fbpx
维基百科

矩陣力學

矩陣力學量子力學其中一種的表述形式,它是由海森堡玻恩约尔当(P. Jordan)於1925年完成的。矩陣力學的思想出發點是針對波耳模型中許多觀點,諸如電子軌道頻率等,都不是可以直接觀察的。反之,在實驗中經常接觸到的是光譜線的頻率、強度、偏極化,以及能階海森堡計劃創造一個理論,只是用光譜線的頻率、強度、偏極化等觀念。他的做法是受到愛因斯坦相對論中對時間、空間作“操作定義”分析的影響。

线性代数

向量 · 向量空间  · 行列式  · 矩阵

矩陣力學的基本假定

凡是矩陣力學,皆可建於以下的假定:

  1. 所有的物理量,均以厄米矩陣表之。一個物理系統的哈密頓函數  廣義坐標矩陣   及其共軛動量矩陣   的函數。
  2. 一個物理量   的觀察值,是該矩陣的本徵值   。而能量   是哈密頓函數   的本徵值。
  3. 一個物理系統的廣義坐標矩陣及其共軛動量矩陣滿足以下的對易關係,亦稱為強量子條件
     
      為單位矩陣。
  4. 一個物理系統(如原子)的頻率  ,由頻率條件定之:
 

對易關係的思想來源

  這個條件是由波耳的頻率條件直接得來;但對易關係是如何引進的呢?如何得知新的力學形式是用矩陣去表達的呢? 其實海森堡的思想來源是先來自週期系統的解;週期系統的解全都可用傅立葉級數去展示:

 

在此的  ,  。 傅立葉級數有一個特點,就是對它進行運算,例如相加、相乘或微分,都不會產生除了 以外的新頻率系列。 但原子系統的頻率是不能用傅立葉級數去表示,而是有一個叫里茲組合原則的經驗關係:

 

如果頻率能表示為經驗項之差(如氫原子里德伯公式):

 

里茲組合原則即可滿足,而在這裡原子系統形成一個“二維”的系統;對於頻率的“二維”本性,海森堡用“二維”的廣義坐標

 

去取代傅立葉分量  。而為了模擬傅立葉級數,要求“二維”數集有以下關係:

 

至於譜線   的幅度及偏振分別由    複數的相位去表示。從里茲組合原則及對應原理,可以知道這類“二維”數集的乘法規則是:

 

以使“二維”數集的運算,都不會產生   以外的新頻率,如

 
 

海森堡只憑這些結果,就能得到諧振子的零點能是  ,但計算其間要多次運用對應原理,先引入波耳-索末菲量子條件  ,利用經典物理去估算量子物理的結果。

接著海森堡將他的結果轉寄給玻恩玻恩對於這些“二維”數集初時亦大感不解,後來他便意識到這些數集的運算與一個矩陣的運算是一模一樣的,於是玻恩便與海森堡和約爾丹開展矩陣力學的建立。 首先,任何兩個矩陣的乘法是不對易的:

 

所以一個物理系統的廣義坐標矩陣及其共軛動量滿矩陣的乘積是不對易的:

 

那麼這個乘積會等於甚麼呢?其實這個乘積等於甚麼可從波耳-索末菲量子條件   加上對應原理預示出來。 對於任何週期系統,作用量有:

 

  都使用傅立葉級數表示,就有:

 

所以  

在波耳-索末菲的理論中,作用量被量子化:

 

況且  

由對應原理可知,經典理論的任何一個物理量   的導數  ,在量子理論中可用  ,所以   可用   替代,在新的理論中又可用   表達式替代,即

 

將此代入上述的  ,他們就得到關係式:

 

這可用矩陣重新寫成:

 

他們便作以下的假定:一個物理系統的廣義坐標矩陣及其共軛動量矩陣滿足以下的對易關係

 

  為單位矩陣。

注意,千萬不要以為對易關係能用波耳-索末菲量子條件「推導」出來,更不要以為它可從經典物理推導出來,總之,對易關係是一個全新的假定,只有實驗才能確認它的真實性。

海森堡運動方程式及量子泊松括號

根據上文的對易關係,如果有一個矩陣函數(哈密頓函數)  ,我們有以下的關係:

 
 

矩阵力学与波动力学等价性说明

在此,采用狄拉克矢量记号。量子力学基本方程是

 

薛定谔的波动力学就是(薛定谔绘景下)坐标空间表象下的上述方程,即

 

