fbpx
维基百科

小星形十二面體

小星形十二面體是一種星形正多面體,由12個五角星面組成,為三種星形十二面體之一。[1][2]小星形十二面體的凸包為正二十面體,而正二十面體對偶多面體正十二面體,因此小星形十二面體的對偶多面體也是一種星形十二面體——大十二面體[3]:40此外,其頂點的布局與正二十面體相同,但邊的連結方式不同,因此可以視為正二十面體經過刻面英语faceting後的多面體。[4]小星形十二面體的拓樸結構與大十二面體相同,皆對應到虧格為4的五階五邊形正則地區圖施萊夫利符號:{5,5}),[5]因此小星形十二面體和大十二面體皆可以視為抽象多面體{5,5}6[註 1]三維空間中的一種具象化形式。[6]這個多面體最早由约翰内斯·开普勒於1619年觀察並描述,[7]並於1809年由路易·龐索英语Louis Poinsot重新發現;[8]1859年阿瑟·凱萊對這種形狀進行進一步的研究並將之命名為小星形十二面體(Small stellated dodecahedron)。[9]

小星形十二面體

(按這裡觀看旋轉模型)
類別克卜勒-龐索立體
對偶多面體大十二面體
識別
名稱小星形十二面體
參考索引U34, C43, W20
鮑爾斯縮寫
verse-and-dimensions的wikiaBowers acronym
sissid
數學表示法
考克斯特符號
英语Coxeter-Dynkin diagram
施萊夫利符號{5/2,5}
威佐夫符號
英语Wythoff symbol
5 | 2 52
康威表示法lsD
性質
12
30
頂點12
歐拉特徵數F=12, E=30, V=12 (χ=-6)
虧格4
二面角acos ≈ 116.565051177
組成與佈局
面的種類12個正五角星
面的佈局
英语Face configuration
V(55)/2
頂點圖(52)5
頂點的種類12個5階頂點
對稱性
對稱群Ih英语Icosahedral symmetry, H3, [5,3], (*532)
旋轉對稱群
英語Rotation_groups
I英语Icosahedral symmetry, [5,3]+, (532)
特性
正、非凸
圖像
星狀圖英语Stellation_diagram 星狀英语Stellation 凸包
正十二面體 正二十面體

stl模型

(52)5
頂點圖

大十二面體
對偶多面體

展開圖
相關多面體
截角截角小星形十二面體
截半截半大十二面體
三角化(基於簡單多面體)完全星形二十面體

有些藝術家會利用小星形十二面體的星狀外形作為表達天體意象的方式,例如在艾雪的作品《重力英语Gravitation (M. C. Escher)》中就使用了小星形十二面體作為創作中的主要元素。[10][11]

歷史

小星形十二面體的形狀最早出現於保羅·烏切洛在1430年創作於威尼斯聖馬爾谷聖殿宗主教座堂地板上的鑲嵌藝術中,然而當時尚未對這種形狀的性質進行探討,僅作為藝術作品的要素之一。[12]1619年,约翰内斯·开普勒在其著作《世界的和諧》中針對部分星形多面體進行了一些研究,[13]當中包括了大星形十二面體與小星形十二面體。[7]1809年路易斯·龐索英语Louis Poinsot重新發現了开普勒先前發現的星形多面體並另外發現了兩個星形多面體:大二十面體大十二面體,因此這四個立體現今合稱為克卜勒-龐索立體[8]1859年,阿瑟·凱萊對這種形狀進行了較詳細的描述,並將其命名為小星形十二面體(Small stellated dodecahedron),[9]同時這也是這種立體首次在正式文獻中獲命名。[7]然而,由於這個立體由12個、30條邊和12個頂點組成,而這些數值代入當時認為能普遍適用於各種多面體的欧拉示性数得到了不是2的結果,與當時普遍的認知相左,因此這種幾何結構一度被認為不應存在。[14]這個問題後來在克萊茵的著作中得到了解答,[15]這個立體代表著一個虧格為4的黎曼曲面[16]

性質

小星形十二面體由組成12個、30條和12個頂點組成,[17]其中,12個面皆為正五角星;在組成小星形十二面體的12個頂點中,每個頂點都是5個五角星的公共頂點,在頂點圖中,可使用五邊形來表示;[18][4]每條邊皆等長,且皆為2個正五角星的公共邊。由此可知,這個立體具備了所有面全等、所有邊等長、所有角等角的性質,是一種正多面體,然而這種立體是一個非凸多面體,因此不在古典的5種多面體中,是4個非凸正多面體之一,[8]由12個五角星面(6對平行五角星)所組成。小星形十二面體在施萊夫利符號中利用{5/2,5}來表示,這個符號代表了每個頂點都是5個五角星的公共頂點,在考克斯特符號英语Coxeter-Dynkin digram中利用       來表示。[19]

