fbpx
维基百科

Ubb

Unbibium化學符號Ubb)是一種尚未被發現的化學元素原子序數是122。直到这个元素被发现、确认并确定了永久名称之前,UnbibiumUbb分别为这个元素的臨時系统命名和化学符号。在扩展元素周期表裡,Ubb是第8週期的第四個元素,预测是繼Ubu後的第二個g区元素超锕系元素。該元素可能處於理論上的超重元素穩定島之中,其部分同位素可能具有較長的半衰期,尤其是中子數幻數(184)的306
122
Ubb

Ubb 122Ubb
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)
Uue(預測為鹼金屬) Ubn(預測為鹼土金屬)
143 Uqt(化學性質未知) 144 Uqq(化學性質未知) 145 Uqp(化學性質未知) 146 Uqh(化學性質未知) 147 Uqs(化學性質未知) 148 Uqo(化學性質未知) 149 Uqe(化學性質未知) 150 Upn(化學性質未知) 151 Upu(化學性質未知) 152 Upb(化學性質未知) 153 Upt(化學性質未知) 154 Upq(化學性質未知) 155 Upp(化學性質未知) 156 Uph(化學性質未知) 157 Ups(化學性質未知) 158 Upo(化學性質未知) 159 Upe(化學性質未知) 160 Uhn(化學性質未知) 161 Uhu(化學性質未知) 162 Uhb(化學性質未知) 163 Uht(化學性質未知) 164 Uhq(化學性質未知) 165 Uhp(化學性質未知) 166 Uhh(化學性質未知) 167 Uhs(化學性質未知) 168 Uho(化學性質未知) 169 Uhe(化學性質未知) 170 Usn(化學性質未知) 171 Usu(化學性質未知) 172 Usb(化學性質未知)
121 Ubu(化學性質未知) 122 Ubb(化學性質未知) 123 Ubt(化學性質未知) 124 Ubq(化學性質未知) 125 Ubp(化學性質未知) 126 Ubh(化學性質未知) 127 Ubs(化學性質未知) 128 Ubo(化學性質未知) 129 Ube(化學性質未知) 130 Utn(化學性質未知) 131 Utu(化學性質未知) 132 Utb(化學性質未知) 133 Utt(化學性質未知) 134 Utq(化學性質未知) 135 Utp(化學性質未知) 136 Uth(化學性質未知) 137 Uts(化學性質未知) 138 Uto(化學性質未知) 139 Ute(化學性質未知) 140 Uqn(化學性質未知) 141 Uqu(化學性質未知) 142 Uqb(化學性質未知)
※註:119號及以後的元素並無公認的排位,上表
之排位是從理論計算的電子排布推論而得的一種
-

Ubb

(Uhb)
UbuUbb → (Ubt)
概況
名稱·符號·序數Unbibium·Ubb·122
元素類別未知
可能為超錒系元素
·週期·不適用 ·8·g
標準原子質量未知
电子排布[Og] 7d1 8s2 8p1(預測[1]
2, 8, 18, 32, 32, 18, 9, 3(預測)
Ubb的电子層(2, 8, 18, 32, 32, 18, 9, 3(預測))
物理性質
物態固體(預測)
原子性質
氧化态4(預測)[2]

儘管科學家曾多次嘗試合成該元素,但Ubb迄今為止仍未被成功合成出來,目前世界各國也尚無嘗試合成Ubb的實驗計畫。2008年,希伯来大学的Amnon Marinov聲稱在天然樣本中发现了Ubb,是首個在自然界中發現的超重元素[3],但之后的研究认为这一发现并不足信[4][5]

Ubb預計會表現出一些與相似的化學性質,例如都具有較穩定的+4氧化態。不过,相对论效应可能会导致Ubb的某些性质与直接用元素周期律推测的性质有所不同。舉例來說,儘管Ubb預計處在週期表中g區超錒系元素的位置,但其推算出的基態電子組態為[Og] 7d1 8s2 8p1或[Og] 8s2 8p2,而非根據遞建原理所預測的[Og] 5g2 8s2組態。[2]

概述 编辑

 
核聚变反应的图示。两个原子核融合成一个,并发射出一个中子。在这一刻,这个反应和用来创造新元素的反应是相似的,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。
外部视频链接
  基于澳大利亚国立大学的计算,核聚变未成功的可视化[6]

