fbpx
维基百科

分裂四元数

分裂四元数乘法
× 1 i j k
1 1 i j k
i i -1 k −j
j j −k 1 i
k k j i 1

抽象代数中,分裂四元数(split-quaternions)或反四元数(coquaternions)是一种四维的结合代数的元素,由James Cockle英语James Cockle在1849年引入,当时称为反四元数。 类似于汉密尔顿1843年引入的四元数 ,它们组成了一个四的实向量空间,且有乘法运算。 与四元数不同,分裂四元数包含非平凡的零因子幂零元幂等元英语Idempotent_(ring_theory)。(例如, 是幂等的零因子,而 是幂零元。)作为一种数学结构,分裂四元数形成了域代数,且与2 × 2的矩阵同构

集合 组成一个。 这些元素的积由

,
,
,
,
,

给出。因此。 由以上定义可得,集合在分裂四元数乘法的定义下是一个,与二面体群同构,称为正方形的对称群。

分裂四元数共轭

由于其基向量的反交换性,分裂四元数与其共轭的积由其迷向二次型


给出。

给定两个反四元数,有,意味着 是可合成的二次型。 其上的代数是一种合成代数, 是其范数。 任何满足的反四元数q称为零向量(Null vector而非Zero vector),它的存在意味着反四元数形成"分裂的合成代数",因此反四元数也被称为分裂四元数

当范数非零时,倒数,即 . 集合

单位元的集合。 全体分裂四元数的集合组成 ,其单位群。全体的分裂四元数组成一个非紧致拓扑群 ,且与同构(见下)。

历史上讲,分裂四元数早于凯莱的矩阵代数;分裂四元数(及四元数和双复数)引发了对线性代数的深入研究。

矩阵表示 编辑

 ,考虑普通复数 ,  ,它们的共轭复数为 ,  。然后

 

 表示为矩阵环,其中的分裂四元数的乘法与矩阵乘法的行为相同。例如,这个矩阵的行列式

 

减号的出现将反四元数与使用了加号的四元数 区分开来。双曲几何中,庞加莱圆盘模型上范数为1的分裂四元数代表多重引导的使用是代数最重要的运用之一。

除了复矩阵表示,另一种线性表示将反四元数与2×2实矩阵英语2_×_2_real_matrices联系起来。这种同构可以明确如下:首先注意到积

 

左边每个因子的平方是单位矩阵,而右边的平方是单位矩阵的负数。此外,注意这三个矩阵,连同单位矩阵,构成了 的基。可以使上述矩阵乘积对应于反四元数环中的 。然后,对于任意矩阵有一个双射

 

这实际上形成了环同构。此外,计算各项的平方和表明 ,矩阵的行列式。因此,反四元数的单位拟球英语Quasi-sphere 群同构,因此与 也群同构,后者可以从上面的复表示中得到。

例如,用2×2实矩阵表示双曲运动群,见Karzel和Kist。[1]

在这两种线性表示中,范数由行列式给出。由于行列式是乘法映射,两个反四元数积的范数等于范数的积。这样反四元数就形成了合成代数。作为实数上的代数,它是仅有的七个这样的代数之一。

由双曲复数生成 编辑

Kevin McCrimon展示了如何按照L. E. Dickson和Adrian Albert为   给出的除法构造所有的合成代数。[2]实际上,他给出了real-split的doubled product的乘法法则

 

如前所述,双共轭   因此

 

如果ab双曲复数,分裂四元数 那么

 .

性质 编辑

 
圆E在平面 z =0中。



J 的元素是+1的平方根
 




I的元素是−1的平方根。

可以通过 的子空间 来了解其子代数。

 

参数  是此子空间中圆柱坐标系的基。参数 表示方位角。接下来令a表示任意实数,并考虑反四元数

 
 

这正是Alexander Macfarlane英语Alexander Macfarlane和Carmody的等边双曲面坐标。[3]

接下来,在环的向量子空间中构造三个基础集合:

 
 , 单叶双曲面
 , 双叶双曲面

现在很容易验证

 

 

这些集合相等意味着当 时,平面

 

 的一个与双曲复数平面同构的子环,就像对 中的任意 

 

