fbpx
维基百科

拼音láo注音ㄌㄠˊ粤拼lou4;英語:Lawrencium),是一種人工合成化學元素,其化學符號Lr原子序數为103,是第11個超鈾元素,也是最後一個錒系元素,有時也算作第七週期首個過渡金屬。鐒是一種極具放射性金屬元素,其最長壽的同位素鐒-266的半衰期達11小時,不過壽命較短的鐒-260(半衰期2.7分鐘)反而較常使用於化學用途,因為它可以較大規模地生產。如同所有原子序超過100的超元素(transfermium element),鐒無法在核反應爐中通過中子捕獲大量生成,只能在粒子加速器中,以粒子撞擊較輕的元素來合成。由於無法大量生產且所有鐒同位素的半衰期都很短,鐒在基礎科學研究之外沒有任何實際用途。

鐒 103Lr
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




(Upp)
𬬻
外觀
银色 (预测)[1]
概況
名稱·符號·序數鐒(Lawrencium)·Lr·103
元素類別錒系金屬
有时候被认为是过渡金属
·週期·3 ·7·d
標準原子質量[266]
电子排布[Rn] 5f14 7s2 7p1
2, 8, 18, 32, 32, 8, 3
鐒的电子層(2, 8, 18, 32, 32, 8, 3)
歷史
發現劳伦斯伯克利国家实验室杜布纳联合原子核研究所(1961–1971年)
物理性質
物態固体(预测)
熔点1900 K,1627 °C,2961 °F((预测))
原子性質
氧化态3
电离能第一:478.6 kJ·mol−1

第二:1428.0 kJ·mol−1

第三:2219.1 kJ·mol−1
雜項
晶体结构六方密堆积
(预测)[2]
CAS号22537-19-5
同位素
主条目:鐒的同位素
同位素 丰度 半衰期t1/2 衰變
方式 能量MeV 產物
266Lr syn 11 h SF -
262Lr syn 3.6 h ε 262No
261Lr syn 44 min SF/ε? -
260Lr syn 2.7 min α 8.04 256Md
259Lr syn 6.2 s 78% α 8.44 255Md
22% SF -
256Lr syn 27 s α 8.62,8.52,8.32... 252Md
255Lr syn 21.5 s α 8.43,8.37 251Md
254Lr syn 13 s 78% α 8.46,8.41 250Md
22% ε 254No

1961年,阿伯特·吉奧索等人在美国加利福尼亚柏克萊勞倫斯柏克萊國家實驗室中,首次利用轰击合成出了鐒元素。其名称来自於迴旋加速器的發明人、美国物理学家欧内斯特·劳伦斯[4]

化學實驗已証實了鐒的特性符合的較重同族元素,具有+3氧化態。因此,它可以被歸類為第7週期的第一個過渡金屬。然而,鐒的價電子組態為s2p,而非其同族元素的s2d構型。這意味著鐒在元素週期表中的位置可能比預期的更具波動性。

原子序大於鐒的元素稱為超重元素,皆為壽命短暫、放射性極高的人工合成元素。

概述 编辑

 
核聚变反应的图示。两个原子核融合成一个,并发射出一个中子。在这一刻,这个反应和用来创造新元素的反应是相似的,唯一可能的区别是它有时会释放几个中子,或者根本不释放中子。
外部视频链接
  基于澳大利亚国立大学的计算,核聚变未成功的可视化[5]

超重元素[a]原子核是在两个不同大小[b]的原子核的聚变中产生的。粗略地说,两个原子核的质量之差越大,两者就越有可能发生反应。[11]由较重原子核组成的物质会作為靶子,被较轻原子核的粒子束轰击。两个原子核只能在距离足够近的时候,才能聚变成一个原子核。原子核(全部都有正电荷)会因为静电排斥而相互排斥,所以只有两个原子核的距离足够短时,强核力才能克服这个排斥力并发生聚变。粒子束因此被粒子加速器大大加速,以使这种排斥力与粒子束的速度相比变得微不足道。[12]不过,只是靠得足够近不足以使两个原子核聚变:当两个原子核逼近彼此时,它们通常会融為一體约10−20秒,之後再分開(分開後的原子核不需要和先前相撞的原子核相同),而非形成单一的原子核。[12][13]如果聚变发生了,两个原子核产生的一个原子核会处于被称为複合原子核激发态。为了达到更稳定的状态,这个暂时存在的原子核可能会直接裂变或是放出一些中子来带走激发能量。[c]这个过程会在原子核碰撞后的10−16秒发生,产生更稳定的原子核。[14][d]

粒子束穿过目标后,会到达下一个腔室——分离室。如果反应产生了新的原子核,它就会被这个粒子束携带。[17]在分离室中,新产生的原子核会从其它核素(原本的粒子束和其它反应产物)中分离,[e]并转移到会停住原子核的半导体探测器英语Semiconductor detector中。撞击至探測器時的确切位置、能量和到达时间將會被記錄下來。[17]这个转移需要10−6秒的时间,意即这个原子核需要存在这么长的时间才能被检测到。[20]若衰变發生,衰變的原子核被再次记录,并测量位置、衰变能量和衰变时间。[17]

原子核的稳定性源自于强核力,但强核力的作用距离很短,随着原子核越来越大,强核力对最外层的核子质子和中子)的影响减弱。同时,原子核会被质子之间,范围不受限制的静电排斥力撕裂。[21]超重元素理论预测[22]和已观测到[23]的主要衰变方式,也就是α衰变自发裂变,都是这种排斥引起的。[f]α衰变由发射出去的α粒子记录,在实际衰变之前很容易确定衰变产物。如果这样的衰变或一系列连续衰变产生了一个已知的原子核,则可以很容易地确定反应的原始产物。[g]然而,自发裂变会产生各种分裂产物,因此无法从其分裂产物确定原始核素。[h]

嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息,即原子核到达探测器的位置、能量、时间以及它衰变的信息。物理学家分析这些数据并试图得出结论,確認它确实是由新元素引起的,而非由不同的核素引起的。如果提供的数据不足以得出创造出来的核素确实是新元素的结论,并且对观察到的效應没有其他解释,就可能在解释数据时出现错误。[i]

歷史 编辑

1961年在美国加利福尼亚伯克利的劳伦斯放射实验室中,由阿伯特·吉奧索、西克兰(T.Sikkeland)、拉希(A.E.Larsh)等人发现。元素符号为Lw,后来改为Lr。

鑒於國際上对104至107號元素名均存在較大分歧,全國科學技術名詞化學名詞審定委員會根據1997年8月27日IUPAC正式對101至109號元素的重新英文定名,於1998年7月8日重新审定、公佈101至109號元素的中文命名,其中101號至103號元素仍使用原有的中文定名「」(音同「門」)、「」(音同「諾」)、「鐒」(音同「勞」)。[35][36]

同位素 编辑

鐒共有14種已知的同位素,質量數分別為251-262、264和266[37][38][39],以及一個同核異構體鐒-253m。[37]鐒的同位素全部都具有放射性半衰期都不及12小時,其中壽命最長的是鐒-266,半衰期約10小時[40],但化學實驗中通常使用其他較易製得的短壽命同位素(如鐒-256和鐒-260),因為鐒-266只能作為更重、更難合成的𨧀-270的衰變產物生成,於2014年在-294的衰變鏈中首次探測到。[40]首次對鐒的化學研究中使用的同位素是鐒-256(半衰期27秒),現在則大多使用壽命較長的鐒-260(半衰期2.7分鐘)。[37]除了以上三種同位素外,其他較長壽的鐒同位素包括鐒-262(半衰期3.6小時)、鐒-264(3小時)、鐒-261(44分鐘)和鐒-255(22秒)[37][41][42],剩餘同位素的半衰期都小於20秒,其中壽命最短的是鐒-251,半衰期27毫秒。[39][41][42]

制备与提纯 编辑

最轻的(251Lr到254Lr)和最重的(264Lr到266Lr)铹同位素只能由105號元素𬭊的同位素發生α衰变产生,而质量处于中等的同位素(255Lr到262Lr,包括最重要的兩個鐒同位素256Lr和260Lr)都可以通过用轻原子核(从)轰击锕系元素(从)來製得。256Lr可通过用70MeV的-11原子核轰击-249所制得(产物为铹-256和四个中子),而260Lr可通过用氧-18原子核轰击-249所制得(产物为铹-260、一个α粒子和三个中子)。[43]

由于256Lr和260Lr的半衰期都很短,不容易进行完整的化学提纯,所以早期实验中提纯256Lr都是通过快速溶剂萃取进行的。其中,螯合剂噻吩甲酰三氟丙酮(TTA)溶解在甲基异丁酮(MIBK)中作为有机相,醋酸缓冲溶液作为水相。之后,带有不同电荷(+2、+3或+4)的离子会在不同的pH范围内分别被萃取到有机相中。但这种方法不会分离出三价的锕系元素,所以必须通过256Lr衰变所释放的8.24MeV的α粒子进行识别。[43]最近的方法是通过α-羟基异丁酸(α-HIB)进行快速选择性洗脱,以在充分的时间内分离出寿命较长的260Lr,该同位素可以用0.05M盐酸从捕集器中除去。[43]

注释 编辑

  1. ^ 核物理学中,如果一个元素有高原子序,就可以被称为重元素,例如82号元素。“超重元素”这一词通常指原子序大于103的元素(尽管也有其它的定义,例如原子序大于100[6]或112。[7]有时这一词和锕系后元素是同义词,将超重元素的上限定在还未发现的超锕系元素的开始。)[8]
  2. ^ 2009年,由尤里·奥加涅相引领的团队发表了他们通过对称的136Xe + 136Xe反应,尝试合成𬭶的结果。他们未能在这个反应中观察到单个原子,因此设置截面,即发生核反应的概率的上限为2.5 pb[9]作为比较,发现𬭶的反应208Pb + 58Fe的截面为19+19
    -11
     pb。[10]
  3. ^ 激发能量越大,复合原子核放出的中子就越多。如果激发能量太小,无法放出中子,复合原子核就会放出γ射线来带走激发能量。[14]
  4. ^ IUPAC/IUPAP联合工作小组定义原子核只有10−14秒内不衰变,才能被认为化学元素。这个值大约是原子核得到它的外层电子,显示其化学性质所需的时间,[15]也是复合原子核的寿命上限。[16]
  5. ^ 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标。分离器中包含电场和磁场,若粒子速度恰好,則電場與磁場对运动粒子的影响会剛好抵消。[18]飞行时间质谱法英语Time-of-flight mass spectrometry和反冲能量的测量也有助分离,两者结合可以估计原子核的质量。[19]
  6. ^ 不是所有放射性衰变都是因为静电排斥力导致的,β衰变便是弱核力导致的。[24]
  7. ^ 超重元素的原子核的质量通常无法直接测量,所以它是根据另一个原子核的质量间接计算得出的。[25]2018年,劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量,[26]它的质量是根据转移后原子核的位置确定的(位置有助于确定其轨迹,这与原子核的质荷比有关,因为转移是在有磁铁的情况下完成的)。[27]
  8. ^ 自发裂变是由苏联科学家格奥尔基·弗廖罗夫发现的,[28]而他也是杜布纳联合原子核研究所的科学家,所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题。[29]劳伦斯伯克利国家实验室的科学家们认为自发裂变的信息不足以声称合成元素,他们认为对自发裂变的研究还不够充分,无法将其用于识别新元素,因为很难确定复合原子核是不是仅喷射中子,而不是质子或α粒子等带电粒子。[16]因此他们更喜欢通过连续的α衰变将新的同位素与已知的同位素联系起来。[28]
  9. ^ 举个例子,102号元素于1957年被瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定。[30]早先没有关于该元素发现的明确声明,所以由它的瑞典、美国、英国发现者命名为nobelium。后来证明这个元素的鉴定是错误的。[31]第二年,劳伦斯伯克利国家实验室无法重现瑞典的结果,而是宣布他们合成了该元素,但后来也被驳回。[31]杜布纳联合原子核研究所坚持认为他们第一个发现该元素,并建议把新元素命名为joliotium,[32]而这个名称也没有被接受(他们后来认为102号元素的命名是仓促的)。[33]由于其广泛使用,nobelium这个名称仍然保持不变。[34]

