fbpx
维基百科

连续函数

连续函数(英語:continuous function)是指函数在数学上的属性为连续。直观上来说,连续的函数就是当输入的变化足够小的时候,输出的变化也会随之足够小的函数。

如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续函数,或者说具有不连续性。非连续函数一定存在间断点。

举例来说,考虑描述一棵树的高度时间而变化的函数,那么这个函数是连续的(除非树被砍断)。又例如,假设表示地球上某一点的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数是不连续的。

实值连续函数 编辑

最基本也是最常见的连续函数是定义域实数集的某个子集、取值也是实数的连续函数。例如前面提到的树的高度,就是属于这一类型。这类函数的连续性可以用直角坐标系中的图像来表示。一个这样的函数是连续的,如果粗略地说,它的图像为一个单一的不破的曲线,并且没有间断跳跃无限逼近的振荡

严格来说,设 是一个从实数集的子集 射到 的函数:   中的某个 处是连续的当且仅当以下的两个条件满足:

  1.  在点 上有定义。
  2.   中的一个聚点,并且无论自变量  中以什么方式接近  极限都存在且等于 

我们称函数到处连续处处连续,或者简单的称为连续,如果它在其定义域中的任意一点都连续。更一般地,当一个函数在定义域中的某个子集的每一点处都连续时,就说这个函数在这个子集上是连续的。

定义 编辑

不用极限的概念,也可以用下面所谓的 方法来定义实值函数的连续性。

仍然考虑函数 。假设  的定义域中的元素。函数 被称为是在 点连续当且仅当以下条件成立:

对于任意的正实数 ,存在一个正实数 使得对于任意定义域中的 ,只要 满足 ,就有 成立。

连续性的“ 定义”由柯西首先给出。

更直观地,函数 是连续的当且仅当任意取一個 中的点 鄰域 ,都可以在其定义域 中选取点 的足够小的鄰域,使得 的鄰域在函數 上的映射下都會落在 的鄰域 之內。

以上是针对单变量函数(定义域在 上的函数)的定义,这个定义在推广到多变量函数时也是成立的。度量空间以及拓扑空间之间的连续函数定义见下一节。

例子 编辑

  • 所有多项式函数都是连续的。各类初等函数,如指数函数对数函数平方根函数三角函数在它们的定义域上也是连续的函数。
  • 绝对值函数也是连续的。
  • 定义在非零实数上的倒数函数 是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。
  • 非连续函数的一个例子是分段定义的函数。例如定义 为: 如果  如果 。取 ,不存在  -邻域使所有 的值在  邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。
  • 另一个不连续函数的例子为符号函数

连续函数的性质 编辑

如果两个函数  是连续的, 为一个实数,那么   都是连续的。所有连续函数的集合构成一个环,也构成一个向量空间(实际上构成一个代数)。如果对于定义域内的所有 ,都有 ,那么 也是连续的。

两个连续函数的复合函数 也是连续函数。

如果实函数 闭区间 内连续,且 是某个  之间的数,那么存在某个 内的 ,使得 。这个定理称为介值定理。例如,如果一个小孩在五岁到十岁之间身高从1米增长到了1.5米,那么期间一定有某一个时刻的身高正好是1.3米。

如果  内连续,且  一正一负,则中间一定有某一个点 ,使得 。这是介值定理的一个推论。

如果 在闭区间 内连续,则它一定取得最大值,也就是说,总存在 ,使得对于所有的 ,有 。同样地,函数也一定有最小值。这个定理称为极值定理。(注意如果函数是定义在开区间 内,则它不一定有最大值和最小值,例如定义在开区间 内的函数 。)

如果一个函数在定义域中的某个点 可微,则它一定在点 连续。反过来不成立;连续的函数不一定可微。例如,绝对值函数在点 连续,但不可微。

度量空间之间的连续函数 编辑

现在考虑从度量空间 到另一个度量空间 的函数 

  是连续的,則对任何实数 ,存在一个实数 使得 ,只要满足 ,就满足 

这个定义可以用序列极限的语言重述:

如果函数 在点 连续,則对 中任何序列 ,只要 ,就有 。连续函数将极限变成极限。

后一个条件可以减弱为:

  点连续,当且仅当对 中任何序列 ,只要 ,就滿足序列 是一个柯西序列。连续函数将收敛序列变成柯西序列。

性質 编辑

拓扑空间之间的连续函数 编辑

如上连续函数的定义可以自然地推广到一个拓扑空间到另一拓扑空间的函数:对拓扑空间  ,函数 是连续的当且仅当任何开集 逆像  中开集。

历史 编辑

函数的连续性质在很长时间内被认为是当然的。

第一个比较严格的定义归功于伯纳德·波尔查诺[1]。他在1817年用德文写下的定义是这样的:函数  点是连续的,当且仅当

“……若 足够小时, 比任何事先给定的量都小”[2]