是与普通复平面 同构的 的平面子环。

注意对于所有  ,因此  是幂零元。平面  的一个与二元数同构的子环。由于每个反四元数都必须位于某个   平面上,所以这些平面组成了 ,例如,单位拟球

 

包含了 的构成平面上的“单位圆”:在 中是一个单位双曲线,在 中是一对平行线,而在 中确实是一个圆。

泛正交性 编辑

反四元数 标量部分为w。

定义 对于非零反四元数   当且仅当乘积 的标量部分为零。

  • 对任意的  ,如果  ,那么 意味着从   射线垂直的。
  • 对任意的  ,如果  ,那么 意味着这两点是双曲正交英语Hyperbolic_orthogonality的。
  • 对任意的     满足  
  • 如果 是反四元数环中的一个单位元,那么 意味着 

证明:因向量外积的反交换性, ,因此 

Counter-sphere geometry 编辑

The quadratic form qq is positive definite on the planes Cv and N. Consider the counter-sphere {q: qq = −1}.

Take m = x + yi + zr where r = j cos(θ) + k sin(θ). Fix θ and suppose

mm = −1 = x2 + y2 − z2.

Since points on the counter-sphere must line on the conjugate of the unit hyperbola in some plane DpP, m can be written, for some pJ

 .

Let φ be the angle between the hyperbolas from r to p and m. This angle can be viewed, in the plane tangent to the counter-sphere at r, by projection:

 . Then
 

as in the expression of angle of parallelism in the hyperbolic plane H2 . The parameter θ determining the meridian varies over the S1. Thus the counter-sphere appears as the manifold S1 × H2.

Application to kinematics 编辑

By using the foundations given above, one can show that the mapping

 

is an ordinary or hyperbolic rotation according as

 .

The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations. Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile, say as compared to hyperbolic quaternions.

Reluctance to use coquaternions for kinematic models may stem from the (2, 2) signature when spacetime is presumed to have signature (1, 3) or (3, 1). Nevertheless, a transparently relativistic kinematics appears when a point of the counter-sphere is used to represent an inertial frame of reference. Indeed, if tt = −1, then there is a p = i sinh(a) + r cosh(a) ∈ J such that tDp, and a bR such that t = p exp(bp). Then if u = exp(bp), v = i cosh(a) + r sinh(a), and s = ir, the set {t, u, v, s} is a pan-orthogonal basis stemming from t, and the orthogonalities persist through applications of the ordinary or hyperbolic rotations.

Historical notes 编辑

The coquaternions were initially introduced (under that name)[4] in 1849 by James Cockle in the London–Edinburgh–Dublin Philosophical Magazine. The introductory papers by Cockle were recalled in the 1904 Bibliography[5] of the Quaternion Society. Alexander Macfarlane called the structure of coquaternion vectors an exspherical system when he was speaking at the International Congress of Mathematicians in Paris in 1900.[6]

The unit sphere was considered in 1910 by Hans Beck.[7] For example, the dihedral group appears on page 419. The coquaternion structure has also been mentioned briefly in the Annals of Mathematics.[8][9]

Synonyms 编辑

  • Para-quaternions (Ivanov and Zamkovoy 2005, Mohaupt 2006) Manifolds with para-quaternionic structures are studied in differential geometry and string theory. In the para-quaternionic literature k is replaced with −k.
  • Exspherical system (Macfarlane 1900)
  • Split-quaternions (Rosenfeld 1988)[10]
  • Antiquaternions (Rosenfeld 1988)
  • Pseudoquaternions (Yaglom 1968[11] Rosenfeld 1988)