構造

小星形十二面體是一種星形十二面體,其可透過延伸正十二面體的面來構成,[4]這個操作就有如將正五邊形的邊延伸至相交,構成正五角星;同理,小星形十二面體則為將正十二面體以正五邊形延伸成正五角星的方式,將面延伸至相交。這個操作將在正十二面體的每個面上加入一個五角錐,錐高為 [19]

二面角

小星形十二面體是一種星形正多面體,因此具有所有角相等的性質。其二面角只有一个值,其值為負五平方根倒數反餘弦[17]

 

面的組成

小星形十二面體由12個五角星面組成,這些五角星皆全等,並且其構成方式為由正五邊形的頂點,以間隔為2的方式相接,在施萊夫利符號中可以用{5/2}來表示,[20]而小星形十二面體每個頂點都是5個五角星面的公共頂點,在施萊夫利符號中表示為{5/2,5}。在拓樸學上,這種結構與{5,5}無異,因此小星形十二面體也可以視為將五階五邊形鑲嵌這種雙曲鑲嵌局部區域閉合後的結果。[20]

 
以黃色表示小星形十二面體的五角星面
 
小星形十二面體
 
將一個面以藍色表示,其他面不著色

此外,亦可以將小星形十二面體化為簡單多面體,即排除面與面自相交的情況。通常用於製作小星形十二面體的模型,因為自相交的面不容易用實體模型實現,此時會將小星形十二面體的12個五角星面分割成60個等腰三角形面。[21]

拓樸

若將小星形十二面體的五角星依照複雜多邊形英语Complex polygon的方式[註 2]分解成5個等腰三角形,則其拓樸結構將與五角化十二面體等價,只是他的錐高更高,而使其成為非凸多面體;[19]若將五角化十二面體原像——正十二面體視為一個截對角偏方面體,則對應的小星形十二面體則為該5個側面所加入的5個角錐中,5個側面共面成五角星。另一方面,若使小星形十二面體的五角星維持原樣,則其拓樸結構與大十二面體相同,並對應相同的正則地區圖[24]對應的骨架圖為二十面體圖。[25][24]

小星形十二面體由12個五角星、30條邊和12個頂點組成,可以透過歐拉公式計算其虧格:

 

由此可知,小星形十二面體代表了一個虧格為4的曲面。這個特性最初被路易斯·波因索英语Louis_Poinsot觀察到時,十分令人困惑,[15]费利克斯·克莱因在1877年表明,小星狀十二面體可以被視為虧格為4之黎曼曲面黎曼球面分支覆蓋英语Branched_covering的結果,其分支點位於每個五角星的中央。[16]而這個黎曼曲面稱為布林曲線英语Bring's curve,其對稱性是所有虧格為4之黎曼曲面中最多的,對應自同構群為 對稱群。[26]

使用

不少藝術家有使用小星形十二面體進行創作,例如保羅·烏切洛在1430年創作於威尼斯聖馬爾谷聖殿宗主教座堂地板上的鑲嵌藝術中就能發現小星形十二面體的蹤影;[12]相同的形狀也出現在兩件莫里茨·科内利斯·埃舍尔的兩件石版印刷作品中,分別是1950年創作的《Contrast》與1952年創作的《重力》英语Gravitation (M. C. Escher)[10]

相關多面體與鑲嵌

部分多面體與鑲嵌與小星形十二面體有一些幾何關聯。例如部分多面體可透過小星形十二面體經過康威變換而得到,例如截角大十二面體截半大十二面體[27]、以及其對偶多面體大十二面體[19]

關聯 原像 對偶多面體 皮特里對偶
名稱 小星形十二面體 大十二面體 皮特里小星形十二面體
施萊夫利符號 {5/2,5} {5,5/2} {5/2,5}π
圖像      

截角小星形十二面體

 
不同截角深度的截角小星形十二面體

截去所有頂點的小星形十二面體[註 3][31]可構成一個外觀與正十二面體無異的退化均勻多面體[32][33]這種多面體在考克斯特記號中可以用       表示。[34]雖然其外觀與正十二面體無異,然而這種立體並非十二面體,而是一種退化的二十四面體,其由24個面、90條邊和60個頂點組成,其中24個面為12個正五邊形和12個繞兩圈的正五邊形組成,整體可以視為是每個頂點都是2個十邊形和1個五邊形之公共頂點的抽象等角二十四面體的具像化。[35]

不同的截角深度也會產生不同的幾何體:

名稱 小星形十二面體 截角小星形十二面體 截半大十二面體 截角大十二面體 大十二面體
考克斯特
迪肯符號
英语Coxeter-Dynkin diagram
                                       
圖像          

簡單多面體

 
幾種可基於正十二面體構造而得的立體

小星形十二面體可以化為簡單多面體,此時會將小星形十二面體的12個五角星面分割成60個等腰三角形面,[21]此時其拓樸結構將與五角化十二面體等價,[19]由60個面、90條邊和32個頂點組成。[36]這種立體可以三角化成其他立體:

