg ddq419 原始内容存档于2020 01 26 Geisler S Holmstrom KM Skujat D Fiesel FC Rothfuss OC Kahle PJ Springer W PINK1 Parkin mediated mitophagy is dependent on VDAC1 and p62 SQSTM1 Nature cell biology 2010 02 12 2 119 31 2020 01 26 PMID 20098416 doi 10 1038 ncb2012 原始内容存档于2020 01 26 Liu K Czaja MJ Regulation of lipid stores and metabolism by lipophagy Cell Death and Differentiation January 2013 20 1 3 11 PMC 3524634 nbsp PMID 22595754 doi 10 1038 cdd 2012 63 Ward C Martinez Lopez N Otten EG Carroll B Maetzel D Singh R Sarkar S Korolchuk VI Autophagy lipophagy and lysosomal lipid storage disorders Biochimica et Biophysica Acta April 2016 1861 4 269 84 PMID 26778751 doi 10 1016 j bbalip 2016 01 006 Elander PH Minina EA Bozhkov PV Autophagy in turnover of lipid stores trans kingdom comparison Journal of Experimental Botany March 2018 69 6 1301 1311 PMID 29309625 doi 10 1093 jxb erx433 van Zutphen T Todde V de Boer R Kreim M Hofbauer HF Wolinski H Veenhuis M van der Klei IJ Kohlwein SD Lipid droplet autophagy in the yeast Saccharomyces cerevisiae Molecular Biology of the Cell January 2014 25 2 290 301 PMC 3890349 nbsp PMID 24258026 doi 10 1091 mbc E13 08 0448 Singh R Kaushik S Wang Y Xiang Y Novak I Komatsu M Tanaka K Cuervo AM Czaja MJ Autophagy regulates lipid metabolism Nature April 2009 458 7242 1131 5 Bibcode 2009Natur 458 1131S PMC 2676208 nbsp PMID 19339967 doi 10 1038 nature07976 47 0 47 1 Hosokawa N Hara T Kaizuka T Kishi C Takamura A Miura Y Iemura S Natsume T Takehana K Yamada N Guan JL Oshiro N Mizushima N Nutrient dependent mTORC1 association with the ULK1 Atg13 FIP200 complex required for autophagy Molecular biology of the cell 2009 04 20 7 1981 91 2020 01 26 PMID 19211835 doi 10 1091 mbc e08 12 1248 原始内容存档于2020 01 26 48 0 48 1 Itakura E Kishi C Inoue K Mizushima N Beclin 1 forms two distinct phosphatidylinositol 3 kinase complexes with mammalian Atg14 and UVRAG Molecular biology of the cell 2008 12 19 12 5360 72 2020 01 26 PMID 18843052 doi 10 1091 mbc e08 01 0080 原始内容存档于2020 01 26 Liang C Lee JS Inn KS Gack MU Li Q Roberts EA Vergne I Deretic V Feng P Akazawa C Jung JU Beclin1 binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking Nature cell biology 2008 07 10 7 776 87 2020 01 26 PMID 18552835 doi 10 1038 ncb1740 原始内容存档于2020 01 26 Matsunaga K Saitoh T Tabata K Omori H Satoh T Kurotori N Maejima I Shirahama Noda K Ichimura T Isobe T Akira S Noda T Yoshimori T Two Beclin 1 binding proteins Atg14L and Rubicon reciprocally regulate autophagy at different stages Nature cell biology 2009 04 11 4 385 96 2020 01 26 PMID 19270696 doi 10 1038 ncb1846 原始内容存档于2020 01 26 He C Klionsky DJ Regulation mechanisms and signaling pathways of autophagy Annual review of genetics 2009 43 67 93 2020 01 26 PMID 19653858 doi 10 1146 annurev genet 102808 114910 原始内容存档于2020 01 26 Luo P Gao F Han J Sun W Li Z The role of autophagy in steroid necrosis of the femoral head a comprehensive research review International orthopaedics 2018 07 42 7 1747 1753 2020 01 26 PMID 29797168 doi 10 1007 s00264 018 3994 8 原始内容存档于2020 01 26 Rubinsztein DC Shpilka T Elazar Z Mechanisms of autophagosome biogenesis Current biology CB 2012 01 10 22 1 R29 34 2020 01 26 PMID 22240478 doi 10 1016 j cub 2011 11 034 原始内容存档于2020 01 26 Matsuura A Tsukada M Wada Y Ohsumi Y Apg1p a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae Gene 1997 06 19 192 2 245 50 2020 01 26 PMID 9224897 doi 10 1016 s0378 1119 97 00084 x 原始内容存档于2020 01 26 Chan EY Regulation and function of uncoordinated 51 like kinase proteins Antioxidants amp Redox Signaling September 2012 17 5 775 85 PMID 22074133 doi 10 1089 ars 2011 4396 Choi Y Bowman JW Jung JU Autophagy during viral infection a double edged sword Nature reviews Microbiology 2018 06 16 6 341 354 2020 01 26 PMID 29556036 doi 10 1038 s41579 018 0003 6 原始内容存档于2020 01 26 Ohsumi Y Historical landmarks of autophagy research Cell research 2014 01 24 1 9 23 2020 01 26 PMID 24366340 doi 10 1038 cr 2013 169 原始内容存档于2020 01 26 Reggiori F Klionsky DJ Autophagy in the eukaryotic cell Eukaryotic Cell February 2002 1 1 11 21 PMC 118053 nbsp PMID 12455967 doi 10 1128 EC 01 1 11 21 2002 Klionsky DJ Emr SD Autophagy as a regulated pathway of cellular degradation Science December 2000 290 5497 1717 21 Bibcode 2000Sci 290 1717K PMC 2732363 nbsp PMID 11099404 doi 10 1126 science 290 5497 1717 Levine B Klionsky DJ Development by self digestion molecular mechanisms and biological functions of autophagy Developmental Cell April 2004 6 4 463 77 PMID 15068787 doi 10 1016 S1534 5807 04 00099 1 Kuma A Hatano M Matsui M Yamamoto A Nakaya H Yoshimori T Ohsumi Y Tokuhisa T Mizushima N et al The role of autophagy during the early neonatal starvation period Nature December 2004 432 7020 1032 6 Bibcode 2004Natur 432 1032K PMID 15525940 doi 10 1038 nature03029 62 0 62 1 Mizushima N Yamamoto A Matsui M Yoshimori T Ohsumi Y