fbpx
维基百科

雅可比矩阵

向量分析中,雅可比矩阵(也称作Jacobi矩陣,英語:Jacobian matrix)是函數的一阶偏导数以一定方式排列成的矩阵

當其為方形矩阵時,其行列式称为雅可比行列式(Jacobi determinant)。要注意的是,在英文中雅可比矩陣跟雅可比行列式都可稱作Jacobian[1]

其重要性在於,如果函數  f : ℝn → ℝm 在點 x 可微的話,在點 x 的雅可比矩陣即為該函數在該點的最佳線性逼近,也代表雅可比矩陣是單變數實數函數的微分在向量值多變數函數的推廣,在這種情況下,雅可比矩陣也被稱作函數 f 在點 x微分或者導數

代数几何中,代数曲线雅可比行列式'表示雅可比簇英语Jacobian variety:伴随该曲线的一个代數群,曲线可以嵌入其中。

它们全部都以普魯士数学家卡爾·雅可比命名。

雅可比矩阵 编辑

假設某函數從 f : ℝn → ℝm, 從 x ∈ ℝn 映射到 向量 f(x) ∈ ℝm, 其雅可比矩陣是一 m×n 的矩陣,換句話講也就是從 nm 的線性映射,其重要意義在于它表現了一个多變數向量函數的最佳线性逼近。因此,雅可比矩阵类似于單變數函数的导数。

此函數 f 的雅可比矩陣 Jm×n 的矩陣,一般由以下方式定義:

 

矩陣的分量可表示成:

 

雅可比矩陣的其他常用符號還有:

    或者  

此矩陣的第  行是由函數   的梯度函数所表示的, 

如果    中的一点,  点可微分,根據數學分析 是在这点的导数。在此情况下, 這個线性映射即   在点   附近的最优线性逼近,也就是說當  足夠靠近點   時,我們有

 

講更詳細點也就是:

 

其中,o 代表小o符號xpxp 之間的距離。

例子 编辑

例一 编辑

球坐标系到直角坐标系的转化由 F: ℝ+ × [0, π) × [0, 2π) → ℝ3 函数给出,其分量為:

 

此坐标变换的雅可比矩阵是

 

其雅可比行列式為 r2 sin θ。以體積元變換爲例,由於 dV = dx dy dz,如果做變數變換,則其體積元(Volume element,dV),會變成:dV = r2 sin θ dr dθ dφ

例二 编辑

F : ℝ3 → ℝ4,其各分量為

 
 
 
 

其雅可比矩阵为:

 

此例子说明雅可比矩阵不一定为方阵。

在动力系统中 编辑

考虑形为  动力系统 。如果  ,那么  是一个臨界點。系统接近臨界點时的行為跟  特征值相關。

雅可比行列式 编辑

如果 m = n,那么 F 是从 n 映射到 n 的函数,且它的雅可比矩阵是一个方陣。于是我们可以取它的行列式,称为雅可比行列式

在某个给定点的雅可比行列式提供了 F 在接近该点时的表现的重要資訊。例如,如果连续可微函数 Fp 点的Jacobi行列式不等於零,那么它在该点附近有 F反函数。这称为反函数定理。更进一步,如果  p 点的Jacobi行列式是正数,则 Fp 点保持定向(preserves orientation);如果是负数,则 F 逆轉定向(reverses orientation)。而从Jacobi行列式的绝对值,就可以知道函数 Fp 點附近是放大或縮小體積;这就是它出现在换元积分法中的原因。

例子一 编辑

设有函数 F : ℝ3 → ℝ3,其分量为:

 
 
 

则它的Jacobi行列式为:

 

从中我们可以看到,當 x1x2 同号时,F 逆轉定向;该函数处处具有反函数,除了在 x1 = 0 或 x2 = 0 的點。

例子二 编辑

这是一个与巴塞尔问题 较为相似的级数 的求解方法,首先可以转化为二重积分(在这里 D1xy 皆为从 0 到 1 的正方形区域):

 

此时定义映射 F : ℝ2 → ℝ2,满足:

 

于是有相应的雅可比行列式:

 

因此 ,并且将正方形 D1 映射成 u>0、v>0、u+v<π/2 的等腰直角三角形,记为 D2,得到:

 

逆矩陣 编辑

根據反函數定理,一個可逆函數(存在反函數的函數)的雅可比矩陣逆矩陣即為該函數的反函數雅可比矩陣。即,若函數  在點  的雅可比矩陣是連續且可逆的,則  在點  的某一鄰域內也是可逆的,且有

 

成立。相反,倘若雅可比行列式在某一個點不為零,那麽該函數在這個點的某一鄰域內可逆(存在反函數)。

一個多項式函數的可逆性與未經證明的雅可比猜想有關。其斷言,如果函數的雅可比行列式為一個非零實數(相當於其不存在複零點),則該函數可逆且其反函數也為一個多項式。

参看 编辑

参考资料 编辑

  1. ^ W., Weisstein, Eric. Jacobian. mathworld.wolfram.com. [2 May 2018]. (原始内容于3 November 2017). 