           
大二十面體 向內加入角錐 原始形狀 向外加入角錐 完全星形二十面體

北炯立體

哲養·北炯曾在其論文中探討星形十二面體,[37]但不慎將以五邊形組成的正十二面體之星形化體與菱形組成的菱形十二面體之星形化體搞混了。後來莫雷帝將其描述為在正十二面體的面上加入五角錐組成的立體,[38]即小星形十二面體。 後來,漢士·史梅斯特(Hans Smessaert)等人才以星形四角化菱形十二面體的結構完成北炯最初探討的議題。[39]

 
莫雷帝描述的北炯立體
(實為小星形十二面體)
 
漢士·史梅斯特描述的北炯立體

星形鑲嵌圖

其也可以視為一系列施萊夫利符號中可利用{n/2,n}表示的星形鑲嵌之一,例如七階七角星鑲嵌[40][41]

星形多面體和鑲嵌系列:(n2)n
對稱群
*n32
[n,3]
球面鑲嵌 平面鑲嵌 雙曲鑲嵌 仿緊湊 非緊湊
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*932
[9,3]
*10 32
[10,3]...
*∞32
[∞,3]
 
[iπ/λ,3]
考克斯特紀號                                                                
星形
頂點
布局
 
(52)5
 
(62)6
 
(72)7
 
(82)8
 
(92)9
 
(102)10
 
(2)
(2)
           
星形對偶
考克斯特紀號                                                                
星形
頂點
布局
 
(55)∕2
 
(66)∕2
 
(77)∕2
 
(88)∕2
 
(92)9
 
(102)10
  
(偶數)(奇數)
()∕2
()∕2

對偶複合體

 

小星形十二面體與其對偶多面體的複合體為複合小星形十二面體大十二面體。其共有24個面、60條邊和24個頂點,其尤拉示性數為-12,虧格為7,[42]而在這個立體圖形中,僅有小星形十二面體可見,大十二面體完全隱沒於小星形十二面體而不可見。[43]

參見

註釋

  1. ^ {5,5}6施萊夫利符號,其代表了每個頂點都是5個五邊形的公共頂點,並具有六邊形的皮特里多邊形
  2. ^ 在複雜多邊形中,自相交偶數次的部份算做多邊形的外部,[22]以此例而言,五角星中央交出的五邊形不算做五角星的內部,換句話說,即是此複雜多邊形的孔洞。[23]
  3. ^ 產生半正多面體所用的截角,即確保截角完後的面皆要等邊的截角。[29][30]