海森堡的矩阵力学一般说来就是能量表象下的方程,即

 

两者只是表象不同,自然是等价的。

注释

参考资料

矩陣力學, 此條目没有列出任何参考或来源, 2019年10月12日, 維基百科所有的內容都應該可供查證, 请协助補充可靠来源以改善这篇条目, 无法查证的內容可能會因為異議提出而移除, 是量子力學其中一種的表述形式, 它是由海森堡, 玻恩和约尔当, jordan, 於1925年完成的, 的思想出發點是針對波耳模型中許多觀點, 諸如電子的軌道, 頻率等, 都不是可以直接觀察的, 反之, 在實驗中經常接觸到的是光譜線的頻率, 強度, 偏極化, 以及能階, 海森堡計劃創造一個理論, 只是用光譜線的頻率, 強度, 偏極化等觀. 此條目没有列出任何参考或来源 2019年10月12日 維基百科所有的內容都應該可供查證 请协助補充可靠来源以改善这篇条目 无法查证的內容可能會因為異議提出而移除 矩陣力學是量子力學其中一種的表述形式 它是由海森堡 玻恩和约尔当 P Jordan 於1925年完成的 矩陣力學的思想出發點是針對波耳模型中許多觀點 諸如電子的軌道 頻率等 都不是可以直接觀察的 反之 在實驗中經常接觸到的是光譜線的頻率 強度 偏極化 以及能階 海森堡計劃創造一個理論 只是用光譜線的頻率 強度 偏極化等觀念 他的做法是受到愛因斯坦在相對論中對時間 空間作 操作定義 分析的影響 线性代数A 1 2 3 4 displaystyle mathbf A begin bmatrix 1 amp 2 3 amp 4 end bmatrix 向量 向量空间 行列式 矩阵向量标量 向量 向量空间 向量投影 外积 向量积 内积 数量积 矩阵与行列式矩阵 行列式 线性方程组 秩 核 迹 單位矩陣 初等矩阵 方块矩阵 分块矩阵 三角矩阵 非奇异方阵 转置矩阵 逆矩阵 对角矩阵 可对角化矩阵 对称矩阵 反对称矩阵 正交矩阵 幺正矩阵 埃尔米特矩阵 反埃尔米特矩阵 正规矩阵 伴随矩阵 余因子矩阵 共轭转置 正定矩阵 幂零矩阵 矩阵分解 LU分解 奇异值分解 QR分解 极分解 特征分解 子式和余子式 拉普拉斯展開 克罗内克积线性空间与线性变换线性空间 线性变换 线性子空间 线性生成空间 基 线性映射 线性投影 线性无关 线性组合 线性泛函 行空间与列空间 对偶空间 正交 特征向量 最小二乘法 格拉姆 施密特正交化查论编 目录 1 矩陣力學的基本假定 2 對易關係的思想來源 3 海森堡運動方程式及量子泊松括號 4 矩阵力学与波动力学等价性说明 5 注释 6 参考资料矩陣力學的基本假定 编辑凡是矩陣力學 皆可建於以下的假定 所有的物理量 均以厄米矩陣表之 一個物理系統的哈密頓函數 H displaystyle mathbf H 是廣義坐標矩陣 Q displaystyle mathbf Q 及其共軛動量矩陣 P displaystyle mathbf P 的函數 一個物理量 F displaystyle mathbf F 的觀察值 是該矩陣的本徵值 f n 1 n 2 displaystyle f n 1 n 2 而能量 E n 1 n 2 displaystyle E n 1 n 2 是哈密頓函數 H displaystyle mathbf H 的本徵值 一個物理系統的廣義坐標矩陣及其共軛動量矩陣滿足以下的對易關係 亦稱為強量子條件 P Q Q P ℏ i I displaystyle mathbf PQ mathbf QP hbar over i mathbf I I displaystyle mathbf I 為單位矩陣 一個物理系統 如原子 的頻率 n n 1 n 2 displaystyle nu n 1 n 2 由頻率條件定之 h n n 1 n 2 E n 1 n 1 E n 2 n 2 displaystyle h nu n 1 n 2 E n 1 n 1 E n 2 n 2 對易關係的思想來源 编辑h n n 1 n 2 E n 1 n 1 E n 2 n 2 displaystyle h nu n 1 n 2 E n 1 n 1 E n 2 n 2 這個條件是由波耳的頻率條件直接得來 但對易關係是如何引進的呢 如何得知新的力學形式是用矩陣去表達的呢 其實海森堡的思想來源是先來自週期系統的解 週期系統的解全都可用傅立葉級數去展示 q n t n 0 a n cos 2 p n n t b n sin 2 p n n t q n e 2 p i n n t displaystyle q n t sum n 0 infty a n cos 2 pi n nu t b n sin 2 pi n nu t sum infty infty q n e 2 pi in nu t 在此的 q n 1 2 a n i b n displaystyle q n frac 1 2 a n ib n q n q n displaystyle q n q n 傅立葉級數有一個特點 就是對它進行運算 例如相加 相乘或微分 都不會產生除了n n n 1 2 displaystyle n nu n 1 2 cdots 以外的新頻率系列 但原子系統的頻率是不能用傅立葉級數去表示 而是有一個叫里茲組合原則的經驗關係 n n 1 n 