超重元素[a]原子核是在两个不同大小[b]的原子核的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[12]由较重原子核组成的物质会作為靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[13]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融為一體约10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[13][14]如果聚变发生了,两个原子核产生的一个原子核会处于被称为複合原子核激发态。为了达到更稳定的状态,这个暂时存在的原子核可能会直接裂变或是放出一些中子来带走激发能量。[c]这个过程会在原子核碰撞后的10−16秒发生,产生更稳定的原子核。[15][d]

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[18]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]并转移到会停住原子核的半导体探测器英语Semiconductor detector中。撞击至探測器時的确切位置、能量和到达时间將會被記錄下來。[18]这个转移需要10−6秒的时间,意即这个原子核需要存在这么长的时间才能被检测到。[21]若衰变發生,衰變的原子核被再次记录,并测量位置、衰变能量和衰变时间。[18]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[22]超重元素理论预测[23]和已观测到[24]的主要衰变方式,也就是α衰变自发裂变,都是这种排斥引起的。[f]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]

嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。物理学家分析这些数据并试图得出结论,確認它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的效應没有其他解释,就可能在解释数据时出现错误。[i]

合成嘗試 编辑

目標 發射體 CN 結果
208Pb 94Zr 302Ubb 尚未嘗試
232Th 74Ge 306Ubb 尚未嘗試
238U 70Zn 308Ubb 至今失敗
238U 66Zn 304Ubb 至今失敗
244Pu 64Ni 308Ubb 尚未嘗試
248Cm 58Fe 306Ubb 尚未嘗試
249Cf 54Cr 303Ubb 尚未嘗試

注释 编辑

  1. ^ 核物理学中,如果一个元素有高原子序,就可以被称为重元素,例如82号元素。“超重元素”这一词通常指原子序大于103的元素(尽管也有其它的定义,例如原子序大于100[7]或112。[8]有时这一词和锕系后元素是同义词,将超重元素的上限定在还未发现的超锕系元素的开始。)[9]
  2. ^ 2009年,由尤里·奥加涅相引领的团队发表了他们通过对称的136Xe + 136Xe反应,尝试合成𬭶的结果。他们未能在这个反应中观察到单个原子,因此设置截面,即发生核反应的概率的上限为2.5 pb[10]作为比较,发现𬭶的反应208Pb + 58Fe的截面为19+19
    -11
     pb。[11]
  3. ^ 激发能量越大,复合原子核放出的中子就越多。如果这些激发能量不足以使中子被放出,复合原子核就会放出γ射线来带走它的激发能量。[15]
  4. ^ IUPAC/IUPAP联合工作小组定义原子核只有10−14秒内不衰变,才能被认为化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间,[16]也是复合原子核的寿命上限。[17]
  5. ^ 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标。分离器中包含电场和磁场,若粒子速度恰好,則電場與磁場对运动粒子的影响会剛好抵消。[19]飞行时间质谱法英语Time-of-flight mass spectrometry和反冲能量的测量也有助分离,两者结合可以估计原子核的质量。[20]
  6. ^ 不是所有放射性衰变都是因为静电排斥力导致的,β衰变便是弱核力导致的。[25]
  7. ^ 由于原子核的质量不是直接测量的,而是根据另一个原子核的质量计算得出的,因此这种测量称为间接测量。直接测量也是有可能的,但在大多数情况下,它们仍然无法用于超重原子核。[26]2018年,劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量,[27]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[28]
  8. ^ 自发裂变是由苏联科学家格奥尔基·弗廖罗夫发现的,[29]而他也是杜布纳联合原子核研究所的科学家,所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题。[30]劳伦斯伯克利国家实验室的科学家们认为自发裂变的信息不足以声称合成元素,他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[17]因此他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[29]
  9. ^ 举个例子,102号元素于1957年被瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定。[31]早先没有关于该元素发现的明确声明,所以由它的瑞典、美国、英国发现者命名为nobelium。后来证明这个元素的鉴定是错误的。[32]第二年,劳伦斯伯克利国家实验室无法重现瑞典的结果,而是宣布他们合成了该元素,但后来也被驳回。[32]杜布纳联合原子核研究所坚持认为他们第一个发现该元素,并建议把新元素命名为joliotium,[33]而这个名称也没有被接受(他们后来认为102号元素的命名是仓促的)。[34]由于其广泛使用,nobelium这个名称仍然保持不变。[35]