参考文献

  1. ^ Weisstein, Eric W. (编). Dodecahedron Stellations. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  2. ^ Wenninger, M. J. Polyhedron Models. New York: Cambridge University Press. 1989: 35, 38-40. 
  3. ^ Wenninger, Magnus, Dual Models, Cambridge University Press, 2003 [1983], ISBN 978-0-521-54325-5, MR 0730208, doi:10.1017/CBO9780511569371 
  4. ^ 4.0 4.1 4.2 Nan Ma. Small stellated dodecahedron {5/2, 5}. 
  5. ^ Stellation of Regular Maps. Regular Map database, weddslist.com. [2021-07-30]. (原始内容于2021-08-23). 
  6. ^ Richard Klitzing. sissid (small stellated dodecahedron). bendwavy.org. [2021-08-21]. (原始内容于2021-07-26). 
  7. ^ 7.0 7.1 7.2 Weisstein, Eric W. (编). Kepler-Poinsot Solid. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  8. ^ 8.0 8.1 8.2 Louis Poinsot, Memoire sur les polygones et polyèdres. J. de l'École Polytechnique 9, pp. 16–48, 1810.
  9. ^ 9.0 9.1 Cayley, Arthur. XIX. On Poinsot's four new regular solids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science (Taylor & Francis). 1859, 17 (112): 123–128. 
  10. ^ 10.0 10.1 Barnes, John. Gems of Geometry 2nd. Springer. 2012: 46. 
  11. ^ Locher, J. L. (2000). The Magic of M. C. Escher. Harry N. Abrams, Inc. ISBN 0-8109-6720-0
  12. ^ 12.0 12.1 Coxeter, H. S. M. Regular and semiregular polyhedra. Senechal, Marjorie (编). Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination 2nd. Springer. 2013: 41–52. doi:10.1007/978-0-387-92714-5_3.  See in particular p. 42.
  13. ^ Johannes Kepler. Harmonices Mundi. Linz. 1619 (拉丁语). 
  14. ^ Schläfli. On The Multiple Integral   whose Limits Are   and  . Quart. J. Pure Appl. Math. 1860, 3: 54–68, 97–108,. 
  15. ^ 15.0 15.1 Zvonkine, Alexandre. Functional composition is a generalized symmetry. Symmetry: Culture and Science. 2011, 22 (3-4): 391–426. 
  16. ^ 16.0 16.1 Klein, Felix, Lectures on the icosahedron and the solution of equations of the fifth degree, Dover Phoenix Editions, New York: Dover Publications, 2003 [1884], ISBN 978-0-486-49528-6, MR 0080930 
  17. ^ 17.0 17.1 Kepler-Poinsot Solids: Small Stellated Dodecahedron. dmccooey.com. [2021-08-20]. (原始内容于2021-08-20). 
  18. ^ 7. Sissid, Polyhedron Category 1: Regulars. polytope.net. [2021-08-21]. (原始内容于2021-08-21). 
  19. ^ 19.0 19.1 19.2 19.3 19.4 Weisstein, Eric W. (编). Small Stellated Dodecahedron. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 
  20. ^ 20.0 20.1 J. Conrad, C. Chamberland, N. P. Breuckmann, B. M. Terhal. The small stellated dodecahedron code and friends. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018-07-13, 376 (2123): 20170323 [2021-08-20]. ISSN 1364-503X. PMC 5990658 . PMID 29807900. doi:10.1098/rsta.2017.0323. (原始内容于2021-08-20) (英语). 
  21. ^ 21.0 21.1 Small Stellated Dodecahedron. coolmath. [2021-08-20]. (原始内容于2021-08-20). 
  22. ^ Paul Bourke; Polygons and meshes:Surface (polygonal) Simplification (页面存档备份,存于互联网档案馆) 1997. (retrieved May 2016)
  23. ^ Rae Earnshaw, Brian Wyvill (Ed); New Advances in Computer Graphics: Proceedings of CG International ’89, Springer, 2012, page 654.
  24. ^ 24.0 24.1 S4:{5,5}. Regular Map database - map details, weddslist.com. [2021-07-30]. 
  25. ^ Wolfram, Stephen. "Small stellated dodecahedron". from Wolfram Alpha: Computational Knowledge Engine, Wolfram Research (英语). 
  26. ^ Weber, Matthias. Kepler's small stellated dodecahedron as a Riemann surface 220. 2005: 167–182.  |journal=被忽略 (帮助) pdf (页面存档备份,存于互联网档案馆
  27. ^ Holden, A. Shapes, Space, and Symmetry. New York: Dover,. 1991: p. 103. 
  28. ^ Coxeter, H.S.M.; Regular Polytopes (third edition). Dover Publications Inc. ISBN 0-486-61480-8
  29. ^ Coxeter, H.S.M. Chapter 8: Truncation, Regular Polytopes,[28] pp. 145–154
  30. ^ Norman Johnson, Uniform Polytopes, Manuscript (1991)
  31. ^ Olshevsky, George, Truncation at Glossary for Hyperspace.
  32. ^ mathconsult. Background Information of Uniform polyhedra. [2021-08-20]. (原始内容于2020-02-24). 
  33. ^ Maeder, Roman E. Uniform polyhedra. The Mathematica Journal (Citeseer). 1993, 3 (4): 48––57 [2021-08-20]. (原始内容于2021-08-23). 
  34. ^ Coxeter, The Evolution of Coxeter-Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233-248]
  35. ^ Grünbaum, Branko. Graphs of polyhedra; polyhedra as graphs. Discrete Mathematics (Elsevier). 2007, 307 (3-5): 445––463. doi:10.1016/j.disc.2005.09.037. 
  36. ^ Ugo Adriano Graziotti. the realm of geometric beauty. University of San Francisco. [2021-08-20]. (原始内容于2021-08-23). 
  37. ^ Béziau, Jean-Yves. New light on the square of oppositions and its nameless corner. Logical Investigations. 2003, 10 (2003): 218––232. 
  38. ^ Moretti, Alessio. The critics of paraconsistency and of many-valuedness and the geometry of oppositions. Logic and Logical Philosophy. 2010, 19 (1-2): 63––94. 
  39. ^ Smessaert, Hans and Demey, Lorenz, Béziau’s contributions to the logical geometry of modalities and quantifiers, The road to universal logic (Springer), 2015: 475––493 
  40. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  41. ^ Chapter 10: Regular honeycombs in hyperbolic space. The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 
  42. ^ compound of great dodecahedron and small stellated dodecahedron. bulatov.org. [2021-08-21]. (原始内容于2021-03-05). 
  43. ^ Weisstein, Eric W. (编). Great Dodecahedron-Small Stellated Dodecahedron Compound. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. (英语). 