In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker Molecular Biology of the Cell March 2004 15 3 1101 11 PMC 363084 nbsp PMID 14699058 doi 10 1091 mbc E03 09 0704 63 0 63 1 Tsukada M Ohsumi Y Isolation and characterization of autophagy defective mutants of Saccharomyces cerevisiae FEBS Letters October 1993 333 1 2 169 74 PMID 8224160 doi 10 1016 0014 5793 93 80398 E Gutierrez MG Master SS Singh SB Taylor GA Colombo MI Deretic V Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages Cell December 2004 119 6 753 66 PMID 15607973 doi 10 1016 j cell 2004 11 038 Deretic V Delgado M Vergne I Master S De Haro S Ponpuak M Singh S Autophagy in immunity against mycobacterium tuberculosis a model system to dissect immunological roles of autophagy Autophagy in Infection and Immunity Current Topics in Microbiology and Immunology 335 2009 169 88 ISBN 978 3 642 00301 1 PMC 2788935 nbsp PMID 19802565 doi 10 1007 978 3 642 00302 8 8 Jackson WT Giddings TH Taylor MP Mulinyawe S Rabinovitch M Kopito RR Kirkegaard K Subversion of cellular autophagosomal machinery by RNA viruses PLoS Biology May 2005 3 5 e156 PMC 1084330 nbsp PMID 15884975 doi 10 1371 journal pbio 0030156 nbsp Thurston TL Wandel MP von Muhlinen N Foeglein A Randow F Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion Nature January 2012 482 7385 414 8 Bibcode 2012Natur 482 414T PMC 3343631 nbsp PMID 22246324 doi 10 1038 nature10744 Cuervo AM Bergamini E Brunk UT Droge W Ffrench M Terman A Autophagy and aging the importance of maintaining clean cells Autophagy 2005 1 3 131 40 PMID 16874025 doi 10 4161 auto 1 3 2017 Chauhan S Kumar S Jain A Ponpuak M Mudd MH Kimura T Choi SW Peters R Mandell M Bruun JA Johansen T Deretic V TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin 3 Co direct Autophagy in Endomembrane Damage Homeostasis Developmental Cell October 2016 39 1 13 27 PMC 5104201 nbsp PMID 27693506 doi 10 1016 j devcel 2016 08 003 Jia J Abudu YP Claude Taupin A Gu Y Kumar S Choi SW Peters R Mudd MH Allers L Salemi M Phinney B Johansen T Deretic V Galectins Control mTOR in Response to Endomembrane Damage Molecular Cell April 2018 70 1 120 135 e8 PMC 5911935 nbsp PMID 29625033 doi 10 1016 j molcel 2018 03 009 英语 Tavassoly I Dynamics of Cell Fate Decision Mediated by the Interplay of Autophagy and Apoptosis in Cancer Cells Springer Theses Springer International Publishing 2015 ISBN 978 3 319 14962 2 doi 10 1007 978 3 319 14962 2 Tsujimoto Y Shimizu S Another way to die autophagic programmed cell death Cell Death and Differentiation November 2005 12 Suppl 2 Suppl 2 1528 34 PMID 16247500 doi 10 1038 sj cdd 4401777 Schwartz LM Smith SW Jones ME Osborne BA Do all programmed cell deaths occur via apoptosis Proceedings of the National Academy of Sciences of the United States of America February 1993 90 3 980 4 Bibcode 1993PNAS 90 980S PMC 45794 nbsp PMID 8430112 doi 10 1073 pnas 90 3 980 Datan E Shirazian A Benjamin S Matassov D Tinari A Malorni W Lockshin RA Garcia Sastre A Zakeri Z mTOR p70S6K signaling distinguishes routine maintenance level autophagy from autophagic cell death during influenza A infection Virology March 2014 452 453 March 2014 175 190 PMC 4005847 nbsp PMID 24606695 doi 10 1016 j virol 2014 01 008 Depre C Wang Q Yan L Hedhli N Peter P Chen L Hong C Hittinger L Ghaleh B Sadoshima J Vatner DE Vatner SF Madura K Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy Circulation 2006 10 24 114 17 1821 8 2020 01 25 PMID 17043166 doi 10 1161 CIRCULATIONAHA 106 637827 原始内容存档于2020 01 25 76 0 76 1 Zhu H Tannous P Johnstone JL Kong Y Shelton JM Richardson JA Le V Levine B Rothermel BA Hill JA Cardiac autophagy is a maladaptive response to hemodynamic stress The Journal of clinical investigation 2007 07 117 7 1782 93 2020 01 25 PMID 17607355 doi 10 1172 JCI27523 原始内容存档于2020 01 25 Fu L Wei CC Powell PC Bradley WE Collawn JF Dell Italia LJ Volume overload induces autophagic degradation of procollagen in cardiac fibroblasts Journal of molecular and cellular cardiology 2015 12 89 Pt B 241 250 2020 01 25 PMID 26596413 doi 10 1016 j yjmcc 2015 10 027 原始内容存档于2021 08 03 Lin L Liu X Xu J Weng L Ren J Ge J Zou Y High density lipoprotein inhibits mechanical stress induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor mediated PI3K Akt pathway Journal of cellular and molecular medicine 2015 08 19 8 1929 38 2020 01 25 PMID 25946687 doi 10 1111 jcmm 12567 原始内容存档于2020 01 25 Weng LQ Zhang WB Ye Y Yin PP Yuan J Wang XX Kang L Jiang SS You JY Wu J Gong H Ge JB Zou YZ Aliskiren ameliorates pressure overload induced heart hypertrophy and fibrosis in mice Acta pharmacologica Sinica 2014 08 35 8 1005 14 2020 01 25 PMID 24998254 doi 10 1038 aps 2014 45 原始内容存档于2020 01 25 Nakai A Yamaguchi O Takeda T Higuchi Y Hikoso S Taniike M Omiya S Mizote I Matsumura Y Asahi M Nishida K Hori M Mizushima N Otsu K The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress Nature medicine 2007 05 13 5 619 24 2020 01 25 PMID 17450150 doi 10 1038 nm1574 原始内容存档于2020 01 25 Hariharan N Ikeda Y Hong C Alcendor RR Usui S Gao S Maejima Y Sadoshima J Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart PloS one 2013 8 1 e51632 2020 01 25 PMID 23308102 doi 10 1371 journal pone 0051632 原始内容存档于2020 01 25 Cao DJ Jiang N Blagg A Johnstone JL Gondalia R Oh M Luo X Yang KC Shelton JM Rothermel BA Gillette TG Dorn GW Hill JA Mechanical unloading activates FoxO3 to trigger Bnip3 dependent cardiomyocyte atrophy Journal of the American Heart Association 2013 04 08 2 2 e000016 2020 01 25 PMID 23568341 doi 10 1161 JAHA 113 000016 原始内容存档于2020 01 25 Kassiotis C Ballal K Wellnitz K Vela D Gong M Salazar R Frazier OH Taegtmeyer H Markers of autophagy are downregulated in failing human heart after mechanical unloading Circulation 2009 09 15 120 11 Suppl S191 7 2020 01 25 PMID 19752367 doi 10 1161 CIRCULATIONAHA 108 842252 原始内容存档于2020 01 25 Carames B Taniguchi N Seino D Blanco FJ D Lima D Lotz M Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection Arthritis and rheumatism 2012 04 64 4 1182 92 2020 01 25 PMID 22034068 doi 10 1002 art 33444 原始内容存档于2020 01 25 Xu Hong guang Yu Yun fei Zheng Quan Zhang Wei Wang Chuang dong Zhao Xiao yin Tong Wen xue Wang Hong Liu Ping Zhang Xiao ling Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification Bone 2014 09 66 232 239 doi 10 1016 j bone 2014 06 018 使用 accessdate 需要含有 url 帮助 86 0 86 1 Bharath LP Mueller R Li Y Ruan T Kunz D Goodrich R Mills T Deeter L Sargsyan A Anandh Babu PV Graham TE Symons JD Impairment of autophagy in endothelial cells prevents shear stress induced increases in nitric oxide bioavailability Canadian journal of physiology and pharmacology 2014 07 92 7 605 12 2020 01 25 PMID 24941409 doi 10 1139 cjpp 2014 0017 原始内容存档于2020 01 25 Guo F Li X Peng J Tang Y Yang Q Liu L Wang Z Jiang Z Xiao M Ni C Chen R Wei D Wang GX Autophagy regulates vascular endothelial cell eNOS and ET 1 expression induced by laminar shear stress in an ex vivo perfused system Annals of biomedical engineering 2014 09 42 9 1978 88 2020 01 25 PMID 24838486 doi 10 1007 s10439 014 1033 5 原始内容存档于2020 01 25 Ding Z Liu S Deng X Fan Y Wang X Mehta JL Hemodynamic shear stress modulates endothelial cell autophagy Role of LOX 1 International journal of cardiology 2015 04 01 184 86 95 2020 01 25 PMID 25697875 doi 10 1016 j ijcard 2015 01 065 原始内容存档于2020 01 25 Chen Z Fu Q Shen B Huang X Wang K He P Li F Zhang F Shen H Enhanced p62 expression triggers concomitant autophagy and apoptosis in a rat chronic spinal cord compression model Molecular medicine reports 2014 06 9 6 2091 6 2020 01 25 PMID 24715058 doi 10 3892 mmr 2014 2124 原始内容存档于2020 01 25 Chen HC Fong TH Hsu PW Chiu WT Multifaceted effects of rapamycin on functional recovery after spinal cord injury in rats through autophagy promotion anti inflammation and neuroprotection The Journal of surgical research 2013 01 179 1 e203 10 2020 01 25 PMID 22482761 doi 10 1016 j jss 2012 02 023 原始内容存档于2020 01 25 Lien SC Chang SF Lee PL Wei SY Chang MD Chang JY Chiu JJ Mechanical regulation of cancer cell apoptosis and autophagy roles of bone morphogenetic protein receptor Smad1 5 and p38 MAPK Biochimica et biophysica acta 2013 12 1833 12 3124 3133 2020 01 25 PMID 24021264 doi 10 1016 j bbamcr 2013 08 023 原始内容存档于2020 01 25 Chen H Chen L Cheng B Jiang C Cyclic mechanical stretching induces autophagic cell death in tenofibroblasts through activation of prostaglandin E2 production Cellular physiology and biochemistry international journal of experimental cellular physiology biochemistry and pharmacology 2015 36 1 24 33 2020 01 25 PMID 25924624 doi 10 1159 000374050 原始内容存档于2020 01 25 Li D Lu Z Xu Z Ji J Zheng Z Lin S Yan T Spironolactone promotes autophagy via inhibiting PI3K AKT mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress Bioscience reports 2016 08 36 4 2020 01 25 PMID 27129295 doi 10 1042 BSR20160086 原始内容存档于2021 08 03 Porter KM Jeyabalan N Liton PB MTOR independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch Biochimica et biophysica acta 2014 06 1843 6 1054 62 2020 01 25 PMID 24583119 doi 10 1016 j bbamcr 2014 02 010 原始内容存档于2020 01 25 95 0 95 1 Sato T Ito Y Nagasawa T Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats Journal of nutritional science and vitaminology 2013 59 5 412 9 2020 01 30 PMID 24418875 doi 10 3177 jnsv 59 412 原始内容存档于2020 01 30 Wu Hao Wang Fengli Hu Shenglan Yin Cong Li Xiao Zhao Shuhong Wang Junjun Yan Xianghua MiR 20a and miR 106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts Cellular Signalling 2012 11 24 11 2179 2186 doi 10 1016 j cellsig 2012 07 001 使用 accessdate 需要含有 url 帮助 Rautou PE Mansouri A Lebrec D Durand F Valla D Moreau R Autophagy in liver diseases Journal of hepatology 2010 12 53 6 1123 34 2020 01 30 PMID 20810185 doi 10 1016 j jhep 2010 07 006 原始内容存档于2020 