2 n n 1 n 3 n n 3 n 2 displaystyle nu n 1 n 2 nu n 1 n 3 nu n 3 n 2 如果頻率能表示為經驗項之差 如氫原子的里德伯公式 n n 1 n 2 T n 1 T n 2 displaystyle nu n 1 n 2 T n 1 T n 2 里茲組合原則即可滿足 而在這裡原子系統形成一個 二維 的系統 對於頻率的 二維 本性 海森堡用 二維 的廣義坐標 q n 1 n 2 o e 2 p i n n 1 n 2 t displaystyle q n 1 n 2 o e 2 pi i nu n 1 n 2 t 去取代傅立葉分量 q n e 2 p i n n t displaystyle q n e 2 pi in nu t 而為了模擬傅立葉級數 要求 二維 數集有以下關係 q n 1 n 2 o q n 1 n 2 o displaystyle q n 1 n 2 o q n 1 n 2 o 至於譜線 n n 1 n 2 displaystyle nu n 1 n 2 的幅度及偏振分別由 q n 1 n 2 2 displaystyle q n 1 n 2 2 及 q n 1 n 2 displaystyle q n 1 n 2 複數的相位去表示 從里茲組合原則及對應原理 可以知道這類 二維 數集的乘法規則是 x x n 1 n 2 j x n 1 j x j n 2 displaystyle xx n 1 n 2 sum j x n 1 j x j n 2 以使 二維 數集的運算 都不會產生 n n 1 n 2 displaystyle nu n 1 n 2 以外的新頻率 如 q q n 1 n 2 k q n 1 k e 2 p i n n 1 k t q k n 2 e 2 p i n k n 2 t k q n 1 k q k n 2 e 2 p i n n 1 k n k n 2 t k q n 1 k q k n 2 e 2 p i n n 1 n 2 t displaystyle qq n 1 n 2 sum k q n 1 k e 2 pi i nu n 1 k t q k n 2 e 2 pi i nu k n 2 t sum k q n 1 k q k n 2 e 2 pi i nu n 1 k nu k n 2 t sum k q n 1 k q k n 2 e 2 pi i nu n 1 n 2 t q n 1 n 2 2 p i n n 1 n 2 q n 1 n 2 e 2 p i n n 1 n 2 t displaystyle dot q n 1 n 2 2 pi i nu n 1 n 2 q n 1 n 2 e 2 pi i nu n 1 n 2 t 海森堡只憑這些結果 就能得到諧振子的零點能是 1 2 h n displaystyle frac 1 2 h nu 但計算其間要多次運用對應原理 先引入波耳 索末菲量子條件 J p d q n h displaystyle J oint p dq nh 利用經典物理去估算量子物理的結果 接著海森堡將他的結果轉寄給玻恩 玻恩對於這些 二維 數集初時亦大感不解 後來他便意識到這些數集的運算與一個矩陣的運算是一模一樣的 於是玻恩便與海森堡和約爾丹開展矩陣力學的建立 首先 任何兩個矩陣的乘法是不對易的 A B B A 0 displaystyle mathbf AB mathbf BA neq mathbf 0 所以一個物理系統的廣義坐標矩陣及其共軛動量滿矩陣的乘積是不對易的 P Q Q P 0 displaystyle mathbf PQ mathbf QP neq mathbf 0 那麼這個乘積會等於甚麼呢 其實這個乘積等於甚麼可從波耳 索末菲量子條件 J p d q n h displaystyle J oint p dq nh 加上對應原理預示出來 對於任何週期系統 作用量有 J p d q 0 1 n p q d t displaystyle J oint p dq oint 0 frac 1 nu p dot q dt 如 p q displaystyle p quad q 都使用傅立葉級數表示 就有 J 0 1 n n 1 p n 1 e 2 p i n t n 2 2 p i n q n 2 e 2 p i n t d t 2 p i n n k 0 1 n p n q n k k n e 2 p i n t d t 2 p i t t p t q t displaystyle J int 0 frac 1 nu sum n 1 p n 1 e 2 pi i nu t sum n 2 2 pi i nu q n 2 e 2 pi i nu t dt 2 pi i nu sum n k int 0 frac 1 nu p n q n k k n e 2 pi i nu t dt 2 pi i sum tau infty infty tau p tau q tau 所以 1 J J 2 p i t t J p t q t displaystyle 1 frac partial J partial J 2 pi i sum tau infty