参考文献 编辑

  1. ^ Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (编). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006. ISBN 1-4020-3555-1. 
  2. ^ 2.0 2.1 Pyykkö, Pekka. A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions. Physical Chemistry Chemical Physics. 2011, 13 (1): 161–8. Bibcode:2011PCCP...13..161P. PMID 20967377. doi:10.1039/c0cp01575j. 
  3. ^ Amnon Marinov, I. Rodushkin, D. Kolb, A. Pape, Y. Kashiv, R. Brandt, R.V. Gentry, H.W. Miller, Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z≈122 in natural Th (页面存档备份,存于互联网档案馆), e-Print: arXiv:0804.3869 [nucl-ex], Apr 2008, 14 pp.
  4. ^ R. C. Barber; J. R. De Laeter. Comment on "Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes". Phys. Rev. C. 2009, 79 (4): 049801. Bibcode:2009PhRvC..79d9801B. doi:10.1103/PhysRevC.79.049801. 
  5. ^ A. Marinov; I. Rodushkin; Y. Kashiv; L. Halicz; I. Segal; A. Pape; R. V. Gentry; H. W. Miller; D. Kolb; R. Brandt. Reply to "Comment on 'Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes'". Phys. Rev. C. 2009, 79 (4): 049802. Bibcode:2009PhRvC..79d9802M. doi:10.1103/PhysRevC.79.049802. 
  6. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 编. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061  (英语). 
  7. ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始内容于2021-05-15) (英语). 
  8. ^ . Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11) (英语). 
  9. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (编). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语). 
  10. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语). 
  11. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [20 October 2012]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于7 June 2015) (英语). 
  12. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始内容于2019-12-11) (英语). 
  13. ^ 13.0 13.1 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始内容于2020-04-23) (俄语). 
  14. ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始内容于2020-03-17) (英语). 
  15. ^ 15.0 15.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927 (英语). 
  16. ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始内容 (PDF)于2021-10-11) (英语). 
  17. ^ 17.0 17.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-28]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始内容于2021-11-27) (英语). 
  18. ^ 18.0 18.1 18.2 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始内容于2020-04-21) (英语). 
  19. ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
  20. ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
  21. ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420 (1): 3. Bibcode:2013JPhCS.420a2001Z. ISSN 1742-6588. arXiv:1207.5700 . doi:10.1088/1742-6596/420/1/012001. 
  22. ^ Beiser 2003,第432頁.
  23. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320  (英语). 
  24. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae. 
  25. ^ Beiser 2003,第439頁.
  26. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始内容于2021-11-28) (英语). 
  27. ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语). 
  28. ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始内容于2021-11-28) (英语). 
  29. ^ 29.0 29.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始内容于2021-11-28) (英语). 
  30. ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07] (俄语).  Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄语). 
  31. ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始内容于2021-03-08) (英语). 
  32. ^ 32.0 32.1 Kragh 2018,第38–39頁.
  33. ^ Kragh 2018,第40頁.
  34. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [7 September 2016]. doi:10.1351/pac199365081815. (原始内容 (PDF)于25 November 2013) (英语). 
  35. ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始内容 (PDF)于2021-10-11) (英语). 

外部連結 编辑

  • WebElements.com – Ubb(英文)