參考資料 编辑

  1. ^ Emsley, John. Nature's Building Blocks: An A-Z Guide to the Elements New. New York, NY: Oxford University Press. 2011: 278–9. ISBN 978-0-19-960563-7. 
  2. ^ Östlin, A.; Vitos, L. First-principles calculation of the structural stability of 6d transition metals. Physical Review B. 2011, 84 (11). Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104. 
  3. ^ . [2016-05-21]. (原始内容存档于2019-07-01). 
  4. ^ . Cal Alumni. [August 24, 2013]. (原始内容存档于2013-10-02). 
  5. ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al , 编. Comparing Experimental and Theoretical Quasifission Mass Angle Distributions. European Physical Journal Web of Conferences. 2015, 86: 00061. ISSN 2100-014X. doi:10.1051/epjconf/20158600061  (英语). 
  6. ^ Krämer, K. Explainer: superheavy elements. Chemistry World. 2016 [2020-03-15]. (原始内容于2021-05-15) (英语). 
  7. ^ . Lawrence Livermore National Laboratory. [2020-03-15]. (原始内容存档于2015-09-11) (英语). 
  8. ^ Eliav, E.; Kaldor, U.; Borschevsky, A. Electronic Structure of the Transactinide Atoms. Scott, R. A. (编). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons: 1–16. 2018. ISBN 978-1-119-95143-8. doi:10.1002/9781119951438.eibc2632 (英语). 
  9. ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe. Physical Review C. 2009, 79 (2): 024608. ISSN 0556-2813. doi:10.1103/PhysRevC.79.024608 (英语). 
  10. ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (PDF). Zeitschrift für Physik A. 1984, 317 (2): 235–236 [2012-10-20]. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. (原始内容 (PDF)存档于2015-06-07) (英语). 
  11. ^ Subramanian, S. Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist. Bloomberg Businessweek. [2020-01-18]. (原始内容于2019-12-11) (英语). 
  12. ^ 12.0 12.1 Ivanov, D. Сверхтяжелые шаги в неизвестное [Superheavy steps into the unknown]. nplus1.ru. 2019 [2020-02-02]. (原始内容于2020-04-23) (俄语). 
  13. ^ Hinde, D. Something new and superheavy at the periodic table. The Conversation. 2017 [2020-01-30]. (原始内容于2020-03-17) (英语). 
  14. ^ 14.0 14.1 Krása, A. Neutron Sources for ADS. Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague). 2010: 4–8. S2CID 28796927 (英语). 
  15. ^ Wapstra, A. H. Criteria that must be satisfied for the discovery of a new chemical element to be recognized (PDF). Pure and Applied Chemistry. 1991, 63 (6): 883 [2021-11-28]. ISSN 1365-3075. doi:10.1351/pac199163060879. (原始内容 (PDF)于2021-10-11) (英语). 
  16. ^ 16.0 16.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. A History and Analysis of the Discovery of Elements 104 and 105. Radiochimica Acta. 1987, 42 (2): 67–68 [2021-11-28]. ISSN 2193-3405. doi:10.1524/ract.1987.42.2.57. (原始内容于2021-11-27) (英语). 
  17. ^ 17.0 17.1 17.2 Chemistry World. How to Make Superheavy Elements and Finish the Periodic Table [Video]. Scientific American. 2016 [2020-01-27]. (原始内容于2020-04-21) (英语). 
  18. ^ Hoffman, Ghiorso & Seaborg 2000,第334頁.
  19. ^ Hoffman, Ghiorso & Seaborg 2000,第335頁.
  20. ^ Zagrebaev, V.; Karpov, A.; Greiner, W. Future of superheavy element research: Which nuclei could be synthesized within the next few years?. Journal of Physics: Conference Series. 2013, 420 (1): 3. Bibcode:2013JPhCS.420a2001Z. ISSN 1742-6588. arXiv:1207.5700 . doi:10.1088/1742-6596/420/1/012001. 
  21. ^ Beiser 2003,第432頁.
  22. ^ Staszczak, A.; Baran, A.; Nazarewicz, W. Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory. Physical Review C. 2013, 87 (2): 024320–1. ISSN 0556-2813. doi:10.1103/physrevc.87.024320  (英语). 
  23. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. The NUBASE2020 evaluation of nuclear properties (PDF). Chinese Physics C. 2021, 45 (3): 030001. doi:10.1088/1674-1137/abddae. 
  24. ^ Beiser 2003,第439頁.
  25. ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. A beachhead on the island of stability. Physics Today. 2015, 68 (8): 32–38 [2021-11-28]. ISSN 0031-9228. OSTI 1337838. doi:10.1063/PT.3.2880. (原始内容于2021-11-28) (英语). 
  26. ^ Grant, A. Weighing the heaviest elements. Physics Today. 2018. doi:10.1063/PT.6.1.20181113a (英语). 
  27. ^ Howes, L. Exploring the superheavy elements at the end of the periodic table. Chemical & Engineering News. 2019 [2020-01-27]. (原始内容于2021-11-28) (英语). 
  28. ^ 28.0 28.1 Robinson, A. E. The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War. Distillations. 2019 [2020-02-22]. (原始内容于2021-11-28) (英语). 
  29. ^ Популярная библиотека химических элементов. Сиборгий (экавольфрам) [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru. [2020-01-07] (俄语).  Reprinted from Экавольфрам [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond]. Nauka. 1977 (俄语). 
  30. ^ Nobelium - Element information, properties and uses | Periodic Table. Royal Society of Chemistry. [2020-03-01]. (原始内容于2021-03-08) (英语). 
  31. ^ 31.0 31.1 Kragh 2018,第38–39頁.
  32. ^ Kragh 2018,第40頁.
  33. ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group (PDF). Pure and Applied Chemistry. 1993, 65 (8): 1815–1824 [2016-09-07]. doi:10.1351/pac199365081815. (原始内容 (PDF)于2013-11-25) (英语). 
  34. ^ Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) (PDF). Pure and Applied Chemistry. 1997, 69 (12): 2471–2474 [2021-11-28]. doi:10.1351/pac199769122471. (原始内容 (PDF)于2021-10-11) (英语). 
  35. ^ 刘路沙. . 光明网. 光明日报. [2020-11-10]. (原始内容存档于2020-11-10). 
  36. ^ 贵州地勘局情报室摘于《中国地质矿产报》(1998年8月13日). . 貴州地質. 1998, 15: 298–298 [2020-11-10]. (原始内容存档于2020-12-03). 
  37. ^ 37.0 37.1 37.2 37.3 Silva 2011,第1642頁
  38. ^ Khuyagbaatar, J.; et al. (PDF). Physical Review Letters. 2014, 112 (17): 172501 [2022-01-24]. Bibcode:2014PhRvL.112q2501K. PMID 24836239. doi:10.1103/PhysRevLett.112.172501. hdl:1885/70327 . (原始内容 (PDF)存档于2022-04-08). 
  39. ^ 39.0 39.1 Leppänen, A.-P. (PDF) (学位论文). University of Jyväskylä: 83–100. 2005 [2022-01-24]. ISBN 978-951-39-3162-9. ISSN 0075-465X. (原始内容 (PDF)存档于2022-03-17). 
  40. ^ 40.0 40.1 Clara Moskowitz. . Scientific American. May 7, 2014 [2014-05-08]. (原始内容存档于2014-05-09). 
  41. ^ 41.0 41.1 . [2022-01-24]. (原始内容存档于2017-02-19). 
  42. ^ 42.0 42.1 Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. The NUBASE2016 evaluation of nuclear properties (PDF). Chinese Physics C. 2017, 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. 
  43. ^ 43.0 43.1 43.2 Silva, pp. 1642–3[查证请求]