infty tau frac partial partial J p tau q tau 在波耳 索末菲的理論中 作用量被量子化 J n h displaystyle J nh 況且 D J D n h t h t D n displaystyle Delta J Delta n h tau h quad tau equiv Delta n 由對應原理可知 經典理論的任何一個物理量 F displaystyle F 的導數 F J displaystyle frac partial F partial J 在量子理論中可用 D F D J D F t h displaystyle frac Delta F Delta J frac Delta F tau h 所以 J p t q t displaystyle frac partial partial J p tau q tau 可用 1 t h D p t q t displaystyle frac 1 tau h Delta p tau q tau 替代 在新的理論中又可用 P Q displaystyle mathbf P mathbf Q 表達式替代 即 1 t h D p t q t 1 t h D p n n t q n t n 1 t h p n n t q n t n q n n t p n t n displaystyle frac 1 tau h Delta p tau q tau rightarrow frac 1 tau h Delta p n n tau q n tau n frac 1 tau h p n n tau q n tau n q n n tau p n tau n 將此代入上述的 1 J J 2 p i t t J p t q t displaystyle 1 frac partial J partial J 2 pi i sum tau infty infty tau frac partial partial J p tau q tau 他們就得到關係式 1 2 p i h t p n n t q n t n q n n t p n t n displaystyle 1 frac 2 pi i h sum tau p n n tau q n tau n q n n tau p n tau n 這可用矩陣重新寫成 p q q p n n h 2 p i ℏ i displaystyle pq qp nn frac h 2 pi i frac hbar i 他們便作以下的假定 一個物理系統的廣義坐標矩陣及其共軛動量矩陣滿足以下的對易關係 P Q Q P ℏ i I displaystyle mathbf PQ mathbf QP hbar over i mathbf I I displaystyle mathbf I 為單位矩陣 注意 千萬不要以為對易關係能用波耳 索末菲量子條件 推導 出來 更不要以為它可從經典物理推導出來 總之 對易關係是一個全新的假定 只有實驗才能確認它的真實性 海森堡運動方程式及量子泊松括號 编辑根據上文的對易關係 如果有一個矩陣函數 哈密頓函數 H H Q P displaystyle mathbf H mathbf H mathbf Q mathbf P 我們有以下的關係 H Q Q H ℏ i H P displaystyle mathbf HQ mathbf QH hbar over i partial mathbf H over partial mathbf P H P P H ℏ i H Q displaystyle mathbf HP mathbf PH hbar over i partial mathbf H over partial mathbf Q 矩阵力学与波动力学等价性说明 编辑在此 采用狄拉克矢量记号 量子力学基本方程是 H ps E ps displaystyle hat H psi rangle E psi rangle 薛定谔的波动力学就是 薛定谔绘景下 坐标空间表象下的上述方程 即 x H x x ps E x ps ℏ 2 2 m 2 V r ps r E ps r displaystyle langle x hat H x rangle langle x psi rangle E langle x psi rangle quad Leftrightarrow quad left frac hbar 2 2m nabla 2 V mathbf r right psi mathbf r E psi mathbf r 海森堡的矩阵力学一般说来就是能量表象下的方程 即 E H E E ps E E ps displaystyle langle E hat H E rangle langle E psi rangle E langle E psi rangle 两者只是表象不同 自然是等价的 注释 编辑参考资料 编辑 取自 https zh wikipedia org w index php title 矩陣力學 amp oldid 74027791, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。