此條目可参照英語維基百科相應條目来扩充, 若您熟悉来源语言和主题, 请协助参考外语维基百科扩充条目, 请勿直接提交机械翻译, 也不要翻译不可靠, 低品质内容, 依版权协议, 译文需在编辑摘要注明来源, 或于讨论页顶部标记, href, template, translated, page, html, title, template, translated, page, translated, page, 标签, unbibium, 化學符號為, 是一種尚未被發現的化學元素, 原子序數是122, 直到这个元素被发现. 此條目可参照英語維基百科相應條目来扩充 若您熟悉来源语言和主题 请协助参考外语维基百科扩充条目 请勿直接提交机械翻译 也不要翻译不可靠 低品质内容 依版权协议 译文需在编辑摘要注明来源 或于讨论页顶部标记 a href Template Translated page html title Template Translated page Translated page a 标签 Unbibium 化學符號為Ubb 是一種尚未被發現的化學元素 原子序數是122 直到这个元素被发现 确认并确定了永久名称之前 Unbibium和Ubb分别为这个元素的臨時系统命名和化学符号 在扩展元素周期表裡 Ubb是第8週期的第四個元素 预测是繼Ubu後的第二個g区元素和超锕系元素 該元素可能處於理論上的超重元素穩定島之中 其部分同位素可能具有較長的半衰期 尤其是中子數為幻數 184 的306122 Ubb Ubb 122Ubb氫 非金屬 氦 惰性氣體 鋰 鹼金屬 鈹 鹼土金屬 硼 類金屬 碳 非金屬 氮 非金屬 氧 非金屬 氟 鹵素 氖 惰性氣體 鈉 鹼金屬 鎂 鹼土金屬 鋁 貧金屬 矽 類金屬 磷 非金屬 硫 非金屬 氯 鹵素 氬 惰性氣體 鉀 鹼金屬 鈣 鹼土金屬 鈧 過渡金屬 鈦 過渡金屬 釩 過渡金屬 鉻 過渡金屬 錳 過渡金屬 鐵 過渡金屬 鈷 過渡金屬 鎳 過渡金屬 銅 過渡金屬 鋅 過渡金屬 鎵 貧金屬 鍺 類金屬 砷 類金屬 硒 非金屬 溴 鹵素 氪 惰性氣體 銣 鹼金屬 鍶 鹼土金屬 釔 過渡金屬 鋯 過渡金屬 鈮 過渡金屬 鉬 過渡金屬 鎝 過渡金屬 釕 過渡金屬 銠 過渡金屬 鈀 過渡金屬 銀 過渡金屬 鎘 過渡金屬 銦 貧金屬 錫 貧金屬 銻 類金屬 碲 類金屬 碘 鹵素 氙 惰性氣體 銫 鹼金屬 鋇 鹼土金屬 鑭 鑭系元素 鈰 鑭系元素 鐠 鑭系元素 釹 鑭系元素 鉕 鑭系元素 釤 鑭系元素 銪 鑭系元素 釓 鑭系元素 鋱 鑭系元素 鏑 鑭系元素 鈥 鑭系元素 鉺 鑭系元素 銩 鑭系元素 鐿 鑭系元素 鎦 鑭系元素 鉿 過渡金屬 鉭 過渡金屬 鎢 過渡金屬 錸 過渡金屬 鋨 過渡金屬 銥 過渡金屬 鉑 過渡金屬 金 過渡金屬 汞 過渡金屬 鉈 貧金屬 鉛 貧金屬 鉍 貧金屬 釙 貧金屬 砈 類金屬 氡 惰性氣體 鍅 鹼金屬 鐳 鹼土金屬 錒 錒系元素 釷 錒系元素 鏷 錒系元素 鈾 錒系元素 錼 錒系元素 鈽 錒系元素 鋂 錒系元素 鋦 錒系元素 鉳 錒系元素 鉲 錒系元素 鑀 錒系元素 鐨 錒系元素 鍆 錒系元素 鍩 錒系元素 鐒 錒系元素 鑪 過渡金屬 𨧀 過渡金屬 𨭎 過渡金屬 𨨏 過渡金屬 𨭆 過渡金屬 䥑 預測為過渡金屬 鐽 預測為過渡金屬 錀 預測為過渡金屬 鎶 過渡金屬 鉨 預測為貧金屬 鈇 貧金屬 鏌 預測為貧金屬 鉝 預測為貧金屬 鿬 預測為鹵素 鿫 預測為惰性氣體 Uue 預測為鹼金屬 Ubn 預測為鹼土金屬 143 Uqt 化學性質未知 144 Uqq 化學性質未知 145 Uqp 化學性質未知 146 Uqh 化學性質未知 147 Uqs 化學性質未知 148 Uqo 化學性質未知 149 Uqe 化學性質未知 150 Upn 化學性質未知 151 Upu 化學性質未知 152 Upb 化學性質未知 153 Upt 化學性質未知 154 Upq 化學性質未知 155 Upp 化學性質未知 156 Uph 化學性質未知 157 Ups 化學性質未知 158 Upo 化學性質未知 159 Upe 化學性質未知 160 Uhn 化學性質未知 161 Uhu 化學性質未知 162 Uhb 化學性質未知 163 Uht 化學性質未知 164 Uhq 化學性質未知 165 Uhp 化學性質未知 166 Uhh 化學性質未知 167 Uhs 化學性質未知 168 Uho 化學性質未知 169 Uhe 化學性質未知 170 Usn 化學性質未知 171 Usu 化學性質未知 172 Usb 化學性質未知 121 Ubu 化學性質未知 122 Ubb 化學性質未知 123 Ubt 化學性質未知 124 Ubq 化學性質未知 125 Ubp 化學性質未知 126 Ubh 化學性質未知 127 Ubs 化學性質未知 128 Ubo 化學性質未知 129 Ube 化學性質未知 130 Utn 化學性質未知 131 Utu 化學性質未知 132 Utb 化學性質未知 133 Utt 化學性質未知 134 Utq 化學性質未知 135 Utp 化學性質未知 136 Uth 化學性質未知 137 Uts 化學性質未知 138 Uto 化學性質未知 139 Ute 化學性質未知 140 Uqn 化學性質未知 141 Uqu 化學性質未知 142 Uqb 化學性質未知 註 119號及以後的元素並無公認的排位 上表之排位是從理論計算的電子排布推論而得的一種 Ubb Uhb Ubu Ubb Ubt 概況名稱 符號 序數Unbibium Ubb 122元素類別未知可能為超錒系元素族 週期 