外部連結 编辑

  • 元素鐒在洛斯阿拉莫斯国家实验室的介紹(英文)
  • EnvironmentalChemistry.com —— 鐒(英文)
  • 元素鐒在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
  • 元素鐒在Peter van der Krogt elements site的介紹(英文)
  • WebElements.com – 鐒(英文)

本條目存在以下問題, 請協助改善本條目或在討論頁針對議題發表看法, 此條目尚未参照元素專題之格式編寫, 欢迎您参照元素专题的建议格式来修订这个条目, 以提高条目质量, 此條目可参照英語維基百科相應條目来扩充, 2020年10月2日, 若您熟悉来源语言和主题, 请协助参考外语维基百科扩充条目, 请勿直接提交机械翻译, 也不要翻译不可靠, 低品质内容, 依版权协议, 译文需在编辑摘要注明来源, 或于讨论页顶部标记, href, template, translated, page, html, title, templ. 本條目存在以下問題 請協助改善本條目或在討論頁針對議題發表看法 此條目尚未参照元素專題之格式編寫 欢迎您参照元素专题的建议格式来修订这个条目 以提高条目质量 此條目可参照英語維基百科相應條目来扩充 2020年10月2日 若您熟悉来源语言和主题 请协助参考外语维基百科扩充条目 请勿直接提交机械翻译 也不要翻译不可靠 低品质内容 依版权协议 译文需在编辑摘要注明来源 或于讨论页顶部标记 a href Template Translated page html title Template Translated page Translated page a 标签 注意 本页有Unihan扩展E区汉字 𬬻 這些字符可能會错误显示 詳见Unicode扩展汉字 鐒 拼音 lao 注音 ㄌㄠˊ 粤拼 lou4 英語 Lawrencium 是一種人工合成的化學元素 其化學符號为Lr 原子序數为103 是第11個超鈾元素 也是最後一個錒系元素 有時也算作第七週期首個過渡金屬 鐒是一種極具放射性的金屬元素 其最長壽的同位素鐒 266的半衰期達11小時 不過壽命較短的鐒 260 半衰期2 7分鐘 反而較常使用於化學用途 因為它可以較大規模地生產 如同所有原子序超過100的超鐨元素 transfermium element 鐒無法在核反應爐中通過中子捕獲大量生成 只能在粒子加速器中 以粒子撞擊較輕的元素來合成 由於無法大量生產且所有鐒同位素的半衰期都很短 鐒在基礎科學研究之外沒有任何實際用途 鐒 103Lr氫 非金屬 氦 惰性氣體 鋰 鹼金屬 鈹 鹼土金屬 硼 類金屬 碳 非金屬 氮 非金屬 氧 非金屬 氟 鹵素 氖 惰性氣體 鈉 鹼金屬 鎂 鹼土金屬 鋁 貧金屬 矽 類金屬 磷 非金屬 硫 非金屬 氯 鹵素 氬 惰性氣體 鉀 鹼金屬 鈣 鹼土金屬 鈧 過渡金屬 鈦 過渡金屬 釩 過渡金屬 鉻 過渡金屬 錳 過渡金屬 鐵 過渡金屬 鈷 過渡金屬 鎳 過渡金屬 銅 過渡金屬 鋅 過渡金屬 鎵 貧金屬 鍺 類金屬 砷 類金屬 硒 非金屬 溴 鹵素 氪 惰性氣體 銣 鹼金屬 鍶 鹼土金屬 釔 過渡金屬 鋯 過渡金屬 鈮 過渡金屬 鉬 過渡金屬 鎝 過渡金屬 釕 過渡金屬 銠 過渡金屬 鈀 過渡金屬 銀 過渡金屬 鎘 過渡金屬 銦 貧金屬 錫 貧金屬 銻 類金屬 碲 類金屬 碘 鹵素 氙 惰性氣體 銫 鹼金屬 鋇 鹼土金屬 鑭 鑭系元素 鈰 鑭系元素 鐠 鑭系元素 釹 鑭系元素 鉕 鑭系元素 釤 鑭系元素 銪 鑭系元素 釓 鑭系元素 鋱 鑭系元素 鏑 鑭系元素 鈥 鑭系元素 鉺 鑭系元素 銩 鑭系元素 鐿 鑭系元素 鎦 鑭系元素 鉿 過渡金屬 鉭 過渡金屬 鎢 過渡金屬 錸 過渡金屬 鋨 過渡金屬 銥 過渡金屬 鉑 過渡金屬 金 過渡金屬 汞 過渡金屬 鉈 貧金屬 鉛 貧金屬 鉍 貧金屬 釙 貧金屬 砈 類金屬 氡 惰性氣體 鍅 鹼金屬 鐳 鹼土金屬 錒 錒系元素 釷 錒系元素 鏷 錒系元素 鈾 錒系元素 錼 錒系元素 鈽 錒系元素 鋂 錒系元素 鋦 錒系元素 鉳 錒系元素 鉲 錒系元素 鑀 錒系元素 鐨 錒系元素 鍆 錒系元素 鍩 錒系元素 鐒 錒系元素 鑪 過渡金屬 𨧀 過渡金屬 𨭎 過渡金屬 𨨏 過渡金屬 𨭆 過渡金屬 䥑 預測為過渡金屬 鐽 預測為過渡金屬 錀 預測為過渡金屬 鎶 過渡金屬 鉨 預測為貧金屬 鈇 貧金屬 鏌 預測為貧金屬 鉝 預測為貧金屬 鿬 預測為鹵素 鿫 預測為惰性氣體 镥 鐒 Upp 锘 鐒 𬬻外觀银色 预测 1 概況名稱 符號 序數鐒 Lawrencium Lr 103元素類別錒系金屬有时候被认为是过渡金属族 週期 區3 7 d標準原子質量 266 电子排布 Rn 5f14 7s2 7p12 8 18 32 32 8 3 鐒的电子層 2 8 18 32 32 8 3 歷史發現劳伦斯伯克利国家实验室与杜布纳联合原子核研究所 1961 1971年 物理性質物態固体 预测 熔点1900 K 1627 C 2961 F 预测 原子性質氧化态3电离能第一 478 6 kJ mol 1第二 1428 0 kJ mol 1 第三 2219 1 kJ mol 1雜項晶体结构六方密堆积 预测 2 CAS号22537 19 5同位素主条目 鐒的同位素同位素 丰度 半衰期 t1 2 衰變方式 能量 MeV 產物266Lr syn 11 h SF 262Lr syn 3 6 h e 262No261Lr syn 44 min SF e 260Lr syn 2 7 min a 8 04 256Md259Lr syn 6 2 s 78 a 8 44 255Md22 SF 256Lr syn 27 s a 8 62 8 52 8 32 252Md255Lr syn 21 5 s a 8 43 8 37 251Md254Lr syn 13 s 78 a 8 46 8 41 250Md22 e 254No1961年 阿伯特 吉奧索等人在美国加利福尼亚柏克萊的勞倫斯柏克萊國家實驗室中 首次利用硼轰击锎合成出了鐒元素 其名称来自於迴旋加速器的發明人 美国物理学家欧内斯特 劳伦斯 4 化學實驗已証實了鐒的特性符合鎦的較重同族元素 具有 3氧化態 因此 它可以被歸類為第7週期的第一個過渡金屬 