参见 编辑

  • Split-biquaternions
  • Split-octonions
  • Hypercomplex numbers

参考资料 编辑

  1. ^ Karzel, Helmut & Günter Kist (1985) "Kinematic Algebras and their Geometries", in Rings and Geometry, R. Kaya, P. Plaumann, and K. Strambach editors, pp. 437–509, esp 449,50, D. Reidel
  2. ^ Kevin McCrimmon (2004) A Taste of Jordan Algebras, page 64, Universitext, Springer ISBN 0-387-95447-3 MR[1]
  3. ^ Carmody, Kevin (1997) "Circular and hyperbolic quaternions, octonions, sedionions", Applied Mathematics and Computation 84(1):27–47, esp. 38
  4. ^ James Cockle (1849), On Systems of Algebra involving more than one Imaginary (页面存档备份,存于互联网档案馆), Philosophical Magazine (series 3) 35: 434,5, link from Biodiversity Heritage Library
  5. ^ A. Macfarlane (1904) Bibliography of Quaternions and Allied Systems of Mathematics, from Cornell University Historical Math Monographs, entries for James Cockle, pp. 17–18
  6. ^ Alexander Macfarlane (1900) Application of space analysis to curvilinear coordinates (页面存档备份,存于互联网档案馆), Proceedings of the International Congress of Mathematicians, Paris, page 306, from International Mathematical Union
  7. ^ Hans Beck (1910) Ein Seitenstück zur Mobius'schen Geometrie der Kreisverwandschaften (页面存档备份,存于互联网档案馆), Transactions of the American Mathematical Society 11
  8. ^ A. A. Albert (1942), "Quadratic Forms permitting Composition", Annals of Mathematics 43:161 to 77
  9. ^ Valentine Bargmann (1947), "Irreducible unitary representations of the Lorentz Group", Annals of Mathematics 48: 568–640
  10. ^ Rosenfeld, B.A. (1988) A History of Non-Euclidean Geometry, page 389, Springer-Verlag ISBN 0-387-96458-4
  11. ^ Isaak Yaglom (1968) Complex Numbers in Geometry, page 24, Academic Press

延伸阅读 编辑

  • Brody, Dorje C., and Eva-Maria Graefe. "On complexified mechanics and coquaternions." Journal of Physics A: Mathematical and Theoretical 44.7 (2011): 072001. doi:10.1088/1751-8113/44/7/072001
  • Ivanov, Stefan; Zamkovoy, Simeon (2005), "Parahermitian and paraquaternionic manifolds", Differential Geometry and its Applications 23, pp. 205–234, arXiv:math.DG/0310415, MR2158044.
  • Mohaupt, Thomas (2006), "New developments in special geometry", arXiv:hep-th/0602171.
  • Özdemir, M. (2009) "The roots of a split quaternion", Applied Mathematics Letters 22:258–63. [2]
  • Özdemir, M. & A.A. Ergin (2006) "Rotations with timelike quaternions in Minkowski 3-space", Journal of Geometry and Physics 56: 322–36.[3]
  • Pogoruy, Anatoliy & Ramon M Rodrigues-Dagnino (2008) Some algebraic and analytical properties of coquaternion algebra[永久失效連結], Advances in Applied Clifford Algebras.