區不適用 8 g標準原子質量未知电子排布 Og 7d1 8s2 8p1 預測 1 2 8 18 32 32 18 9 3 預測 Ubb的电子層 2 8 18 32 32 18 9 3 預測 物理性質物態固體 預測 原子性質氧化态4 預測 2 儘管科學家曾多次嘗試合成該元素 但Ubb迄今為止仍未被成功合成出來 目前世界各國也尚無嘗試合成Ubb的實驗計畫 2008年 希伯来大学的Amnon Marinov聲稱在天然釷樣本中发现了Ubb 是首個在自然界中發現的超重元素 3 但之后的研究认为这一发现并不足信 4 5 Ubb預計會表現出一些與鈰和釷相似的化學性質 例如都具有較穩定的 4氧化態 不过 相对论效应可能会导致Ubb的某些性质与直接用元素周期律推测的性质有所不同 舉例來說 儘管Ubb預計處在週期表中g區超錒系元素的位置 但其推算出的基態電子組態為 Og 7d1 8s2 8p1或 Og 8s2 8p2 而非根據遞建原理所預測的 Og 5g2 8s2組態 2 目录 1 概述 2 合成嘗試 3 注释 4 参考文献 5 外部連結概述 编辑此节转录于最重元素概论 编辑 历史 参见 超重元素 概论 nbsp 核聚变反应的图示 两个原子核融合成一个 并发射出一个中子 在这一刻 这个反应和用来创造新元素的反应是相似的 唯一可能的区别是它有时会释放几个中子 或者根本不释放中子 外部视频链接 nbsp 基于澳大利亚国立大学的计算 核聚变未成功的可视化 6 超重元素 a 的原子核是在两个不同大小 b 的原子核的聚变中产生的 粗略地说 两个原子核的质量之差越大 两者就越有可能发生反应 12 由较重原子核组成的物质会作為靶子 被较轻原子核的粒子束轰击 两个原子核只能在距离足够近的时候 才能聚变成一个原子核 原子核 全部都有正电荷 会因为静电排斥而相互排斥 所以只有两个原子核的距离足够短时 强核力才能克服这个排斥力并发生聚变 粒子束因此被粒子加速器大大加速 以使这种排斥力与粒子束的速度相比变得微不足道 13 不过 只是靠得足够近不足以使两个原子核聚变 当两个原子核逼近彼此时 它们通常会融為一體约10 20秒 之後再分開 分開後的原子核不需要和先前相撞的原子核相同 而非形成单一的原子核 13 14 如果聚变发生了 两个原子核产生的一个原子核会处于被称为複合原子核的激发态 为了达到更稳定的状态 这个暂时存在的原子核可能会直接裂变或是放出一些中子来带走激发能量 c 这个过程会在原子核碰撞后的10 16秒发生 产生更稳定的原子核 15 d 粒子束穿过目标后 会到达下一个腔室 分离室 如果反应产生了新的原子核 它就会被这个粒子束携带 18 在分离室中 新产生的原子核会从其它核素 原本的粒子束和其它反应产物 中分离 e 并转移到会停住原子核的半导体探测器 英语 Semiconductor detector 中 撞击至探測器時的确切位置 能量和到达时间將會被記錄下來 18 这个转移需要10 6秒的时间 意即这个原子核需要存在这么长的时间才能被检测到 21 若衰变發生 衰變的原子核被再次记录 并测量位置 衰变能量和衰变时间 18 原子核的稳定性源自于强核力 但强核力的作用距离很短 随着原子核越来越大 强核力对最外层的核子 质子和中子 的影响减弱 同时 原子核会被质子之间 范围不受限制的静电排斥力撕裂 22 超重元素理论预测 23 和已观测到 24 的主要衰变方式 也就是a衰变和自发裂变 都是这种排斥引起的 f a衰变由发射出去的a粒子记录 在实际衰变之前很容易确定衰变产物 如果这样的衰变或一系列连续衰变产生了一个已知的原子核 则可以很容易地确定反应的原始产物 g 然而 自发裂变会产生各种分裂产物 因此无法从其分裂产物确定原始核素 h 嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息 即原子核到达探测器的位置 能量 时间以及它衰变的信息 物理学家分析这些数据并试图得出结论 確認它确实是由新元素引起的 而非由不同的核素引起的 如果提供的数据不足以得出创造出来的核素确实是新元素的结论 并且对观察到的效應没有其他解释 就可能在解释数据时出现错误 i 合成嘗試 编辑目標 發射體 CN 結果208Pb 94Zr 302Ubb 尚未嘗試232Th 74Ge 306Ubb 尚未嘗試238U 70Zn 308Ubb 至今失敗238U 66Zn 304Ubb 至今失敗244Pu 64Ni 308Ubb 尚未嘗試248Cm 58Fe 306Ubb 尚未嘗試249Cf 54Cr 303Ubb 尚未嘗試注释 编辑 在核物理学中 如果一个元素有高原子序 就可以被称为重元素 例如82号元素铅 超重元素 这一词通常指原子序大于103的元素 尽管也有其它的定义 例如原子序大于100 7 或112 8 有时这一词和锕系后元素是同义词 将超重元素的上限定在还未发现的超锕系元素的开始 9 2009年 由尤里 奥加涅相引领的团队发表了他们通过对称的136Xe 136Xe反应 尝试合成𬭶的结果 他们未能在这个反应中观察到单个原子 因此设置截面 即发生核反应的概率的上限为2 5 pb 10 作为比较 发现𬭶的反应208Pb 58Fe的截面为19 19 11 pb 11 激发能量越大 复合原子核放出的中子就越多 如果这些激发能量不足以使中子被放出 复合原子核就会放出g射线来带走它的激发能量 15 IUPAC IUPAP联合工作小组定义原子核只有10 14秒内不衰变 才能被认为化学元素 这个值大约是原子核得到它的外层电子 显示其化学性质所需的时间 16 也是复合原子核的寿命上限 17 