然而 鐒的價電子組態為s2p 而非其同族元素鈧 釔 鎦的s2d構型 這意味著鐒在元素週期表中的位置可能比預期的更具波動性 原子序大於鐒的元素稱為超重元素 皆為壽命短暫 放射性極高的人工合成元素 目录 1 概述 2 歷史 3 同位素 4 制备与提纯 5 注释 6 參考資料 7 外部連結概述 编辑此节转录于最重元素概论 编辑 历史 参见 超重元素 概论 nbsp 核聚变反应的图示 两个原子核融合成一个 并发射出一个中子 在这一刻 这个反应和用来创造新元素的反应是相似的 唯一可能的区别是它有时会释放几个中子 或者根本不释放中子 外部视频链接 nbsp 基于澳大利亚国立大学的计算 核聚变未成功的可视化 5 超重元素 a 的原子核是在两个不同大小 b 的原子核的聚变中产生的 粗略地说 两个原子核的质量之差越大 两者就越有可能发生反应 11 由较重原子核组成的物质会作為靶子 被较轻原子核的粒子束轰击 两个原子核只能在距离足够近的时候 才能聚变成一个原子核 原子核 全部都有正电荷 会因为静电排斥而相互排斥 所以只有两个原子核的距离足够短时 强核力才能克服这个排斥力并发生聚变 粒子束因此被粒子加速器大大加速 以使这种排斥力与粒子束的速度相比变得微不足道 12 不过 只是靠得足够近不足以使两个原子核聚变 当两个原子核逼近彼此时 它们通常会融為一體约10 20秒 之後再分開 分開後的原子核不需要和先前相撞的原子核相同 而非形成单一的原子核 12 13 如果聚变发生了 两个原子核产生的一个原子核会处于被称为複合原子核的激发态 为了达到更稳定的状态 这个暂时存在的原子核可能会直接裂变或是放出一些中子来带走激发能量 c 这个过程会在原子核碰撞后的10 16秒发生 产生更稳定的原子核 14 d 粒子束穿过目标后 会到达下一个腔室 分离室 如果反应产生了新的原子核 它就会被这个粒子束携带 17 在分离室中 新产生的原子核会从其它核素 原本的粒子束和其它反应产物 中分离 e 并转移到会停住原子核的半导体探测器 英语 Semiconductor detector 中 撞击至探測器時的确切位置 能量和到达时间將會被記錄下來 17 这个转移需要10 6秒的时间 意即这个原子核需要存在这么长的时间才能被检测到 20 若衰变發生 衰變的原子核被再次记录 并测量位置 衰变能量和衰变时间 17 原子核的稳定性源自于强核力 但强核力的作用距离很短 随着原子核越来越大 强核力对最外层的核子 质子和中子 的影响减弱 同时 原子核会被质子之间 范围不受限制的静电排斥力撕裂 21 超重元素理论预测 22 和已观测到 23 的主要衰变方式 也就是a衰变和自发裂变 都是这种排斥引起的 f a衰变由发射出去的a粒子记录 在实际衰变之前很容易确定衰变产物 如果这样的衰变或一系列连续衰变产生了一个已知的原子核 则可以很容易地确定反应的原始产物 g 然而 自发裂变会产生各种分裂产物 因此无法从其分裂产物确定原始核素 h 嘗試合成超重元素的物理学家可以获得的信息是探测器收集到的信息 即原子核到达探测器的位置 能量 时间以及它衰变的信息 物理学家分析这些数据并试图得出结论 確認它确实是由新元素引起的 而非由不同的核素引起的 如果提供的数据不足以得出创造出来的核素确实是新元素的结论 并且对观察到的效應没有其他解释 就可能在解释数据时出现错误 i 歷史 编辑1961年在美国加利福尼亚伯克利的劳伦斯放射实验室中 由阿伯特 吉奧索 西克兰 T Sikkeland 拉希 A E Larsh 等人发现 元素符号为Lw 后来改为Lr 鑒於國際上对104至107號元素名均存在較大分歧 全國科學技術名詞化學名詞審定委員會根據1997年8月27日IUPAC正式對101至109號元素的重新英文定名 於1998年7月8日重新审定 公佈101至109號元素的中文命名 其中101號至103號元素仍使用原有的中文定名 鍆 音同 門 鍩 音同 諾 鐒 音同 勞 35 36 同位素 编辑鐒共有14種已知的同位素 質量數分別為251 262 264和266 37 38 39 以及一個同核異構體鐒 253m 37 鐒的同位素全部都具有放射性 半衰期都不及12小時 其中壽命最長的是鐒 266 半衰期約10小時 40 但化學實驗中通常使用其他較易製得的短壽命同位素 如鐒 256和鐒 260 因為鐒 266只能作為更重 更難合成的𨧀 270的衰變產物生成 於2014年在鿬 294的衰變鏈中首次探測到 40 首次對鐒的化學研究中使用的同位素是鐒 256 半衰期27秒 現在則大多使用壽命較長的鐒 260 半衰期2 7分鐘 37 除了以上三種同位素外 其他較長壽的鐒同位素包括鐒 262 半衰期3 6小時 鐒 264 3小時 鐒 261 44分鐘 和鐒 255 22秒 37 41 42 剩餘同位素的半衰期都小於20秒 其中壽命最短的是鐒 251 半衰期27毫秒 39 41 42 制备与提纯 编辑此章节翻譯自英語維基百科 需要相關領域的編者協助校對翻譯 如果您精通本領域 又能清楚地將英語翻譯為中文 歡迎您協助校訂翻譯 原文参见en Lawrencium Preparation and purification 最轻的 251Lr到254Lr 和最重的 264Lr到266Lr 铹同位素只能由105號元素𬭊的同位素發生a衰变产生 而质量处于中等的同位素 255Lr到262Lr 包括最重要的兩個鐒同位素256Lr和260Lr 都可以通过用轻原子核 从硼到氖 轰击锕系元素 从镅到锿 來製得 256Lr可通过用70MeV的硼 11原子核轰击锎 249所制得 产物为铹 256和四个中子 而260Lr可通过用氧 18原子核轰击锫 249所制得 产物为铹 260 一个a粒子和三个中子 43 由于256Lr和260Lr的半衰期都很短 不容易进行完整的化学提纯 所以早期实验中提纯256Lr都是通过快速溶剂萃取进行的 其中 螯合剂噻吩甲酰三氟丙酮 TTA 溶解在甲基异丁酮 MIBK 中作为有机相 醋酸缓冲溶液作为水相 之后 带有不同电荷 2 3或 4 的离子会在不同的pH范围内分别被萃取到有机相中 但这种方法不会分离出三价的锕系元素 所以必须通过256Lr衰变所释放的8 24MeV的a粒子进行识别 43 最近的方法是通过a 羟基异丁酸 a HIB 进行快速选择性洗脱 以在充分的时间内分离出寿命较长的260Lr 