小星形十二面體, 是一種星形正多面體, 由12個五角星面組成, 為三種星形十二面體之一, 的凸包為正二十面體, 而正二十面體的對偶多面體為正十二面體, 因此的對偶多面體也是一種星形十二面體, 大十二面體, 40此外, 其頂點的布局與正二十面體相同, 但邊的連結方式不同, 因此可以視為正二十面體經過刻面, 英语, faceting, 後的多面體, 的拓樸結構與大十二面體相同, 皆對應到虧格為4的五階五邊形正則地區圖, 施萊夫利符號, 因此和大十二面體皆可以視為抽象多面體, 在三維空間中的一種具象化形式, 這個多面體最. 小星形十二面體是一種星形正多面體 由12個五角星面組成 為三種星形十二面體之一 1 2 小星形十二面體的凸包為正二十面體 而正二十面體的對偶多面體為正十二面體 因此小星形十二面體的對偶多面體也是一種星形十二面體 大十二面體 3 40此外 其頂點的布局與正二十面體相同 但邊的連結方式不同 因此可以視為正二十面體經過刻面 英语 faceting 後的多面體 4 小星形十二面體的拓樸結構與大十二面體相同 皆對應到虧格為4的五階五邊形正則地區圖 施萊夫利符號 5 5 5 因此小星形十二面體和大十二面體皆可以視為抽象多面體 5 5 6 註 1 在三維空間中的一種具象化形式 6 這個多面體最早由约翰内斯 开普勒於1619年觀察並描述 7 並於1809年由路易 龐索 英语 Louis Poinsot 重新發現 8 1859年阿瑟 凱萊對這種形狀進行進一步的研究並將之命名為小星形十二面體 Small stellated dodecahedron 9 小星形十二面體 按這裡觀看旋轉模型 類別克卜勒 龐索立體對偶多面體大十二面體識別名稱小星形十二面體參考索引U34 C43 W20鮑爾斯縮寫 verse and dimensions的wikia Bowers acronym sissid數學表示法考克斯特符號 英语 Coxeter Dynkin diagram 施萊夫利符號 5 2 5 威佐夫符號 英语 Wythoff symbol 5 2 5 2康威表示法lsD性質面12邊30頂點12歐拉特徵數F 12 E 30 V 12 x 6 虧格4二面角acos 5 5 displaystyle tfrac sqrt 5 5 116 565051177 度組成與佈局面的種類12個正五角星面的佈局 英语 Face configuration V 55 2頂點圖 5 2 5頂點的種類12個5階頂點對稱性對稱群Ih 英语 Icosahedral symmetry H3 5 3 532 旋轉對稱群 英語 Rotation groups I 英语 Icosahedral symmetry 5 3 532 特性正 非凸圖像星狀圖 英语 Stellation diagram 星狀 英语 Stellation 核 凸包正十二面體 正二十面體stl模型 5 2 5 頂點圖 大十二面體 對偶多面體 展開圖 相關多面體截角截角小星形十二面體截半截半大十二面體三角化 基於簡單多面體 完全星形二十面體查论编有些藝術家會利用小星形十二面體的星狀外形作為表達天體意象的方式 例如在艾雪的作品 重力 英语 Gravitation M C Escher 中就使用了小星形十二面體作為創作中的主要元素 10 11 目录 1 歷史 2 性質 2 1 構造 2 2 二面角 2 3 面的組成 2 4 拓樸 3 使用 4 相關多面體與鑲嵌 4 1 截角小星形十二面體 4 2 簡單多面體 4 3 北炯立體 4 4 星形鑲嵌圖 4 5 對偶複合體 5 參見 6 註釋 7 参考文献歷史 编辑小星形十二面體的形狀最早出現於保羅 烏切洛在1430年創作於威尼斯聖馬爾谷聖殿宗主教座堂地板上的鑲嵌藝術中 然而當時尚未對這種形狀的性質進行探討 僅作為藝術作品的要素之一 12 1619年 约翰内斯 开普勒在其著作 世界的和諧 中針對部分星形多面體進行了一些研究 13 當中包括了大星形十二面體與小星形十二面體 7 1809年路易斯 龐索 英语 Louis Poinsot 重新發現了开普勒先前發現的星形多面體並另外發現了兩個星形多面體 大二十面體與大十二面體 因此這四個立體現今合稱為克卜勒 龐索立體 8 1859年 阿瑟 凱萊對這種形狀進行了較詳細的描述 並將其命名為小星形十二面體 Small stellated dodecahedron 9 同時這也是這種立體首次在正式文獻中獲命名 7 然而 由於這個立體由12個面 30條邊和12個頂點組成 而這些數值代入當時認為能普遍適用於各種多面體的欧拉示性数得到了不是2的結果 與當時普遍的認知相左 因此這種幾何結構一度被認為不應存在 14 這個問題後來在克萊茵的著作中得到了解答 15 這個立體代表著一個虧格為4的黎曼曲面 16 保羅 烏切洛在1430年鑲嵌藝術中的小星形十二面體 世界的和諧 中描繪的小星形十二面體性質 编辑小星形十二面體由組成12個面 30條邊和12個頂點組成 17 其中 12個面皆為正五角星 在組成小星形十二面體的12個頂點中 每個頂點都是5個五角星的公共頂點 在頂點圖中 可使用五邊形來表示 18 4 每條邊皆等長 且皆為2個正五角星的公共邊 由此可知 這個立體具備了所有面全等 所有邊等長 所有角等角的性質 是一種正多面體 然而這種立體是一個非凸多面體 因此不在古典的5種多面體中 是4個非凸正多面體之一 8 由12個五角星面 6對平行五角星 所組成 小星形十二面體在施萊夫利符號中利用 5 2 5 來表示 這個符號代表了每個頂點都是5個五角星的公共頂點 在考克斯特符號 英语 Coxeter Dynkin digram 中利用 來表示 19 構造 编辑 小星形十二面體是一種星形十二面體 其可透過延伸正十二面體的面來構成 4 這個操作就有如將正五邊形的邊延伸至相交 構成正五角星 同理 小星形十二面體則為將正十二面體以正五邊形延伸成正五角星的方式 將面延伸至相交 這個操作將在正十二面體的每個面上加入一個五角錐 錐高為1 5 5 2 5 displaystyle sqrt tfrac 1 5 left 5 2 sqrt 5 right 19 二面角 编辑 小星形十二面體是一種星形正多面體 因此具有所有角相等的性質 其二面角只有一个值 其值為負五平方根倒數之反餘弦 17 cos 1 5 5 2 03444394 116 565051177 displaystyle cos 1 frac