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标 分离器中包含电场和磁场 若粒子速度恰好 則電場與磁場对运动粒子的影响会剛好抵消 19 飞行时间质谱法 英语 Time of flight mass spectrometry 和反冲能量的测量也有助分离 两者结合可以估计原子核的质量 20 不是所有放射性衰变都是因为静电排斥力导致的 b衰变便是弱核力导致的 25 由于原子核的质量不是直接测量的 而是根据另一个原子核的质量计算得出的 因此这种测量称为间接测量 直接测量也是有可能的 但在大多数情况下 它们仍然无法用于超重原子核 26 2018年 劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量 27 它的质量是根据转移后原子核的位置确定的 位置有助于确定其轨迹 这与原子核的质荷比有关 因为转移是在有磁铁的情况下完成的 28 自发裂变是由苏联科学家格奥尔基 弗廖罗夫发现的 29 而他也是杜布纳联合原子核研究所的科学家 所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题 30 劳伦斯伯克利国家实验室的科学家们认为自发裂变的信息不足以声称合成元素 他们认为对自发裂变的研究还不够充分 无法将其用于识别新元素 因为很难确定复合原子核是不是仅喷射中子 而不是质子或a粒子等带电粒子 17 因此他们更喜欢通过连续的a衰变将新的同位素与已知的同位素联系起来 29 举个例子 102号元素于1957年被瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定 31 早先没有关于该元素发现的明确声明 所以由它的瑞典 美国 英国发现者命名为nobelium 后来证明这个元素的鉴定是错误的 32 第二年 劳伦斯伯克利国家实验室无法重现瑞典的结果 而是宣布他们合成了该元素 但后来也被驳回 32 杜布纳联合原子核研究所坚持认为他们第一个发现该元素 并建议把新元素命名为joliotium 33 而这个名称也没有被接受 他们后来认为102号元素的命名是仓促的 34 由于其广泛使用 nobelium这个名称仍然保持不变 35 参考文献 编辑 Haire Richard G Transactinides and the future elements Morss Edelstein Norman M Fuger Jean 编 The Chemistry of the Actinide and Transactinide Elements 3rd Dordrecht The Netherlands Springer Science Business Media 2006 ISBN 1 4020 3555 1 2 0 2 1 Pyykko Pekka A suggested periodic table up to Z 172 based on Dirac Fock calculations on atoms and ions Physical Chemistry Chemical Physics 2011 13 1 161 8 Bibcode 2011PCCP 13 161P PMID 20967377 doi 10 1039 c0cp01575j Amnon Marinov I Rodushkin D Kolb A Pape Y Kashiv R Brandt R V Gentry H W Miller Evidence for a long lived superheavy nucleus with atomic mass number A 292 and atomic number Z 122 in natural Th 页面存档备份 存于互联网档案馆 e Print arXiv 0804 3869 nucl ex Apr 2008 14 pp R C Barber J R De Laeter Comment on Existence of long lived isomeric states in naturally occurring neutron deficient Th isotopes Phys Rev C 2009 79 4 049801 Bibcode 2009PhRvC 79d9801B doi 10 1103 PhysRevC 79 049801 A Marinov I Rodushkin Y Kashiv L Halicz I Segal A Pape R V Gentry H W Miller D Kolb R Brandt Reply to Comment on Existence of long lived isomeric states in naturally occurring neutron deficient Th isotopes Phys Rev C 2009 79 4 049802 Bibcode 2009PhRvC 79d9802M doi 10 1103 PhysRevC 79 049802 Wakhle A Simenel C Hinde D J et al Simenel C Gomes P R S Hinde D J et al 编 Comparing Experimental and Theoretical Quasifission Mass Angle Distributions European Physical Journal Web of Conferences 2015 86 