分裂四元数, 此條目目前正依照en, split, quaternion上的内容进行翻译, 2019年6月3日, 如果您擅长翻译, 並清楚本條目的領域, 欢迎协助翻譯, 改善或校对本條目, 此外, 长期闲置, 未翻譯或影響閱讀的内容可能会被移除, 目前的翻译进度为, 乘法, 1在抽象代数中, split, quaternions, 或反四元数, coquaternions, 是一种四维的结合代数的元素, 由james, cockle, 英语, james, cockle, 在1849年引入, 当时称为反四元数, 类. 此條目目前正依照en Split quaternion上的内容进行翻译 2019年6月3日 如果您擅长翻译 並清楚本條目的領域 欢迎协助翻譯 改善或校对本條目 此外 长期闲置 未翻譯或影響閱讀的内容可能会被移除 目前的翻译进度为 70 分裂四元数乘法 1 i j k1 1 i j ki i 1 k jj j k 1 ik k j i 1在抽象代数中 分裂四元数 split quaternions 或反四元数 coquaternions 是一种四维的结合代数的元素 由James Cockle 英语 James Cockle 在1849年引入 当时称为反四元数 类似于汉密尔顿1843年引入的四元数 它们组成了一个四维的实向量空间 且有乘法运算 与四元数不同 分裂四元数包含非平凡的零因子 幂零元和幂等元 英语 Idempotent ring theory 例如 1 2 1 j displaystyle 1 over 2 1 j 是幂等的零因子 而i j displaystyle i j 是幂零元 作为一种数学结构 分裂四元数形成了域代数 且与2 2的实矩阵同构 集合 1 i j k displaystyle left 1 i j k right 组成一个基 这些元素的积由 i j k j i displaystyle ij k ji j k i k j displaystyle jk i kj k i j i k displaystyle ki j ik i 2 1 displaystyle i 2 1 j 2 1 displaystyle j 2 1 k 2 1 displaystyle k 2 1 给出 因此i j k 1 displaystyle ijk 1 由以上定义可得 集合 1 i j k 1 i j k displaystyle left 1 i j k 1 i j k right 在分裂四元数乘法的定义下是一个群 与二面体群D 4 displaystyle D 4 同构 称为正方形的对称群 分裂四元数q w x i y j z k displaystyle q w xi yj zk 的共轭q w x i y j z k displaystyle q w xi yj zk 由于其基向量的反交换性 分裂四元数与其共轭的积由其迷向二次型 N q q q w 2 x 2 y 2 z 2 displaystyle N q qq w 2 x 2 y 2 z 2 给出 给定两个反四元数p displaystyle p 和q displaystyle q 有N p q N p N q displaystyle N pq N p N q 意味着N displaystyle N 是可合成的二次型 其上的代数是一种合成代数 N displaystyle N 是其范数 任何满足q 0 displaystyle q neq 0 N q 0 displaystyle N q 0 的反四元数q称为零向量 Null vector而非Zero vector 它的存在意味着反四元数形成 分裂的合成代数 因此反四元数也被称为分裂四元数 当范数非零时 q displaystyle q 有倒数 即 q N q displaystyle q over N q 集合 U q q q 0 displaystyle U left q qq neq 0 right 是单位元的集合 全体分裂四元数的集合P displaystyle mathbb P 组成环 P displaystyle mathbb P cdot 其单位群为 U displaystyle U cdot 全体N q 1 displaystyle N q 1 的分裂四元数组成一个非紧致的拓扑群 S U 1 1 displaystyle SU 1 1 且与S L 2 R displaystyle SL 2 mathbb R 同构 见下 历史上讲 分裂四元数早于凯莱的矩阵代数 分裂四元数 及四元数和双复数 引发了对线性代数的深入研究 目录 1 矩阵表示 2 由双曲复数生成 3 性质 4 泛正交性 5 Counter sphere geometry 6 Application to kinematics 7 Historical notes 8 Synonyms 9 参见 10 参考资料 11 延伸阅读矩阵表示 编辑令q w x i y j z k displaystyle q w xi yj zk nbsp 考虑普通复数u w x i displaystyle u w xi nbsp v y z i displaystyle v y zi nbsp 它们的共轭复数为u w x i displaystyle u w xi nbsp v y z i displaystyle v y zi nbsp 然后 u v v u displaystyle begin pmatrix u amp v v amp u end pmatrix nbsp 将q displaystyle q nbsp 表示为矩阵环 其中的分裂四元数的乘法与矩阵乘法的行为相同 例如 这个矩阵的行列式是 u u v v q q displaystyle uu vv qq nbsp 减号的出现将反四元数与使用了加号的四元数H displaystyle mathbb H nbsp 区分开来 双曲几何中 庞加莱圆盘模型上范数为1的分裂四元数代表多重引导的使用是代数最重要的运用之一 除了复矩阵表示 另一种线性表示将反四元数与2 2实矩阵 英语 2 2 real matrices 联系起来 这种同构可以明确如下 首先注意到积 0 1 1 0 1 0 0 1 0 1 1 0 displaystyle begin pmatrix 0 amp 1 1 amp 0 end pmatrix begin pmatrix 1 amp 0 0 amp 1 end pmatrix begin pmatrix 0 amp 1 1 amp 0 end pmatrix nbsp 左边每个因子的平方是单位矩阵 而右边的平方是单位矩阵的负数 此外 注意这三个矩阵 连同单位矩阵 构成了M 2 R displaystyle M 2 mathbb R nbsp 的基 可以使上述矩阵乘积对应于反四元数环中的j k i displaystyle jk i nbsp 然后 对于任意矩阵有一个双射 a c b d q a d c b i b c j a d k 2 displaystyle begin pmatrix a amp c b amp d end pmatrix leftrightarrow q frac a d c b i b c j a d k 2 nbsp 