该同位素可以用0 05M盐酸从捕集器中除去 43 注释 编辑 在核物理学中 如果一个元素有高原子序 就可以被称为重元素 例如82号元素铅 超重元素 这一词通常指原子序大于103的元素 尽管也有其它的定义 例如原子序大于100 6 或112 7 有时这一词和锕系后元素是同义词 将超重元素的上限定在还未发现的超锕系元素的开始 8 2009年 由尤里 奥加涅相引领的团队发表了他们通过对称的136Xe 136Xe反应 尝试合成𬭶的结果 他们未能在这个反应中观察到单个原子 因此设置截面 即发生核反应的概率的上限为2 5 pb 9 作为比较 发现𬭶的反应208Pb 58Fe的截面为19 19 11 pb 10 激发能量越大 复合原子核放出的中子就越多 如果激发能量太小 无法放出中子 复合原子核就会放出g射线来带走激发能量 14 IUPAC IUPAP联合工作小组定义原子核只有10 14秒内不衰变 才能被认为化学元素 这个值大约是原子核得到它的外层电子 显示其化学性质所需的时间 15 也是复合原子核的寿命上限 16 这种分离是基于产生的原子核会比未反应的粒子束更慢地通过目标 分离器中包含电场和磁场 若粒子速度恰好 則電場與磁場对运动粒子的影响会剛好抵消 18 飞行时间质谱法 英语 Time of flight mass spectrometry 和反冲能量的测量也有助分离 两者结合可以估计原子核的质量 19 不是所有放射性衰变都是因为静电排斥力导致的 b衰变便是弱核力导致的 24 超重元素的原子核的质量通常无法直接测量 所以它是根据另一个原子核的质量间接计算得出的 25 2018年 劳伦斯伯克利国家实验室首次直接测量了超重原子核的质量 26 它的质量是根据转移后原子核的位置确定的 位置有助于确定其轨迹 这与原子核的质荷比有关 因为转移是在有磁铁的情况下完成的 27 自发裂变是由苏联科学家格奥尔基 弗廖罗夫发现的 28 而他也是杜布纳联合原子核研究所的科学家 所以自发裂变就成了杜布纳联合原子核研究所经常讨论的课题 29 劳伦斯伯克利国家实验室的科学家们认为自发裂变的信息不足以声称合成元素 他们认为对自发裂变的研究还不够充分 无法将其用于识别新元素 因为很难确定复合原子核是不是仅喷射中子 而不是质子或a粒子等带电粒子 16 因此他们更喜欢通过连续的a衰变将新的同位素与已知的同位素联系起来 28 举个例子 102号元素于1957年被瑞典斯德哥尔摩省斯德哥尔摩的诺贝尔物理研究所错误鉴定 30 早先没有关于该元素发现的明确声明 所以由它的瑞典 美国 英国发现者命名为nobelium 后来证明这个元素的鉴定是错误的 31 第二年 劳伦斯伯克利国家实验室无法重现瑞典的结果 而是宣布他们合成了该元素 但后来也被驳回 31 杜布纳联合原子核研究所坚持认为他们第一个发现该元素 并建议把新元素命名为joliotium 32 而这个名称也没有被接受 他们后来认为102号元素的命名是仓促的 33 由于其广泛使用 nobelium这个名称仍然保持不变 34 參考資料 编辑 Emsley John Nature s Building Blocks An A Z Guide to the Elements New New York NY Oxford University Press 2011 278 9 ISBN 978 0 19 960563 7 Ostlin A Vitos L First principles calculation of the structural stability of 6d transition metals Physical Review B 2011 84 11 Bibcode 2011PhRvB 84k3104O doi 10 1103 PhysRevB 84 113104 存档副本 2016 05 21 原始内容存档于2019 07 01 100 Years of Scholarship Cal Alumni August 24 2013 原始内容存档于2013 10 02 Wakhle A Simenel C Hinde D J et al Simenel C Gomes P R S Hinde D J et al 编 Comparing Experimental and Theoretical Quasifission Mass Angle Distributions European Physical Journal Web of Conferences 2015 86 00061 ISSN 2100 014X doi 10 1051 epjconf 20158600061 nbsp 英语 Kramer K Explainer superheavy elements Chemistry World 2016 2020 03 15 原始内容存档于2021 05 15 英语 Discovery of Elements 113 and 115 Lawrence Livermore National Laboratory 2020 03 15 原始内容存档于2015 09 11 英语 Eliav E Kaldor U Borschevsky A Electronic Structure of the Transactinide Atoms Scott R A 编 Encyclopedia of Inorganic and Bioinorganic Chemistry John Wiley amp Sons 1 16 2018 ISBN 978 1 119 95143 8 doi 10 1002 9781119951438 eibc2632 英语 Oganessian Yu Ts Dmitriev S N Yeremin A V et al Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe 136Xe Physical Review C 2009 79 2 024608 ISSN 0556 2813 doi 10 1103 PhysRevC 79 024608 英语 Munzenberg G Armbruster P Folger H et al The identification of element 