01 30 Kung HJ Changou CA Li CF Ann DK Chromatophagy autophagy goes nuclear and captures broken chromatin during arginine starvation Autophagy 2015 11 2 419 21 PMID 25650867 doi 10 1080 15548627 2015 1009789 使用 accessdate 需要含有 url 帮助 Xia XJ Gao YY Zhang J Wang L Zhao S Che YY Ao CJ Yang HJ Wang JQ Lei LC Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon g induced malignant transformation of primary bovine mammary epithelial cells Cell death discovery 2016 2 15065 2020 01 30 PMID 27551491 doi 10 1038 cddiscovery 2015 65 原始内容存档于2020 01 30 朱玉華 薛欣合 周天驕等 谷氨酰胺 精氨酸和亮氨酸缺乏誘導豬腸道上皮細胞自噬的研究 中國畜牧獸醫學會動物營養學分會第十一次全國動物營養學術研討會論文集 長沙 中國畜牧獸醫學會 2012 王敏 耿清偉 高亞麗 華優 宋秀祖 窄譜中波紫外線對體外培養人黑素细胞自噬水平的影响 中華皮膚科雜誌 2018 51 9 doi 10 3760 cma j issn 0412 4030 2018 09 007 使用 accessdate 需要含有 url 帮助 Deng X Zhang F Rui W Long F Wang L Feng Z Chen D Ding W PM2 5 induced oxidative stress triggers autophagy in human lung epithelial A549 cells Toxicology in vitro an international journal published in association with BIBRA 2013 09 27 6 1762 70 2020 02 02 PMID 23685237 doi 10 1016 j tiv 2013 05 004 原始内容存档于2020 02 02 Deng X Zhang F Wang L Rui W Long F Zhao Y Chen D Ding W Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells Apoptosis an international journal on programmed cell death 2014 07 19 7 1099 112 2020 02 02 PMID 24722831 doi 10 1007 s10495 014 0980 5 原始内容存档于2020 02 02 Wang Y Lin Z Huang H He H Yang L Chen T Yang T Ren N Jiang Y Xu W Kamp DW Liu T Liu G AMPK is required for PM2 5 induced autophagy in human lung epithelial A549 cells International journal of clinical and experimental medicine 2015 8 1 58 72 2020 02 02 PMID 25784975 原始内容存档于2022 06 20 Zhou W Yuan X Zhang L Su B Tian D Li Y Zhao J Wang Y Peng S Overexpression of HO 1 assisted PM2 5 induced apoptosis failure and autophagy related cell necrosis Ecotoxicology and environmental safety 2017 11 145 605 614 2020 02 02 PMID 28802142 doi 10 1016 j ecoenv 2017 07 047 原始内容存档于2020 02 02 106 0 106 1 106 2 He C Bassik MC Moresi V Sun K Wei Y Zou Z An Z Loh J Fisher J Sun Q Korsmeyer S Packer M May HI Hill JA Virgin HW Gilpin C Xiao G Bassel Duby R Scherer PE Levine B et al Exercise induced BCL2 regulated autophagy is required for muscle glucose homeostasis Nature January 2012 481 7382 511 5 Bibcode 2012Natur 481 511H PMC 3518436 nbsp PMID 22258505 doi 10 1038 nature10758 107 0 107 1 Nair U Klionsky DJ Activation of autophagy is required for muscle homeostasis during physical exercise Autophagy December 2011 7 12 1405 6 PMC 3288013 nbsp PMID 22082869 doi 10 4161 auto 7 12 18315 108 0 108 1 Grumati P Coletto L Schiavinato A Castagnaro S Bertaggia E Sandri M Bonaldo P Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI deficient muscles Autophagy December 2011 7 12 1415 23 PMC 3288016 nbsp PMID 22024752 doi 10 4161 auto 7 12 17877 109 0 109 1 Arndt V Dick N Tawo R Dreiseidler M Wenzel D Hesse M Furst DO Saftig P Saint R Fleischmann BK Hoch M Hohfeld J Chaperone assisted selective autophagy is essential for muscle maintenance Current Biology January 2010 20 2 143 8 PMID 20060297 doi 10 1016 j cub 2009 11 022 Ulbricht A Eppler FJ Tapia VE van der Ven PF Hampe N Hersch N Vakeel P Stadel D Haas A Saftig P Behrends C Furst DO Volkmer R Hoffmann B Kolanus W Hohfeld J Cellular mechanotransduction relies on tension induced and chaperone assisted autophagy Current Biology March 2013 23 5 430 5 PMID 23434281 doi 10 1016 j cub 2013 01 064 Cadwell K Crosstalk between autophagy and inflammatory signalling pathways balancing defence and homeostasis Nature 2016 16 11 661 675 PMC 5343289 nbsp PMID 27694913 doi 10 1038 nri 2016 100 Medzhitov R Origin and physiological roles of inflammation Nature 2008 454 7203 428 435 PMID 18650913 doi 10 1038 nature07201 Tan P Autophagy and Immune Related Diseases Adv Exp Med Biol Advances in Experimental Medicine and Biology 2019 1209 167 179 ISBN 978 981 15 0605 5 PMID 31728870 doi 10 1007 978 981 15 0606 2 10 Varisli L Dissecting pharmacological effects of Chloroquine in cancer treatment interference with inflammatory signaling pathways Immunology 2019 PMID 31782148 doi 10 1111 imm 13160 Carames B Taniguchi N Otsuki S Blanco FJ Lotz M Autophagy is a protective mechanism in normal cartilage and its aging related loss is linked with cell death and osteoarthritis Arthritis and Rheumatism March 2010 62 3 791 801 PMC 2838960 nbsp PMID 20187128 doi 10 1002 art 27305 Carames B Taniguchi N Seino D Blanco FJ D Lima D Lotz M Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection Arthritis and Rheumatism April 2012 64 4 1182 92 PMC 3288456 nbsp PMID 22034068 doi 10 1002 art 33444 Carames B Olmer M Kiosses WB Lotz MK The relationship of autophagy defects to cartilage damage during joint aging in a mouse model Arthritis amp Rheumatology June 2015 67 6 1568 76 PMC 4446178 nbsp PMID 25708836 doi 10 1002 art 39073 Iida T Onodera K Nakase H Role of autophagy in