sqrt 5 5 approx 2 03444394 approx 116 565051177 circ 面的組成 编辑 小星形十二面體由12個五角星面組成 這些五角星皆全等 並且其構成方式為由正五邊形的頂點 以間隔為2的方式相接 在施萊夫利符號中可以用 5 2 來表示 20 而小星形十二面體每個頂點都是5個五角星面的公共頂點 在施萊夫利符號中表示為 5 2 5 在拓樸學上 這種結構與 5 5 無異 因此小星形十二面體也可以視為將五階五邊形鑲嵌這種雙曲鑲嵌局部區域閉合後的結果 20 以黃色表示小星形十二面體的五角星面 小星形十二面體 將一個面以藍色表示 其他面不著色此外 亦可以將小星形十二面體化為簡單多面體 即排除面與面自相交的情況 通常用於製作小星形十二面體的模型 因為自相交的面不容易用實體模型實現 此時會將小星形十二面體的12個五角星面分割成60個等腰三角形面 21 拓樸 编辑 若將小星形十二面體的五角星依照複雜多邊形 英语 Complex polygon 的方式 註 2 分解成5個等腰三角形 則其拓樸結構將與五角化十二面體等價 只是他的錐高更高 而使其成為非凸多面體 19 若將五角化十二面體的原像 正十二面體視為一個截對角偏方面體 則對應的小星形十二面體則為該5個側面所加入的5個角錐中 5個側面共面成五角星 另一方面 若使小星形十二面體的五角星維持原樣 則其拓樸結構與大十二面體相同 並對應相同的正則地區圖 24 對應的骨架圖為二十面體圖 25 24 小星形十二面體由12個五角星 30條邊和12個頂點組成 可以透過歐拉公式計算其虧格 V E F 2 2 g displaystyle V E F 2 2g 由此可知 小星形十二面體代表了一個虧格為4的曲面 這個特性最初被路易斯 波因索 英语 Louis Poinsot 觀察到時 十分令人困惑 15 而费利克斯 克莱因在1877年表明 小星狀十二面體可以被視為虧格為4之黎曼曲面被黎曼球面分支覆蓋 英语 Branched covering 的結果 其分支點位於每個五角星的中央 16 而這個黎曼曲面稱為布林曲線 英语 Bring s curve 其對稱性是所有虧格為4之黎曼曲面中最多的 對應自同構群為S 5 displaystyle S 5 對稱群 26 使用 编辑不少藝術家有使用小星形十二面體進行創作 例如保羅 烏切洛在1430年創作於威尼斯聖馬爾谷聖殿宗主教座堂地板上的鑲嵌藝術中就能發現小星形十二面體的蹤影 12 相同的形狀也出現在兩件莫里茨 科内利斯 埃舍尔的兩件石版印刷作品中 分別是1950年創作的 Contrast 與1952年創作的 重力 英语 Gravitation M C Escher 10 聖馬爾谷聖殿宗主教座堂地板上的鑲嵌藝術 新默西購物公園 英语 New Mersey Shopping Park 中小星形十二面體造型的藝術品 基於莫里茨 科内利斯 埃舍尔作品 重力 英语 Gravitation M C Escher 的雕塑作品 展示於特文特大学 小星形十二面體造型燈飾相關多面體與鑲嵌 编辑部分多面體與鑲嵌與小星形十二面體有一些幾何關聯 例如部分多面體可透過小星形十二面體經過康威變換而得到 例如截角大十二面體 截半大十二面體 27 以及其對偶多面體大十二面體 19 關聯 原像 對偶多面體 皮特里對偶名稱 小星形十二面體 大十二面體 皮特里小星形十二面體施萊夫利符號 5 2 5 5 5 2 5 2 5 p圖像 截角小星形十二面體 编辑 主条目 截角小星形十二面體 不同截角深度的截角小星形十二面體 截去所有頂點的小星形十二面體 註 3 31 可構成一個外觀與正十二面體無異的退化均勻多面體 32 33 這種多面體在考克斯特記號中可以用 表示 34 雖然其外觀與正十二面體無異 然而這種立體並非十二面體 而是一種退化的二十四面體 其由24個面 90條邊和60個頂點組成 其中24個面為12個正五邊形和12個繞兩圈的正五邊形組成 整體可以視為是每個頂點都是2個十邊形和1個五邊形之公共頂點的抽象等角二十四面體的具像化 35 不同的截角深度也會產生不同的幾何體 名稱 小星形十二面體 截角小星形十二面體 截半大十二面體 截角大十二面體 大十二面體考克斯特迪肯符號 英语 Coxeter Dynkin diagram 圖像 簡單多面體 编辑 幾種可基於正十二面體構造而得的立體 小星形十二面體可以化為簡單多面體 此時會將小星形十二面體的12個五角星面分割成60個等腰三角形面 21 此時其拓樸結構將與五角化十二面體等價 19 由60個面 90條邊和32個頂點組成 36 這種立體可以三角化成其他立體 大二十面體 向內加入角錐 原始形狀 向外加入角錐 完全星形二十面體北炯立體 编辑 参见 星形四角化菱形十二面體 北炯立體 哲養 北炯曾在其論文中探討星形十二面體 37 但不慎將以五邊形組成的正十二面體之星形化體與菱形組成的菱形十二面體之星形化體搞混了 後來莫雷帝將其描述為在正十二面體的面上加入五角錐組成的立體 38 即小星形十二面體 後來 漢士 史梅斯特 Hans Smessaert 等人才以星形四角化菱形十二面體的結構完成北炯最初探討的議題 39 莫雷帝描述的北炯立體 實為小星形十二面體 漢士 史梅斯特描述的北炯立體星形鑲嵌圖 编辑 其也可以視為一系列施萊夫利符號中可利用 n 2 n 表示的星形鑲嵌之一 例如七階七角星鑲嵌 40 41 星形多面體和鑲嵌系列 n 2 n 對稱群 n32 n 3 球面鑲嵌 平面鑲嵌 雙曲鑲嵌 仿緊湊 非緊湊 532 5 3 632 6 3 732 7 3 832 8 3 932 9 3 10 32 10 3 32 3 ip l 3 考克斯特紀號 星形頂點布局 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 2 2 面 星形對偶考克斯特紀號 星形頂點布局 55 2 66 2 77 2 88 2 9 2 9 10 2 10 偶數 奇數 2 2對偶複合體 编辑 主条目 複合大十二面體小星形十二面體 英语 Compound of small stellated dodecahedron and great dodecahedron 小星形十二面體與其對偶多面體的複合體為複合小星形十二面體大十二面體 其共有24個面 60條邊和24個頂點 其尤拉示性數為 12 虧格為7 42 而在這個立體圖形中 僅有小星形十二面體可見 