然后波尔查诺在证明中值定理时用 来表示所谓“事先给定的量”。

六年以后,柯西在1823年也给了一个定义,但此定义还不如波尔查诺前面给出的定义清楚:

“…… 的大小随着 的减小而不确定地减小。……变量(指 )的一个无穷小的增长会导致函数本身(指 )的一个无穷小的增长”。

这里的无穷小指的是:一个量的“绝对值不断而无止境地减小以至于小于任何一个事先给定的量”。

现代的 定义只要把波尔查诺在其证明里的写法中“事先给定的量”用 来代替就可以了。这个现代定义第一次公开发表在刊物上是1874年由魏尔斯特拉斯的一个学生海涅根据魏尔斯特拉斯的讲义写的。

相关条目 编辑

注释 编辑

  1. ^ (法文),Bourbaki, N., Eléments d'histoire des mathématiques, Masson, Paris, 1984, ISBN 978-3-540-33938-0
  2. ^ "A Source book of classical analysis", Harvard university Press, edited by Garrett Birkhoff.


参考文献 编辑

  • Visual Calculus (页面存档备份,存于互联网档案馆) by Lawrence S. Husch, University of Tennessee (2001)

连续函数, 建議将連續函數, 拓撲學, 併入此條目或章節, 討論, 英語, continuous, function, 是指函数在数学上的属性为连续, 直观上来说, 连续的函数就是当输入值的变化足够小的时候, 输出的变化也会随之足够小的函数, 如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义, 则这个函数被称为是不, 或者说具有不连续性, 非一定存在间断点, 举例来说, 考虑描述一棵树的高度随时间而变化的函数h, displaystyle, 那么这个函数是连续的, 除非树被砍断, 又例如, 假设t. 建議将連續函數 拓撲學 併入此條目或章節 討論 连续函数 英語 continuous function 是指函数在数学上的属性为连续 直观上来说 连续的函数就是当输入值的变化足够小的时候 输出的变化也会随之足够小的函数 如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义 则这个函数被称为是不连续函数 或者说具有不连续性 非连续函数一定存在间断点 举例来说 考虑描述一棵树的高度随时间而变化的函数h t displaystyle h t 那么这个函数是连续的 除非树被砍断 又例如 假设T P displaystyle T P 表示地球上某一点P displaystyle P 的空气温度 则这个函数也是连续的 事实上 古典物理学中有一句格言 自然界中 一切都是连续的 相比之下 如果M t displaystyle M t 表述在时间t的时候银行账户上的钱币金额 则这个函数无论在存钱或者取钱的时候都会有跳跃 因此函数M t displaystyle M t 是不连续的 目录 1 实值连续函数 1 1 定义 1 2 例子 1 3 连续函数的性质 2 度量空间之间的连续函数 2 1 性質 3 拓扑空间之间的连续函数 4 历史 5 相关条目 6 注释 7 参考文献实值连续函数 编辑最基本也是最常见的连续函数是定义域为实数集的某个子集 取值也是实数的连续函数 例如前面提到的树的高度 就是属于这一类型 这类函数的连续性可以用直角坐标系中的图像来表示 一个这样的函数是连续的 如果粗略地说 它的图像为一个单一的不破的曲线 并且没有间断 跳跃或无限逼近的振荡 严格来说 设f displaystyle f nbsp 是一个从实数集的子集I R displaystyle mathbf I subset mathbb R nbsp 射到J R displaystyle mathbf J subset mathbb R nbsp 的函数 f I J displaystyle f mathbf I longrightarrow mathbf J nbsp f displaystyle f nbsp 在I displaystyle mathbf I nbsp 中的某个点c displaystyle c nbsp 处是连续的当且仅当以下的两个条件满足 f displaystyle f nbsp 在点c displaystyle c nbsp 上有定义 c displaystyle c nbsp 是I displaystyle mathbf I nbsp 中的一个聚点 并且无论自变量x displaystyle x nbsp 在I displaystyle mathbf I nbsp 中以什么方式接近c displaystyle c nbsp f x displaystyle f x nbsp 的极限都存在且等于f c displaystyle f c nbsp 我们称函数到处连续或处处连续 或者简单的称为连续 如果它在其定义域中的任意一点都连续 更一般地 当一个函数在定义域中的某个子集的每一点处都连续时 就说这个函数在这个子集上是连续的 定义 编辑 不用极限的概念 也可以用下面所谓的e d displaystyle varepsilon delta nbsp 方法来定义实值函数的连续性 仍然考虑函数f I J displaystyle f mathbf I longrightarrow mathbf J nbsp 假设c displaystyle c nbsp 是f displaystyle f nbsp 的定义域中的元素 函数f displaystyle f nbsp 被称为是在c displaystyle c nbsp 点连续当且仅当以下条件成立 对于任意的正实数e gt 0 displaystyle varepsilon