这实际上形成了环同构 此外 计算各项的平方和表明q q a d b c displaystyle qq ad bc nbsp 矩阵的行列式 因此 反四元数的单位拟球 英语 Quasi sphere 与S L 2 R g M 2 R det g 1 displaystyle SL 2 mathbb R g in M 2 mathbb R det g 1 nbsp 群同构 因此与S U 1 1 displaystyle SU 1 1 nbsp 也群同构 后者可以从上面的复表示中得到 例如 用2 2实矩阵表示双曲运动群 见Karzel和Kist 1 在这两种线性表示中 范数由行列式给出 由于行列式是乘法映射 两个反四元数积的范数等于范数的积 这样反四元数就形成了合成代数 作为实数域上的代数 它是仅有的七个这样的代数之一 由双曲复数生成 编辑Kevin McCrimon展示了如何按照L E Dickson和Adrian Albert为C displaystyle mathbb C nbsp H displaystyle mathbb H nbsp 和O displaystyle mathbb O nbsp 给出的除法构造所有的合成代数 2 实际上 他给出了real split的doubled product的乘法法则 a b c d a c d b d a b c displaystyle a b c d ac d b da bc nbsp 如前所述 双共轭 a b a b displaystyle a b a b nbsp 因此 N a b a b a b a a b b 0 displaystyle N a b a b a b aa bb 0 nbsp 如果a和b是双曲复数 分裂四元数q a b w z j y x j displaystyle q a b w zj y xj nbsp 那么 N q a a b b w 2 z 2 y 2 x 2 w 2 x 2 z 2 y 2 displaystyle N q aa bb w 2 z 2 y 2 x 2 w 2 x 2 z 2 y 2 nbsp 性质 编辑 nbsp 圆E在平面 z 0中 J 的元素是 1的平方根 nbsp I的元素是 1的平方根 可以通过P displaystyle mathbb P nbsp 的子空间 z i x j y k x y z R displaystyle zi xj yk x y z in mathbb R nbsp 来了解其子代数 令 r 8 j cos 8 k sin 8 displaystyle r theta j cos theta k sin theta nbsp 参数z displaystyle z nbsp 和r 8 displaystyle r theta nbsp 是此子空间中圆柱坐标系的基 参数8 displaystyle theta nbsp 表示方位角 接下来令a表示任意实数 并考虑反四元数 p a r i sinh a r cosh a displaystyle p a r i sinh a r cosh a nbsp v a r i cosh a r sinh a displaystyle v a r i cosh a r sinh a nbsp 这正是Alexander Macfarlane 英语 Alexander Macfarlane 和Carmody的等边双曲面坐标 3 接下来 在环的向量子空间中构造三个基础集合 E r P r r 8 0 8 lt 2 p displaystyle E r in mathbb P r r theta 0 leq theta lt 2 pi nbsp J p a r P a R r E displaystyle J p a r in mathbb P a in mathbb R r in E nbsp 单叶双曲面 I v a r P a R r E displaystyle I v a r in mathbb P a in mathbb R r in E nbsp 双叶双曲面现在很容易验证 q P q 2 1 J 1 1 displaystyle q in mathbb P q 2 1 J cup 1 1 nbsp 及 q P q 2 1 I displaystyle q in mathbb P q 2 1 I nbsp 这些集合相等意味着当p J displaystyle p in J nbsp 时 平面 x y p x y R D p displaystyle x yp x y in mathbb R D p nbsp 是P displaystyle mathbb P nbsp 的一个与双曲复数平面同构的子环 就像对I displaystyle I nbsp 中的任意v displaystyle v nbsp x y v x y R C v displaystyle x yv x y in mathbb R C v nbsp 是与普通复平面C displaystyle mathbb C nbsp 同构的P displaystyle mathbb P nbsp 的平面子环 注意对于所有r E displaystyle r in E nbsp r i 2 0 r i 2 displaystyle r i 2 0 r i 2 nbsp 因此r i displaystyle r i nbsp 和r i displaystyle r i nbsp 是幂零元 平面N x y r i x y R displaystyle N x y r i x y in mathbb R nbsp 是P displaystyle mathbb P nbsp 的一个与二元数同构的子环 由于每个反四元数都必须位于某个D p displaystyle D p nbsp C v displaystyle C v nbsp 或N displaystyle N nbsp 平面上 所以这些平面组成了P displaystyle mathbb P nbsp 例如 单位拟球 S U 1 1 q P q q 1 displaystyle SU 1 1 q in mathbb P qq 1 nbsp 包含了P displaystyle mathbb P nbsp 的构成平面上的 单位圆 在D p displaystyle D p nbsp 中是一个单位双曲线 在N displaystyle N nbsp 中是一对平行线 而在C v displaystyle C v nbsp 中确实是一个圆 泛正交性 编辑反四元数q w x i y j z k displaystyle q w xi yj zk nbsp 的标量部分为w 定义 对于非零反四元数q displaystyle q nbsp 和t displaystyle t nbsp q t displaystyle q perp t nbsp 当且仅当乘积q t displaystyle qt nbsp 的标量部分为零 对任意的 v I displaystyle v in I nbsp 如果 q t C v displaystyle q t in C v nbsp 那么q t displaystyle q perp t nbsp 意味着从0 displaystyle 0 