00061 ISSN 2100 014X doi 10 1051 epjconf 20158600061 nbsp 英语 Kramer K Explainer superheavy elements Chemistry World 2016 2020 03 15 原始内容存档于2021 05 15 英语 Discovery of Elements 113 and 115 Lawrence Livermore National Laboratory 2020 03 15 原始内容存档于2015 09 11 英语 Eliav E Kaldor U Borschevsky A Electronic Structure of the Transactinide Atoms Scott R A 编 Encyclopedia of Inorganic and Bioinorganic Chemistry John Wiley amp Sons 1 16 2018 ISBN 978 1 119 95143 8 doi 10 1002 9781119951438 eibc2632 英语 Oganessian Yu Ts Dmitriev S N Yeremin A V et al Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe 136Xe Physical Review C 2009 79 2 024608 ISSN 0556 2813 doi 10 1103 PhysRevC 79 024608 英语 Munzenberg G Armbruster P Folger H et al The identification of element 108 PDF Zeitschrift fur Physik A 1984 317 2 235 236 20 October 2012 Bibcode 1984ZPhyA 317 235M doi 10 1007 BF01421260 原始内容 PDF 存档于7 June 2015 英语 Subramanian S Making New Elements Doesn t Pay Just Ask This Berkeley Scientist Bloomberg Businessweek 2020 01 18 原始内容存档于2019 12 11 英语 13 0 13 1 Ivanov D Sverhtyazhelye shagi v neizvestnoe Superheavy steps into the unknown nplus1 ru 2019 2020 02 02 原始内容存档于2020 04 23 俄语 Hinde D Something new and superheavy at the periodic table The Conversation 2017 2020 01 30 原始内容存档于2020 03 17 英语 15 0 15 1 Krasa A Neutron Sources for ADS Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2010 4 8 S2CID 28796927 英语 Wapstra A H Criteria that must be satisfied for the discovery of a new chemical element to be recognized PDF Pure and Applied Chemistry 1991 63 6 883 2021 11 28 ISSN 1365 3075 doi 10 1351 pac199163060879 原始内容存档 PDF 于2021 10 11 英语 17 0 17 1 Hyde E K Hoffman D C Keller O L A History and Analysis of the Discovery of Elements 104 and 105 Radiochimica Acta 1987 42 2 67 68 2021 11 28 ISSN 2193 3405 doi 10 1524 ract 1987 42 2 57 原始内容存档于2021 11 27 英语 18 0 18 1 18 2 Chemistry World How to Make Superheavy Elements and Finish the Periodic Table Video Scientific American 2016 2020 01 27 原始内容存档于2020 04 21 英语 Hoffman Ghiorso amp Seaborg 2000 第334頁 sfn error no target CITEREFHoffmanGhiorsoSeaborg2000 help Hoffman Ghiorso amp Seaborg 2000 第335頁 sfn error no target CITEREFHoffmanGhiorsoSeaborg2000 help Zagrebaev V Karpov A Greiner W Future of superheavy element research Which nuclei could be synthesized within the next few years Journal of Physics Conference Series 2013 420 1 3 Bibcode 2013JPhCS 