大十二面體完全隱沒於小星形十二面體而不可見 43 參見 编辑维基共享资源中相关的多媒体资源 小星形十二面體五角化十二面體註釋 编辑 5 5 6為施萊夫利符號 其代表了每個頂點都是5個五邊形的公共頂點 並具有六邊形的皮特里多邊形 在複雜多邊形中 自相交偶數次的部份算做多邊形的外部 22 以此例而言 五角星中央交出的五邊形不算做五角星的內部 換句話說 即是此複雜多邊形的孔洞 23 產生半正多面體所用的截角 即確保截角完後的面皆要等邊的截角 29 30 参考文献 编辑 Weisstein Eric W 编 Dodecahedron Stellations at MathWorld A Wolfram Web Resource Wolfram Research Inc 英语 Wenninger M J Polyhedron Models New York Cambridge University Press 1989 35 38 40 Wenninger Magnus Dual Models Cambridge University Press 2003 1983 ISBN 978 0 521 54325 5 MR 0730208 doi 10 1017 CBO9780511569371 4 0 4 1 4 2 Nan Ma Small stellated dodecahedron 5 2 5 Stellation of Regular Maps Regular Map database weddslist com 2021 07 30 原始内容存档于2021 08 23 Richard Klitzing sissid small stellated dodecahedron bendwavy org 2021 08 21 原始内容存档于2021 07 26 7 0 7 1 7 2 Weisstein Eric W 编 Kepler Poinsot Solid at MathWorld A Wolfram Web Resource Wolfram Research Inc 英语 8 0 8 1 8 2 Louis Poinsot Memoire sur les polygones et polyedres J de l Ecole Polytechnique 9 pp 16 48 1810 9 0 9 1 Cayley Arthur XIX On Poinsot s four new regular solids The London Edinburgh and Dublin Philosophical Magazine and Journal of Science Taylor amp Francis 1859 17 112 123 128 10 0 10 1 Barnes John Gems of Geometry 2nd Springer 2012 46 Locher J L 2000 The Magic of M C Escher Harry N Abrams Inc ISBN 0 8109 6720 0 12 0 12 1 Coxeter H S M Regular and semiregular polyhedra Senechal Marjorie 编 Shaping Space Exploring Polyhedra in Nature Art and the Geometrical Imagination 2nd Springer 2013 41 52 doi 10 1007 978 0 387 92714 5 3 See in particular p 42 Johannes Kepler Harmonices Mundi Linz 1619 拉丁语 Schlafli On The Multiple Integral d x d y d z displaystyle int dx dy cdots dz whose Limits Are p 1 a 1 x b 1 y h 1 z gt 0 p 2 gt 0 p n gt 0 displaystyle p 1 a 1 x b 1 y cdots h 1 z gt 0 p 2 gt 0 cdots p n gt 0 and x 2 y 2 z 2 lt 1 displaystyle x 2 y 2 cdots z 2 lt 1 Quart J Pure Appl Math 1860 3 54 68 97 108 15 0 15 1 Zvonkine Alexandre Functional composition is a generalized symmetry Symmetry Culture and Science 2011 22 3 4 391 426 16 0 16 1 Klein Felix Lectures on the icosahedron and the solution of equations of the fifth degree Dover Phoenix Editions New York Dover Publications 2003 1884 ISBN 978 0 486 49528 6 MR 0080930 17 0 17 1 Kepler Poinsot Solids Small Stellated Dodecahedron dmccooey com 2021 08 20 原始内容存档于2021 08 20 7 Sissid Polyhedron Category 1 Regulars polytope net 2021 08 21 原始内容存档于2021 08 21 19 0 19 1 19 2 19 3 19 4 Weisstein Eric W 编 Small Stellated Dodecahedron at MathWorld A Wolfram Web Resource Wolfram Research Inc 英语 20 0 20 1 J Conrad C Chamberland N P Breuckmann B M Terhal The small stellated dodecahedron code and friends Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences 2018 07 