the pathogenesis of inflammatory bowel disease World journal of gastroenterology 2017 03 21 23 11 1944 1953 2020 01 23 PMID 28373760 doi 10 3748 wjg v23 i11 1944 原始内容存档于2021 08 03 Lunney PC Leong RW Review article Ulcerative colitis smoking and nicotine therapy Alimentary pharmacology amp therapeutics 2012 12 36 11 12 997 1008 2020 01 23 PMID 23072629 doi 10 1111 apt 12086 Berkowitz L Schultz BM Salazar GA Pardo Roa C Sebastian VP Alvarez Lobos MM Bueno SM Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation Opposing Effects in Crohn s Disease and Ulcerative Colitis Frontiers in immunology 2018 9 74 2020 01 23 PMID 29441064 doi 10 3389 fimmu 2018 00074 Wong MK Holloway AC Hardy DB Nicotine Directly Induces Endoplasmic Reticulum Stress Response in Rat Placental Trophoblast Giant Cells Toxicological sciences an official journal of the Society of Toxicology 2016 05 151 1 23 34 2020 01 23 PMID 26803847 doi 10 1093 toxsci kfw019 Guan Y Zhang L Li X Zhang X Liu S Gao N Li L Gao G Wei G Chen Z Zheng Y Ma X Siwko S Chen JL Liu M Li D Repression of Mammalian Target of Rapamycin Complex 1 Inhibits Intestinal Regeneration in Acute Inflammatory Bowel Disease Models Journal of immunology Baltimore Md 1950 2015 07 01 195 1 339 46 2020 01 23 PMID 26026060 doi 10 4049 jimmunol 1303356 Belanger M Rodrigues PH Dunn WA Jr Progulske Fox A Autophagy a highway for Porphyromonas gingivalis in endothelial cells Autophagy NaN 2 3 165 70 2020 01 23 PMID 16874051 doi 10 4161 auto 2828 请检查 date 中的日期值 帮助 Levine B Klionsky DJ Development by self digestion molecular mechanisms and biological functions of autophagy Developmental cell 2004 04 6 4 463 77 2020 01 23 PMID 15068787 doi 10 1016 s1534 5807 04 00099 1 Tsuda H Ochiai K Suzuki N Otsuka K Butyrate a bacterial metabolite induces apoptosis and autophagic cell death in gingival epithelial cells Journal of periodontal research 2010 10 45 5 626 34 2020 01 23 PMID 20546110 doi 10 1111 j 1600 0765 2010 01277 x Lewis AJ Billiar TR Rosengart MR Biology and Metabolism of Sepsis Innate Immunity Bioenergetics and Autophagy Surgical infections 2016 06 17 3 286 93 2020 01 25 PMID 27093228 doi 10 1089 sur 2015 262 原始内容存档于2020 01 25 Madrigal Matute J Cuervo AM Regulation of Liver Metabolism by Autophagy Gastroenterology 2016 02 150 2 328 39 2020 01 25 PMID 26453774 doi 10 1053 j gastro 2015 09 042 原始内容存档于2020 01 25 Hoetzel A Dolinay T Schmidt R Choi AM Ryter SW Carbon monoxide in sepsis Antioxidants amp redox signaling 2007 11 9 11 2013 26 2020 01 25 PMID 17822362 doi 10 1089 ars 2007 1762 原始内容存档于2020 01 25 Chen S Yuan J Yao S Jin Y Chen G Tian W Xi J Xu Z Weng D Chen J Lipopolysaccharides may aggravate apoptosis through accumulation of autophagosomes in alveolar macrophages of human silicosis Autophagy 2015 11 12 2346 57 2020 01 23 PMID 26553601 doi 10 1080 15548627 2015 1109765 Kim JJ Lee HM Shin DM Kim W Yuk JM Jin HS Lee SH Cha GH Kim JM Lee ZW Shin SJ Yoo H Park YK Park JB Chung J Yoshimori T Jo EK Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action Cell host amp microbe 2012 05 17 11 5 457 68 2020 01 23 PMID 22607799 doi 10 1016 j chom 2012 03 008 Furuya N Liang X H and Levin B 2004 Autophagy and cancer In Autophagy D J Klionsky editor Landes Bioscience Georgetown Texas USA 244 253 Vlahopoulos S Critselis E Voutsas IF Perez SA Moschovi M Baxevanis CN Chrousos GP New use for old drugs Prospective targets of chloroquines in cancer therapy Current Drug Targets 2014 383 16 1564 1576 PMID 25023646 doi 10 2174 1389450115666140714121514 Mizushima N Levine B Autophagy in Human Diseases The New England Journal of Medicine 2020 383 16 1564 1576 PMID 33053285 doi 10 1056 NEJMra2022774 Qu X Yu J Bhagat G Furuya N Hibshoosh H Troxel A Rosen J Eskelinen EL Mizushima N Ohsumi Y Cattoretti G Levine B et al Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene The Journal of Clinical Investigation December 2003 112 12 1809 20 PMC 297002 nbsp PMID 14638851 doi 10 1172 JCI20039 Liang XH Jackson S Seaman M Brown K Kempkes B Hibshoosh H Levine B et al Induction of autophagy and inhibition of tumorigenesis by beclin 1 Nature December 1999 402 6762 672 6 Bibcode 1999Natur 402 672L PMID 10604474 doi 10 1038 45257 Duran A Linares JF Galvez AS Wikenheiser K Flores JM Diaz Meco MT Moscat J et al The signaling adaptor p62 is an important NF kappaB mediator in tumorigenesis Cancer Cell April 2008 13 4 343 54 PMID 18394557 doi 10 1016 j ccr 2008 02 001 137 0 137 1 137 2 Paglin S Hollister T Delohery T Hackett N McMahill M Sphicas E Domingo D Yahalom J A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles Cancer Research January 2001 61 2 439 44 PMID 11212227 Dokumcu K Simonian M Farahani RM miR4673 improves fitness profile of neoplastic cells by induction of autophagy Cell Death amp Disease October 2018 9 11 1068 PMC 6195512 nbsp PMID 30341280 doi 10 1038 s41419 018 1088 6 139 0 139 1 139 