420a2001Z ISSN 1742 6588 arXiv 1207 5700 nbsp doi 10 1088 1742 6596 420 1 012001 Beiser 2003 第432頁 sfn error no target CITEREFBeiser2003 help Staszczak A Baran A Nazarewicz W Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory Physical Review C 2013 87 2 024320 1 ISSN 0556 2813 doi 10 1103 physrevc 87 024320 nbsp 英语 Kondev F G Wang M Huang W J Naimi S Audi G The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 2021 45 3 030001 doi 10 1088 1674 1137 abddae Beiser 2003 第439頁 sfn error no target CITEREFBeiser2003 help Oganessian Yu Ts Rykaczewski K P A beachhead on the island of stability Physics Today 2015 68 8 32 38 2021 11 28 ISSN 0031 9228 OSTI 1337838 doi 10 1063 PT 3 2880 原始内容存档于2021 11 28 英语 Grant A Weighing the heaviest elements Physics Today 2018 doi 10 1063 PT 6 1 20181113a 英语 Howes L Exploring the superheavy elements at the end of the periodic table Chemical amp Engineering News 2019 2020 01 27 原始内容存档于2021 11 28 英语 29 0 29 1 Robinson A E The Transfermium Wars Scientific Brawling and Name Calling during the Cold War Distillations 2019 2020 02 22 原始内容存档于2021 11 28 英语 Populyarnaya biblioteka himicheskih elementov Siborgij ekavolfram Popular library of chemical elements Seaborgium eka tungsten n t ru 2020 01 07 俄语 Reprinted from Ekavolfram Eka tungsten Populyarnaya biblioteka himicheskih elementov Serebro Nilsborij i dalee Popular library of chemical elements Silver through nielsbohrium and beyond Nauka 1977 俄语 Nobelium Element information properties and uses Periodic Table Royal Society of Chemistry 2020 03 01 原始内容存档于2021 03 08 英语 32 0 32 1 Kragh 2018 第38 39頁 sfn error no target CITEREFKragh2018 help Kragh 2018 第40頁 sfn error no target CITEREFKragh2018 help Ghiorso A Seaborg G T Oganessian Yu Ts et al Responses on the report Discovery of the Transfermium elements followed by reply to the responses by Transfermium Working Group PDF Pure and Applied Chemistry 1993 65 8 1815 1824 7 September 2016 doi 10 1351 pac199365081815 原始内容存档 PDF 于25 November 2013 英语 Commission on Nomenclature of Inorganic Chemistry Names and symbols of transfermium elements IUPAC Recommendations 1997 PDF Pure and Applied Chemistry 1997 69 12 2471 2474 2021 11 28 doi 10 1351 pac199769122471 原始内容存档 PDF 于2021 10 11 英语 外部連結 编辑WebElements com Ubb 英文 取自 https zh wikipedia org w index php title Ubb amp oldid 79318896, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。