13 376 2123 20170323 2021 08 20 ISSN 1364 503X PMC 5990658 PMID 29807900 doi 10 1098 rsta 2017 0323 原始内容存档于2021 08 20 英语 引文格式1维护 PMC格式 link 21 0 21 1 Small Stellated Dodecahedron coolmath 2021 08 20 原始内容存档于2021 08 20 Paul Bourke Polygons and meshes Surface polygonal Simplification 页面存档备份 存于互联网档案馆 1997 retrieved May 2016 Rae Earnshaw Brian Wyvill Ed New Advances in Computer Graphics Proceedings of CG International 89 Springer 2012 page 654 24 0 24 1 S4 5 5 Regular Map database map details weddslist com 2021 07 30 Wolfram Stephen Small stellated dodecahedron from Wolfram Alpha Computational Knowledge Engine Wolfram Research 英语 Weber Matthias Kepler s small stellated dodecahedron as a Riemann surface 220 2005 167 182 journal 被忽略 帮助 pdf 页面存档备份 存于互联网档案馆 Holden A Shapes Space and Symmetry New York Dover 1991 p 103 引文格式1维护 冗余文本 link Coxeter H S M Regular Polytopes third edition Dover Publications Inc ISBN 0 486 61480 8 Coxeter H S M Chapter 8 Truncation Regular Polytopes 28 pp 145 154 Norman Johnson Uniform Polytopes Manuscript 1991 Olshevsky George Truncation at Glossary for Hyperspace mathconsult Background Information of Uniform polyhedra 2021 08 20 原始内容存档于2020 02 24 Maeder Roman E Uniform polyhedra The Mathematica Journal Citeseer 1993 3 4 48 57 2021 08 20 原始内容存档于2021 08 23 Coxeter The Evolution of Coxeter Dynkin diagrams Nieuw Archief voor Wiskunde 9 1991 233 248 Grunbaum Branko Graphs of polyhedra polyhedra as graphs Discrete Mathematics Elsevier 2007 307 3 5 445 463 doi 10 1016 j disc 2005 09 037 Ugo Adriano Graziotti the realm of geometric beauty University of San Francisco 2021 08 20 原始内容存档于2021 08 23 Beziau Jean Yves New light on the square of oppositions and its nameless corner Logical Investigations 2003 10 2003 218 232 Moretti Alessio The critics of paraconsistency and of many valuedness and the geometry of oppositions Logic and Logical Philosophy 2010 19 1 2 63 94 Smessaert Hans and Demey Lorenz Beziau s contributions to the logical geometry of modalities and quantifiers The road to universal logic Springer 2015 475 493 John H Conway Heidi Burgiel Chaim Goodman Strass The Symmetries of Things 2008 ISBN 978 1 56881 220 5 Chapter 19 The Hyperbolic Archimedean Tessellations Chapter 10 Regular honeycombs in hyperbolic space The Beauty of Geometry Twelve Essays Dover Publications 1999 ISBN 0 486 40919 8 LCCN 99035678 compound of great dodecahedron and small stellated dodecahedron bulatov org 2021 08 21 原始内容存档于2021 03 05 Weisstein Eric W 编 Great Dodecahedron Small Stellated Dodecahedron Compound at MathWorld A Wolfram Web Resource Wolfram Research Inc 英语 取自 https zh wikipedia org w index php title 小星形十二面體 amp oldid 75223683, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。