2 Jin S White E Role of autophagy in cancer management of metabolic stress Autophagy 2007 3 1 28 31 PMC 2770734 nbsp PMID 16969128 doi 10 4161 auto 3269 140 0 140 1 140 2 Yang ZJ Chee CE Huang S Sinicrope FA The role of autophagy in cancer therapeutic implications Molecular Cancer Therapeutics September 2011 10 9 1533 41 PMC 3170456 nbsp PMID 21878654 doi 10 1158 1535 7163 MCT 11 0047 141 0 141 1 141 2 Tavassoly I Parmar J Shajahan Haq AN Clarke R Baumann WT Tyson JJ Dynamic Modeling of the Interaction Between Autophagy and Apoptosis in Mammalian Cells CPT April 2015 4 4 263 72 PMC 4429580 nbsp PMID 26225250 doi 10 1002 psp4 29 Razaghi A Heimann K Schaeffer PM Gibson SB Negative regulators of cell death pathways in cancer perspective on biomarkers and targeted therapies Apoptosis February 2018 23 2 93 112 PMID 29322476 doi 10 1007 s10495 018 1440 4 Valente EM Abou Sleiman PM Caputo V Muqit MM Harvey K Gispert S Ali Z Del Turco D Bentivoglio AR Healy DG Albanese A Nussbaum R Gonzalez Maldonado R Deller T Salvi S Cortelli P Gilks WP Latchman DS Harvey RJ Dallapiccola B Auburger G Wood NW Hereditary early onset Parkinson s disease caused by mutations in PINK1 Science May 2004 304 5674 1158 60 Bibcode 2004Sci 304 1158V PMID 15087508 doi 10 1126 science 1096284 Kitada T Asakawa S Hattori N Matsumine H Yamamura Y Minoshima S Yokochi M Mizuno Y Shimizu N Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism Nature April 1998 392 6676 605 8 Bibcode 1998Natur 392 605K PMID 9560156 doi 10 1038 33416 Esteves AR Arduino DM Silva DF Oliveira CR Cardoso SM Mitochondrial Dysfunction The Road to Alpha Synuclein Oligomerization in PD Parkinson s Disease January 2011 2011 693761 PMC 3026982 nbsp PMID 21318163 doi 10 4061 2011 693761 Alzheimer s Association 2015 Alzheimer s disease facts and figures Alzheimer s amp dementia the journal of the Alzheimer s Association 2015 03 11 3 332 84 2020 01 25 PMID 25984581 doi 10 1016 j jalz 2015 02 003 原始内容存档于2020 01 25 Dronse J Fliessbach K Bischof GN von Reutern B Faber J Hammes J Kuhnert G Neumaier B Onur OA Kukolja J van Eimeren T Jessen F Fink GR Klockgether T Drzezga A In vivo Patterns of Tau Pathology Amyloid b Burden and Neuronal Dysfunction in Clinical Variants of Alzheimer s Disease Journal of Alzheimer s disease JAD 2017 55 2 465 471 2020 01 25 PMID 27802224 doi 10 3233 JAD 160316 原始内容存档于2020 01 25 Ml Steinhilb D Dias Santagata Ta Fulga Dl Felch Mb Feany Tau Phosphorylation Sites Work in Concert to Promote Neurotoxicity in Vivo Molecular biology of the cell 2007 12 18 12 2020 01 25 PMID 17928404 原始内容存档于2020 01 25 英语 Mocanu MM Nissen A Eckermann K Khlistunova I Biernat J Drexler D Petrova O Schonig K Bujard H Mandelkow E Zhou L Rune G Mandelkow EM The potential for beta structure in the repeat domain of tau protein determines aggregation synaptic decay neuronal loss and coassembly with endogenous Tau in inducible mouse models of tauopathy The Journal of neuroscience the official journal of the Society for Neuroscience 2008 01 16 28 3 737 48 2020 01 25 PMID 18199773 doi 10 1523 JNEUROSCI 2824 07 2008 原始内容存档于2020 01 25 Lee MJ Lee JH Rubinsztein DC Tau degradation the ubiquitin proteasome system versus the autophagy lysosome system Progress in neurobiology 2013 06 105 49 59 2020 01 28 PMID 23528736 doi 10 1016 j pneurobio 2013 03 001 原始内容存档于2020 01 28 Chesser AS Ganeshan V Yang J Johnson GV Epigallocatechin 3 gallate enhances clearance of phosphorylated tau in primary neurons Nutritional neuroscience 2016 19 1 21 31 2020 01 28 PMID 26207957 doi 10 1179 1476830515Y 0000000038 原始内容存档于2020 01 28 Caccamo A Magri A Medina DX Wisely EV Lopez Aranda MF Silva AJ Oddo S mTOR regulates tau phosphorylation and degradation implications for Alzheimer s disease and other tauopathies Aging cell 2013 06 12 3 370 80 2020 01 28 PMID 23425014 doi 10 1111 acel 12057 原始内容存档于2020 01 28 Cherra SJ 3rd Chu CT Autophagy in neuroprotection and neurodegeneration A question of balance Future neurology 2008 05 3 3 309 323 2020 01 28 PMID 18806889 doi 10 2217 14796708 3 3 309 原始内容存档于2021 08 03 Wang Y Xu K Zhang H Zhao J Zhu X Wang Y Wu R Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production a brief literature review presenting a novel hypothesis in glaucoma pathology Molecular medicine reports 2014 09 10 3 1179 83 2020 01 25 PMID 24969312 doi 10 3892 mmr 2014 2346 原始内容存档于2020 01 25 Rodriguez Muela N Germain F Marino G Fitze PS Boya P Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice Cell death and differentiation 2012 01 19 1 162 9 2020 01 25 PMID 21701497 doi 10 1038 cdd 2011 88 原始内容存档于2020 01 25 Randow F Munz C Autophagy in the regulation of pathogen replication and adaptive immunity Trends in immunology 2012 10 33 10 475 87 2020 01 27 PMID 22796170 doi 10 1016 j it 2012 06 003 原始内容存档于2020 01 27 Pei J Zhao M Ye Z Gou H Wang J Yi L Dong X Liu W Luo Y Liao M Chen J Autophagy