108 PDF Zeitschrift fur Physik A 1984 317 2 235 236 2012 10 20 Bibcode 1984ZPhyA 317 235M doi 10 1007 BF01421260 原始内容 PDF 存档于2015 06 07 英语 Subramanian S Making New Elements Doesn t Pay Just Ask This Berkeley Scientist Bloomberg Businessweek 2020 01 18 原始内容存档于2019 12 11 英语 12 0 12 1 Ivanov D Sverhtyazhelye shagi v neizvestnoe Superheavy steps into the unknown nplus1 ru 2019 2020 02 02 原始内容存档于2020 04 23 俄语 Hinde D Something new and superheavy at the periodic table The Conversation 2017 2020 01 30 原始内容存档于2020 03 17 英语 14 0 14 1 Krasa A Neutron Sources for ADS Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2010 4 8 S2CID 28796927 英语 Wapstra A H Criteria that must be satisfied for the discovery of a new chemical element to be recognized PDF Pure and Applied Chemistry 1991 63 6 883 2021 11 28 ISSN 1365 3075 doi 10 1351 pac199163060879 原始内容存档 PDF 于2021 10 11 英语 16 0 16 1 Hyde E K Hoffman D C Keller O L A History and Analysis of the Discovery of Elements 104 and 105 Radiochimica Acta 1987 42 2 67 68 2021 11 28 ISSN 2193 3405 doi 10 1524 ract 1987 42 2 57 原始内容存档于2021 11 27 英语 17 0 17 1 17 2 Chemistry World How to Make Superheavy Elements and Finish the Periodic Table Video Scientific American 2016 2020 01 27 原始内容存档于2020 04 21 英语 Hoffman Ghiorso amp Seaborg 2000 第334頁 sfn error no target CITEREFHoffmanGhiorsoSeaborg2000 help Hoffman Ghiorso amp Seaborg 2000 第335頁 sfn error no target CITEREFHoffmanGhiorsoSeaborg2000 help Zagrebaev V Karpov A Greiner W Future of superheavy element research Which nuclei could be synthesized within the next few years Journal of Physics Conference Series 2013 420 1 3 Bibcode 2013JPhCS 420a2001Z ISSN 1742 6588 arXiv 1207 5700 nbsp doi 10 1088 1742 6596 420 1 012001 Beiser 2003 第432頁 sfn error no target CITEREFBeiser2003 help Staszczak A Baran A Nazarewicz W Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory Physical Review C 2013 87 2 024320 1 ISSN 0556 2813 doi 10 1103 physrevc 87 024320 nbsp 英语 Kondev F G Wang M Huang W J Naimi S Audi G The NUBASE2020 evaluation of nuclear properties PDF Chinese Physics C 2021 45 3 030001 doi 10 1088 1674 1137 abddae Beiser 2003 第439頁 sfn error no target CITEREFBeiser2003 help Oganessian Yu Ts Rykaczewski K P A beachhead on the island of stability Physics Today 2015 68 8 32 38 2021 11 28 ISSN 0031 9228 OSTI 1337838 doi 10 1063 PT 3 2880 原始内容存档于2021 11 28 英语 Grant A Weighing the heaviest elements Physics Today 2018 doi 10 1063 PT 6 1 20181113a 英语 Howes L Exploring the superheavy elements at the end of the periodic table Chemical amp Engineering News 2019 2020 01 27 原始内容存档于2021 11 28 英语 28 0 28 1 Robinson A E The Transfermium Wars Scientific Brawling and Name Calling during the