nbsp 到q displaystyle q nbsp 和t displaystyle t nbsp 的射线是垂直的 对任意的 p J displaystyle p in J nbsp 如果 q t D p displaystyle q t in D p nbsp 那么q t displaystyle q perp t nbsp 意味着这两点是双曲正交 英语 Hyperbolic orthogonality 的 对任意的 r E displaystyle r in E nbsp a R displaystyle a in mathbb R nbsp p a r displaystyle p a r nbsp 和v a r displaystyle v a r nbsp 满足 q t displaystyle q perp t nbsp 如果u displaystyle u nbsp 是反四元数环中的一个单位元 那么q t displaystyle q perp t nbsp 意味着q u t u displaystyle qu perp tu nbsp 证明 因向量外积的反交换性 t u u t displaystyle tu u t nbsp 因此 q u t u u u q t displaystyle qu tu uu q t nbsp Counter sphere geometry 编辑The quadratic form qq is positive definite on the planes Cv and N Consider the counter sphere q qq 1 Take m x yi zr where r j cos 8 k sin 8 Fix 8 and suppose mm 1 x2 y2 z2 Since points on the counter sphere must line on the conjugate of the unit hyperbola in some plane Dp P m can be written for some p J m p exp b p sinh b p cosh b sinh b i sinh a cosh b r cosh a cosh b displaystyle m p exp bp sinh b p cosh b sinh b i sinh a cosh b r cosh a cosh b nbsp Let f be the angle between the hyperbolas from r to p and m This angle can be viewed in the plane tangent to the counter sphere at r by projection tan ϕ x y sinh b sinh a cosh b tanh b sinh a displaystyle tan phi frac x y frac sinh b sinh a cosh b frac tanh b sinh a nbsp Thenlim b tan ϕ 1 sinh a displaystyle lim b to infty tan phi frac 1 sinh a nbsp as in the expression of angle of parallelism in the hyperbolic plane H2 The parameter 8 determining the meridian varies over the S1 Thus the counter sphere appears as the manifold S1 H2 Application to kinematics 编辑By using the foundations given above one can show that the mapping q u 1 q u displaystyle q mapsto u 1 qu nbsp is an ordinary or hyperbolic rotation according as u e a v v I or u e a p p J displaystyle u e av quad v in I quad text or quad u e ap quad p in J nbsp The collection of these mappings bears some relation to the Lorentz group since it is also composed of ordinary and hyperbolic rotations Among the peculiarities of this approach to relativistic kinematic is the anisotropic profile say as compared to hyperbolic quaternions Reluctance to use coquaternions for kinematic models may stem from the 2 2 signature when spacetime is presumed to have signature 1 3 or 3 1 Nevertheless a transparently relativistic kinematics appears when a point of the counter sphere is used to represent an inertial frame of reference Indeed if tt 1 then there is a p i sinh a r cosh a J such that t Dp and a b R such that t p exp bp Then if u exp bp v i cosh a r sinh a and s ir the set t u v s is a pan orthogonal basis stemming from t and the orthogonalities persist through applications of the ordinary or hyperbolic rotations Historical notes 编辑The coquaternions were initially introduced under that name 4 in 1849 by James Cockle in the London Edinburgh Dublin Philosophical Magazine The introductory papers by Cockle were recalled in the 1904 Bibliography 5 of the Quaternion Society Alexander Macfarlane called the structure of coquaternion vectors an exspherical system when he was speaking