enhances the replication of classical swine fever virus in vitro Autophagy 2014 01 10 1 93 110 2020 01 27 PMID 24262968 doi 10 4161 auto 26843 原始内容存档于2020 01 27 Wang G Yu Y Tu Y Tong J Liu Y Zhang C Chang Y Wang S Jiang C Zhou EM Cai X Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection Induced Apoptosis and Autophagy in Thymi of Infected Piglets PloS one 2015 10 6 e0128292 2020 01 27 PMID 26046751 doi 10 1371 journal pone 0128292 原始内容存档于2020 01 27 Meng C Zhou Z Jiang K Yu S Jia L Wu Y Liu Y Meng S Ding C Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication Archives of virology 2012 06 157 6 1011 8 2020 01 27 PMID 22398914 doi 10 1007 s00705 012 1270 6 原始内容存档于2020 01 27 Datan E Roy SG Germain G Zali N McLean JE Golshan G Harbajan S Lockshin RA Zakeri Z Dengue induced autophagy virus replication and protection from cell death require ER stress PERK pathway activation Cell death amp disease 2016 03 03 7 e2127 2020 01 27 PMID 26938301 doi 10 1038 cddis 2015 409 原始内容存档于2020 01 27 Sir D Tian Y Chen WL Ann DK Yen TS Ou JH The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication Proceedings of the National Academy of Sciences of the United States of America 2010 03 02 107 9 4383 8 2020 01 27 PMID 20142477 doi 10 1073 pnas 0911373107 原始内容存档于2020 01 27 Ke PY Chen SS Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro The Journal of clinical investigation 2011 01 121 1 37 56 2020 01 27 PMID 21135505 doi 10 1172 JCI41474 原始内容存档于2020 01 27 Levine B Mizushima N Virgin HW Autophagy in immunity and inflammation Nature 2011 01 20 469 7330 323 35 2020 01 27 PMID 21248839 doi 10 1038 nature09782 原始内容存档于2020 01 27 Tang SW Chen CY Klase Z Zane L Jeang KT The cellular autophagy pathway modulates human T cell leukemia virus type 1 replication Journal of virology 2013 02 87 3 1699 707 2020 01 27 PMID 23175371 doi 10 1128 JVI 02147 12 Ren T Takahashi Y Liu X Loughran TP Sun SC Wang HG Cheng H HTLV 1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains Oncogene 2015 01 15 34 3 334 45 2020 01 27 PMID 24362528 doi 10 1038 onc 2013 552 原始内容存档于2020 01 27 Deretic V Levine B Autophagy balances inflammation in innate immunity Autophagy 2018 14 2 243 251 2020 01 27 PMID 29165043 doi 10 1080 15548627 2017 1402992 原始内容存档于2020 01 27 Brass AL Dykxhoorn DM Benita Y Yan N Engelman A Xavier RJ Lieberman J Elledge SJ Identification of host proteins required for HIV infection through a functional genomic screen Science New York N Y 2008 02 15 319 5865 921 6 2020 01 27 PMID 18187620 doi 10 1126 science 1152725 原始内容存档于2020 01 27 Espert L Denizot M Grimaldi M Robert Hebmann V Gay B Varbanov M Codogno P Biard Piechaczyk M Autophagy is involved in T cell death after binding of HIV 1 envelope proteins to CXCR4 The Journal of clinical investigation 2006 08 116 8 2161 72 2020 01 27 PMID 16886061 doi 10 1172 JCI26185 原始内容存档于2020 01 27 Sagnier S Daussy CF Borel S Robert Hebmann V Faure M Blanchet FP Beaumelle B Biard Piechaczyk M Espert L Autophagy restricts HIV 1 infection by selectively degrading Tat in CD4 T lymphocytes Journal of virology 2015 01 89 1 615 25 PMID 25339774 doi 10 1128 JVI 02174 14 使用 accessdate 需要含有 url 帮助 Campbell GR Rawat P Bruckman RS Spector SA Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration PLoS pathogens 2015 06 11 6 e1005018 2020 01 27 PMID 26115100 doi 10 1371 journal ppat 1005018 原始内容存档于2020 01 27 Zughaier SM Kandler JL Balthazar JT Shafer WM Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages PloS one 2015 10 12 e0144347 2020 01 27 PMID 26641098 doi 10 1371 journal pone 0144347 原始内容存档于2020 01 27 Kim WJ Mai A Weyand NJ Rendon MA Van Doorslaer K So M Neisseria gonorrhoeae evades autophagic killing by downregulating CD46 cyt1 and remodeling lysosomes PLoS pathogens 2019 02 15 2 e1007495 2020 01 27 PMID 30753248 doi 10 1371 journal ppat 1007495 原始内容存档于2020 01 27 Lu P Wang S Lu Y Neculai D Sun Q van der Veen S A Subpopulation of Intracellular Neisseria gonorrhoeae Escapes Autophagy Mediated Killing Inside Epithelial Cells The Journal of infectious diseases 2019 01 01 219 1 133 144 2020 01 27 PMID 29688440 doi 10 1093 infdis jiy237 原始内容存档于2020 01 27 Al Younes HM Brinkmann V Meyer TF Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway Infection and immunity 2004 08 72 8 4751 62 2020 01 27 PMID 15271937 doi 10 1128 IAI 72 8 4751 4762 2004 原始内容存档于2020 01 27 Fang W Shu S Yongmei L Endong Z Lirong Y Bei S miR 224 3p inhibits autophagy in cervical cancer cells by targeting FIP200 Scientific reports 2016 09 12 6 33229 PMID 27615604 doi 10 1038 srep33229 使用 accessdate 需要含有 url 帮助 Tegelenbosch RA de Rooij DG A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H 101 F1 hybrid mouse Mutation research 1993 12 290 2 193 200 2020 01 23 PMID 7694110 doi 10 1016 0027 5107 93 90159 d Liu ML Wang JL Wei J Xu LL Yu M Liu XM Ruan WL Chen JX Tri ortho cresyl phosphate induces autophagy of