Cold War Distillations 2019 2020 02 22 原始内容存档于2021 11 28 英语 Populyarnaya biblioteka himicheskih elementov Siborgij ekavolfram Popular library of chemical elements Seaborgium eka tungsten n t ru 2020 01 07 俄语 Reprinted from Ekavolfram Eka tungsten Populyarnaya biblioteka himicheskih elementov Serebro Nilsborij i dalee Popular library of chemical elements Silver through nielsbohrium and beyond Nauka 1977 俄语 Nobelium Element information properties and uses Periodic Table Royal Society of Chemistry 2020 03 01 原始内容存档于2021 03 08 英语 31 0 31 1 Kragh 2018 第38 39頁 sfn error no target CITEREFKragh2018 help Kragh 2018 第40頁 sfn error no target CITEREFKragh2018 help Ghiorso A Seaborg G T Oganessian Yu Ts et al Responses on the report Discovery of the Transfermium elements followed by reply to the responses by Transfermium Working Group PDF Pure and Applied Chemistry 1993 65 8 1815 1824 2016 09 07 doi 10 1351 pac199365081815 原始内容存档 PDF 于2013 11 25 英语 Commission on Nomenclature of Inorganic Chemistry Names and symbols of transfermium elements IUPAC Recommendations 1997 PDF Pure and Applied Chemistry 1997 69 12 2471 2474 2021 11 28 doi 10 1351 pac199769122471 原始内容存档 PDF 于2021 10 11 英语 刘路沙 101 109号元素有了中文定名 光明网 光明日报 2020 11 10 原始内容存档于2020 11 10 贵州地勘局情报室摘于 中国地质矿产报 1998年8月13日 101 109号化学元素正式定名 貴州地質 1998 15 298 298 2020 11 10 原始内容存档于2020 12 03 37 0 37 1 37 2 37 3 Silva 2011 第1642頁harvnb error no target CITEREFSilva2011 help Khuyagbaatar J et al 48Ca 249Bk Fusion Reaction Leading to Element Z 117 Long Lived a Decaying 270Db and Discovery of 266Lr PDF Physical Review Letters 2014 112 17 172501 2022 01 24 Bibcode 2014PhRvL 112q2501K PMID 24836239 doi 10 1103 PhysRevLett 112 172501 hdl 1885 70327 nbsp 原始内容 PDF 存档于2022 04 08 39 0 39 1 Leppanen A P Alpha decay and decay tagging studies of heavy elements using the RITU separator PDF 学位论文 University of Jyvaskyla 83 100 2005 2022 01 24 ISBN 978 951 39 3162 9 ISSN 0075 465X 原始内容 PDF 存档于2022 03 17 40 0 40 1 Clara Moskowitz Superheavy Element 117 Points to Fabled Island of Stability on Periodic Table Scientific American May 7 2014 2014 05 08 原始内容存档于2014 05 09 41 0 41 1 Nucleonica Web driven nuclear science 2022 01 24 原始内容存档于2017 02 19 42 0 42 1 Audi G Kondev F G Wang M Huang W J Naimi S The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 2017 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 43 0 43 1 43 2 Silva pp 1642 3 查证请求 外部連結 编辑元素鐒在洛斯阿拉莫斯国家实验室的介紹 英文 EnvironmentalChemistry com 鐒 英文 元素鐒在The Periodic Table of Videos 諾丁漢大學 的介紹 英文 元素鐒在Peter van der Krogt elements site的介紹 英文 WebElements com 鐒 英文 取自 https zh wikipedia org w index php title 鐒 amp oldid 79587710, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。