gt 0 nbsp 存在一个正实数d gt 0 displaystyle delta gt 0 nbsp 使得对于任意定义域中的x I displaystyle x in mathbf I nbsp 只要x displaystyle x nbsp 满足c d lt x lt c d displaystyle c delta lt x lt c delta nbsp 就有f c e lt f x lt f c e displaystyle f c varepsilon lt f x lt f c varepsilon nbsp 成立 连续性的 e d displaystyle varepsilon delta nbsp 定义 由柯西首先给出 更直观地 函数f displaystyle f nbsp 是连续的当且仅当任意取一個J displaystyle mathbf J nbsp 中的点f c displaystyle f c nbsp 的鄰域W displaystyle Omega nbsp 都可以在其定义域I displaystyle mathbf I nbsp 中选取点x displaystyle x nbsp 的足够小的鄰域 使得x displaystyle x nbsp 的鄰域在函數f displaystyle f nbsp 上的映射下都會落在f c displaystyle f c nbsp 的鄰域W displaystyle Omega nbsp 之內 以上是针对单变量函数 定义域在R displaystyle mathbb R nbsp 上的函数 的定义 这个定义在推广到多变量函数时也是成立的 度量空间以及拓扑空间之间的连续函数定义见下一节 例子 编辑 所有多项式函数都是连续的 各类初等函数 如指数函数 对数函数 平方根函数与三角函数在它们的定义域上也是连续的函数 绝对值函数也是连续的 定义在非零实数上的倒数函数f 1 x displaystyle f frac 1 x nbsp 是连续的 但是如果函数的定义域扩张到全体实数 那么无论函数在零点取任何值 扩张后的函数都不是连续的 非连续函数的一个例子是分段定义的函数 例如定义f displaystyle f nbsp 为 f x 1 displaystyle f x 1 nbsp 如果x gt 0 displaystyle x gt 0 nbsp f x 0 displaystyle f x 0 nbsp 如果x 0 displaystyle x leq 0 nbsp 取e 1 2 displaystyle varepsilon frac 1 2 nbsp 不存在x 0 displaystyle x 0 nbsp 的d displaystyle delta nbsp 邻域使所有f x displaystyle f x nbsp 的值在f 0 displaystyle f 0 nbsp 的e displaystyle varepsilon nbsp 邻域内 直觉上我们可以将这种不连续点看做函数值的突然跳跃 另一个不连续函数的例子为符号函数 连续函数的性质 编辑 如果两个函数f displaystyle f nbsp 和g displaystyle g nbsp 是连续的 l displaystyle lambda nbsp 为一个实数 那么f g displaystyle displaystyle f g nbsp l f displaystyle displaystyle lambda f nbsp 和f g displaystyle displaystyle fg nbsp 都是连续的 所有连续函数的集合构成一个环 也构成一个向量空间 实际上构成一个代数 如果对于定义域内的所有x displaystyle x nbsp 都有g x 0 displaystyle g x neq 0 nbsp 那么f g displaystyle frac f g nbsp 也是连续的 两个连续函数的复合函数f g displaystyle f circ g nbsp 也是连续函数 如果实函数f displaystyle f nbsp 在闭区间 a b displaystyle a b nbsp 内连续 且k displaystyle k nbsp 是某个f a displaystyle f a nbsp 和f b displaystyle f b nbsp 之间的数 那么存在某个 a b displaystyle a b nbsp 内的c displaystyle c nbsp 使得f c k displaystyle f c k nbsp 这个定理称为介值定理 例如 如果一个小孩在五岁到十岁之间身高从1米增长到了1 5米 那么期间一定有某一个时刻的身高正好是1 3米 如果f displaystyle f nbsp 在 a b displaystyle a b nbsp 内连续 且f a displaystyle f a nbsp 和f b displaystyle f b nbsp 一正一负 则中间一定有某一个点c displaystyle c nbsp 使得f c 0 displaystyle f c 0 nbsp 这是介值定理的一个推论 如果f displaystyle f nbsp 在闭区间 a b displaystyle a b nbsp 内连续 则它一定取得最大值 也就是说 总存在c a b displaystyle c in a b nbsp 使得对于所有的x a b displaystyle x in a b nbsp 有f c f x displaystyle f c geqslant f x nbsp 同样地 函数也一定有最小值 这个定理称为极值定理 注意如果函数是定义在开区间 a b displaystyle a b nbsp 内 则它不一定有最大值和最小值 例如定义在开区间 0 1 displaystyle 0 1 nbsp 