rat spermatogonial stem cells Reproduction Cambridge England 2015 02 149 2 163 70 2020 01 23 PMID 25385720 doi 10 1530 REP 14 0446 Xu LL Liu ML Wang JL Yu M Chen JX Saligenin cyclic o tolyl phosphate SCOTP induces autophagy of rat spermatogonial stem cells Reproductive toxicology Elmsford N Y 2016 04 60 62 8 2020 01 23 PMID 26815770 doi 10 1016 j reprotox 2016 01 004 McNally K Berg E Cortes DB Hernandez V Mains PE McNally FJ Katanin maintains meiotic metaphase chromosome alignment and spindle structure in vivo and has multiple effects on microtubules in vitro Molecular biology of the cell 2014 04 25 7 1037 49 2020 01 23 PMID 24501424 doi 10 1091 mbc E13 12 0764 原始内容存档于2021 08 03 Kabeya Y Mizushima N Ueno T Yamamoto A Kirisako T Noda T Kominami E Ohsumi Y Yoshimori T LC3 a mammalian homologue of yeast Apg8p is localized in autophagosome membranes after processing The EMBO journal 2000 11 01 19 21 5720 8 2020 01 23 PMID 11060023 doi 10 1093 emboj 19 21 5720 原始内容存档于2020 03 02 Gallardo Bolanos JM Miro Moran A Balao da Silva CM Morillo Rodriguez A Plaza Davila M Aparicio IM Tapia JA Ortega Ferrusola C Pena FJ Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration PloS one 2012 7 1 e30688 2020 01 23 PMID 22292020 doi 10 1371 journal pone 0030688 原始内容存档于2021 08 03 Zhuo C Ji Y Chen Z Kitazato K Xiang Y Zhong M Wang Q Pei Y Ju H Wang Y Proteomics analysis of autophagy deficient Atg7 MEFs reveals a close relationship between F actin and autophagy Biochemical and biophysical research communications 2013 08 02 437 3 482 8 2020 01 23 PMID 23850690 doi 10 1016 j bbrc 2013 06 111 Mu Y Yan WJ Yin TL Zhang Y Li J Yang J Diet induced obesity impairs spermatogenesis a potential role for autophagy Scientific reports 2017 03 09 7 43475 2020 01 23 PMID 28276438 doi 10 1038 srep43475 Abelaira HM Reus GZ Neotti MV Quevedo J The role of mTOR in depression and antidepressant responses Life sciences 2014 04 17 101 1 2 10 4 2020 01 24 PMID 24582593 doi 10 1016 j lfs 2014 02 014 Polajnar M Zerovnik E Impaired autophagy a link between neurodegenerative and neuropsychiatric diseases Journal of cellular and molecular medicine 2014 09 18 9 1705 11 2020 01 24 PMID 25139375 doi 10 1111 jcmm 12349 Atkin TA Brandon NJ Kittler JT Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport Human molecular genetics 2012 05 01 21 9 2017 28 2020 01 24 PMID 22291444 doi 10 1093 hmg dds018 Machado Vieira R Zanetti MV Teixeira AL Uno M Valiengo LL Soeiro de Souza MG Oba Shinjo SM de Sousa RT Zarate CA Jr Gattaz WF Marie SK Decreased AKT1 mTOR pathway mRNA expression in short term bipolar disorder European neuropsychopharmacology the journal of the European College of Neuropsychopharmacology 2015 04 25 4 468 73 2020 01 24 PMID 25726893 doi 10 1016 j euroneuro 2015 02 002 Kim HW Rapoport SI Rao JS Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients Neurobiology of disease 2010 03 37 3 596 603 2020 01 24 PMID 19945534 doi 10 1016 j nbd 2009 11 010 Son JH Shim JH Kim KH Ha JY Han JY Neuronal autophagy and neurodegenerative diseases Experimental amp molecular medicine 2012 02 29 44 2 89 98 2020 01 24 PMID 22257884 doi 10 3858 emm 2012 44 2 031 Shen W Ganetzky B Autophagy promotes synapse development in Drosophila The Journal of cell biology 2009 10 05 187 1 71 9 2020 01 24 PMID 19786572 doi 10 1083 jcb 200907109 Moosavi MA Haghi A Rahmati M Taniguchi H Mocan A Echeverria J Gupta VK Tzvetkov NT Atanasov AG Phytochemicals as potent modulators of autophagy for cancer therapy Cancer letters 2018 06 28 424 46 69 2020 01 21 PMID 29474859 doi 10 1016 j canlet 2018 02 030 Hyo Ji Lee Hyun Jeong et al Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages J PloS one 2019 Yla Anttila P Vihinen H Jokitalo E Eskelinen EL Monitoring autophagy by electron microscopy in Mammalian cells Methods in enzymology 2009 452 143 64 2020 01 24 PMID 19200881 doi 10 1016 S0076 6879 08 03610 0 Eng KE Panas MD Karlsson Hedestam GB McInerney GM A novel quantitative flow cytometry based assay for autophagy Autophagy 2010 07 6 5 634 41 2020 01 24 PMID 20458170 doi 10 4161 auto 6 5 12112 Li Z Ji X Wang W Liu J Liang X Wu H Liu J Eggert US Liu Q Zhang X Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR PloS one 2016 11 4 e0153526 2020 01 24 PMID 27077655 doi 10 1371 journal pone 0153526 原始内容存档于2021 08 03 外部鏈接 编辑 英文 Autophagy a journal produced by Landes Bioscience and edited by DJ Klionsky 页面存档备份 存于互联网档案馆 英文 LongevityMeme entry describing PubMed article on the effects of autophagy and lifespan 英文 Autophagolysosome on Drugs com 页面存档备份 存于互联网档案馆 英文 HADb a Human Autophagy dedicated Database 页面存档备份 存于互联网档案馆 英文 Autophagy DB an autophagy database that covers all eukaryotes 英文 Self Destructive Behavior in Cells May Hold Key to a Longer Life 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 自噬 amp oldid 76401359, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。