at the International Congress of Mathematicians in Paris in 1900 6 The unit sphere was considered in 1910 by Hans Beck 7 For example the dihedral group appears on page 419 The coquaternion structure has also been mentioned briefly in the Annals of Mathematics 8 9 Synonyms 编辑Para quaternions Ivanov and Zamkovoy 2005 Mohaupt 2006 Manifolds with para quaternionic structures are studied in differential geometry and string theory In the para quaternionic literature k is replaced with k Exspherical system Macfarlane 1900 Split quaternions Rosenfeld 1988 10 Antiquaternions Rosenfeld 1988 Pseudoquaternions Yaglom 1968 11 Rosenfeld 1988 参见 编辑Split biquaternions Split octonions Hypercomplex numbers参考资料 编辑 Karzel Helmut amp Gunter Kist 1985 Kinematic Algebras and their Geometries in Rings and Geometry R Kaya P Plaumann and K Strambach editors pp 437 509 esp 449 50 D Reidel Kevin McCrimmon 2004 A Taste of Jordan Algebras page 64 Universitext Springer ISBN 0 387 95447 3 MR 1 Carmody Kevin 1997 Circular and hyperbolic quaternions octonions sedionions Applied Mathematics and Computation 84 1 27 47 esp 38 James Cockle 1849 On Systems of Algebra involving more than one Imaginary 页面存档备份 存于互联网档案馆 Philosophical Magazine series 3 35 434 5 link from Biodiversity Heritage Library A Macfarlane 1904 Bibliography of Quaternions and Allied Systems of Mathematics from Cornell University Historical Math Monographs entries for James Cockle pp 17 18 Alexander Macfarlane 1900 Application of space analysis to curvilinear coordinates 页面存档备份 存于互联网档案馆 Proceedings of theInternational Congress of Mathematicians Paris page 306 from International Mathematical Union Hans Beck 1910 Ein Seitenstuck zur Mobius schen Geometrie der Kreisverwandschaften 页面存档备份 存于互联网档案馆 Transactions of the American Mathematical Society 11 A A Albert 1942 Quadratic Forms permitting Composition Annals of Mathematics 43 161 to 77 Valentine Bargmann 1947 Irreducible unitary representations of the Lorentz Group Annals of Mathematics 48 568 640 Rosenfeld B A 1988 A History of Non Euclidean Geometry page 389 Springer Verlag ISBN 0 387 96458 4 Isaak Yaglom 1968 Complex Numbers in Geometry page 24 Academic Press延伸阅读 编辑Brody Dorje C and Eva Maria Graefe On complexified mechanics and coquaternions Journal of Physics A Mathematical and Theoretical 44 7 2011 072001 doi 10 1088 1751 8113 44 7 072001 Ivanov Stefan Zamkovoy Simeon 2005 Parahermitian and paraquaternionic manifolds Differential Geometry and its Applications 23 pp 205 234 arXiv math DG 0310415 MR2158044 Mohaupt Thomas 2006 New developments in special geometry arXiv hep th 0602171 Ozdemir M 2009 The roots of a split quaternion Applied Mathematics Letters 22 258 63 2 Ozdemir M amp A A Ergin 2006 Rotations with timelike quaternions in Minkowski 3 space Journal of Geometry and Physics 56 322 36 3 Pogoruy Anatoliy amp Ramon M Rodrigues Dagnino 2008 Some algebraic and analytical properties of coquaternion algebra 永久失效連結 Advances in Applied Clifford Algebras 取自 https zh wikipedia org w index php title 分裂四元数 amp oldid 74497820, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。