内的函数f x 1 x displaystyle f x frac 1 x nbsp 如果一个函数在定义域中的某个点f c displaystyle f c nbsp 可微 则它一定在点c displaystyle c nbsp 连续 反过来不成立 连续的函数不一定可微 例如 绝对值函数在点c 0 displaystyle c 0 nbsp 连续 但不可微 度量空间之间的连续函数 编辑现在考虑从度量空间 X d X displaystyle X d X nbsp 到另一个度量空间 Y d Y displaystyle Y d Y nbsp 的函数f displaystyle f nbsp f displaystyle f nbsp 在c X displaystyle c in X nbsp 是连续的 則对任何实数e gt 0 displaystyle varepsilon gt 0 nbsp 存在一个实数d gt 0 displaystyle delta gt 0 nbsp 使得 x X displaystyle forall x in X nbsp 只要满足d X x c lt d displaystyle d X x c lt delta nbsp 就满足d Y f x f c lt e displaystyle d Y f x f c lt varepsilon nbsp 这个定义可以用序列与极限的语言重述 如果函数f displaystyle f nbsp 在点c displaystyle c nbsp 连续 則对X displaystyle X nbsp 中任何序列 x n displaystyle x n nbsp 只要lim n x n c displaystyle lim limits n rightarrow infty x n c nbsp 就有lim n f x n f c displaystyle lim limits n rightarrow infty f x n f c nbsp 连续函数将极限变成极限 后一个条件可以减弱为 f displaystyle f nbsp 在c displaystyle c nbsp 点连续 当且仅当对X displaystyle X nbsp 中任何序列 x n displaystyle x n nbsp 只要lim n x n c displaystyle lim limits n rightarrow infty x n c nbsp 就滿足序列 f x n displaystyle f x n nbsp 是一个柯西序列 连续函数将收敛序列变成柯西序列 性質 编辑 閉集關於連續函數的原像為閉集 開集關於連續函數的原像為開集 緊緻集透過連續函數的像是緊緻集 連通集透過連續函數的像是連通集拓扑空间之间的连续函数 编辑主条目 连续函数 拓扑学 如上连续函数的定义可以自然地推广到一个拓扑空间到另一拓扑空间的函数 对拓扑空间X displaystyle X nbsp 与Y displaystyle Y nbsp 函数f X Y displaystyle f X rightarrow Y nbsp 是连续的当且仅当任何开集V Y displaystyle V subseteq Y nbsp 的逆像f 1 V displaystyle f 1 V nbsp 是X displaystyle X nbsp 中开集 历史 编辑函数的连续性质在很长时间内被认为是当然的 第一个比较严格的定义归功于伯纳德 波尔查诺 1 他在1817年用德文写下的定义是这样的 函数f displaystyle f nbsp 在x displaystyle x nbsp 点是连续的 当且仅当 若h displaystyle h nbsp 足够小时 f x h f x displaystyle f x h f x nbsp 比任何事先给定的量都小 2 然后波尔查诺在证明中值定理时用ϵ displaystyle epsilon nbsp 来表示所谓 事先给定的量 六年以后 柯西在1823年也给了一个定义 但此定义还不如波尔查诺前面给出的定义清楚 f x h f x displaystyle f x h f x nbsp 的大小随着h displaystyle h nbsp 的减小而不确定地减小 变量 指x displaystyle x nbsp 的一个无穷小的增长会导致函数本身 指f x displaystyle f x nbsp 的一个无穷小的增长 这里的无穷小指的是 一个量的 绝对值不断而无止境地减小以至于小于任何一个事先给定的量 现代的ϵ d displaystyle epsilon delta nbsp 定义只要把波尔查诺在其证明里的写法中 事先给定的量 用ϵ displaystyle epsilon nbsp 来代替就可以了 这个现代定义第一次公开发表在刊物上是1874年由魏尔斯特拉斯的一个学生海涅根据魏尔斯特拉斯的讲义写的 相关条目 编辑单一连续 一致连续 有界线性算子 绝对连续 半连续注释 编辑 法文 Bourbaki N Elements d histoire des mathematiques Masson Paris 1984 ISBN 978 3 540 33938 0 A Source book of classical analysis Harvard university Press edited by Garrett Birkhoff 参考文献 编辑Visual Calculus 页面存档备份 存于互联网档案馆 by Lawrence S Husch University of Tennessee 2001 取自 https zh wikipedia org w index php title 连续函数 amp oldid 79858519, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。