外部链接 编辑

  • 雅可比行列式的通俗解释
  • Mathworld (页面存档备份,存于互联网档案馆) 更技术型的雅可比行列式的解释

雅可比矩阵, 在向量分析中, 也称作jacobi矩陣, 英語, jacobian, matrix, 是函數的一阶偏导数以一定方式排列成的矩阵, 當其為方形矩阵時, 其行列式称为雅可比行列式, jacobi, determinant, 要注意的是, 在英文中雅可比矩陣跟雅可比行列式都可稱作jacobian, 其重要性在於, 如果函數, ℝn, ℝm, 在點, 可微的話, 在點, 的雅可比矩陣即為該函數在該點的最佳線性逼近, 也代表雅可比矩陣是單變數實數函數的微分在向量值多變數函數的推廣, 在這種情況下, 雅可比矩陣也. 在向量分析中 雅可比矩阵 也称作Jacobi矩陣 英語 Jacobian matrix 是函數的一阶偏导数以一定方式排列成的矩阵 當其為方形矩阵時 其行列式称为雅可比行列式 Jacobi determinant 要注意的是 在英文中雅可比矩陣跟雅可比行列式都可稱作Jacobian 1 其重要性在於 如果函數 f ℝn ℝm 在點 x 可微的話 在點 x 的雅可比矩陣即為該函數在該點的最佳線性逼近 也代表雅可比矩陣是單變數實數函數的微分在向量值多變數函數的推廣 在這種情況下 雅可比矩陣也被稱作函數 f 在點 x 的微分或者導數 在代数几何中 代数曲线的雅可比行列式 表示雅可比簇 英语 Jacobian variety 伴随该曲线的一个代數群 曲线可以嵌入其中 它们全部都以普魯士数学家卡爾 雅可比命名 目录 1 雅可比矩阵 2 例子 2 1 例一 2 2 例二 3 在动力系统中 4 雅可比行列式 4 1 例子一 4 2 例子二 5 逆矩陣 6 参看 7 参考资料 8 外部链接雅可比矩阵 编辑假設某函數從 f ℝn ℝm 從 x ℝn 映射到 向量 f x ℝm 其雅可比矩陣是一 m n 的矩陣 換句話講也就是從 ℝn 到 ℝm 的線性映射 其重要意義在于它表現了一个多變數向量函數的最佳线性逼近 因此 雅可比矩阵类似于單變數函数的导数 此函數 f 的雅可比矩陣 J 為 m n 的矩陣 一般由以下方式定義 J f x1 f xn f1 x1 f1 xn fm x1 fm xn displaystyle mathbf J begin bmatrix dfrac partial mathbf f partial x 1 amp cdots amp dfrac partial mathbf f partial x n end bmatrix begin bmatrix dfrac partial f 1 partial x 1 amp cdots amp dfrac partial f 1 partial x n vdots amp ddots amp vdots dfrac partial f m partial x 1 amp cdots amp dfrac partial f m partial x n end bmatrix nbsp 矩陣的分量可表示成 Jij fi xj displaystyle mathbf J ij frac partial f i partial x j nbsp 雅可比矩陣的其他常用符號還有 Df displaystyle Df nbsp Df displaystyle mathrm D mathbf f nbsp Jf x1 xn displaystyle mathbf J mathbf f x 1 ldots x n nbsp 或者 f1 fm x1 xn displaystyle frac partial f 1 ldots f m partial x 1 ldots x n nbsp 此矩陣的第 i displaystyle i nbsp 行是由函數 fi displaystyle f i nbsp 的梯度函数所表示的 1 i m displaystyle 1 leq i leq m nbsp 如果 p displaystyle p nbsp 是Rn displaystyle mathbb R n nbsp 中的一点 f displaystyle f nbsp 在 p displaystyle p nbsp 点可微分 根據數學分析 Jf p displaystyle mathbf J mathbf f p nbsp 是在这点的导数 在此情况下 Jf p displaystyle mathbf J mathbf f p nbsp 這個线性映射即 f displaystyle f nbsp 在点 p displaystyle p nbsp 附近的最优线性逼近 也就是說當 x displaystyle x nbsp 足夠靠近點 p displaystyle p nbsp 時 我們有 f x f p Jf p x p displaystyle f x approx f p mathbf J mathbf f p cdot x p nbsp 講更詳細點也就是 f x f p Jf p x p o x p displaystyle mathbf f mathbf x mathbf f mathbf p mathbf J mathbf f mathbf p mathbf x mathbf p o mathbf x mathbf p nbsp 其中 o 代表小o符號 x p 為 x 與 p 之間的距離 例子 编辑例一 编辑 由球坐标系到直角坐标系的转化由 F ℝ 0 p 0 2p ℝ3 函数给出 其分量為 x rsin 8cos f y rsin 8sin f z rcos 8 displaystyle begin aligned x amp r sin theta cos varphi y amp r sin theta sin varphi z amp r cos theta end aligned nbsp 此坐标变换的雅可比矩阵是 JF r 8 f x r x 8 x f y r y 8 y f z r z 8 z f sin 8cos frcos 8cos f rsin 8sin fsin 8sin frcos 8sin frsin 8cos fcos 8 rsin 80 displaystyle mathbf J mathbf F r theta varphi begin bmatrix dfrac partial x partial r amp dfrac partial x partial theta amp dfrac partial x partial varphi 1em dfrac partial y partial r amp dfrac partial y partial theta amp dfrac partial y partial varphi 1em dfrac partial z partial r amp dfrac partial z partial theta amp dfrac partial z partial varphi end bmatrix begin bmatrix sin theta cos varphi amp r cos theta cos varphi amp r sin theta sin varphi sin theta sin varphi amp r cos theta sin varphi amp r sin theta cos varphi cos theta amp r sin theta amp 0 end bmatrix nbsp 其雅可比行列式為 r2 sin 8 以體積元變換爲例 由於 dV dx dy dz 如果做變數變換 則其體積元 Volume element dV 會變成 dV r2 sin 8 dr d8 df 例二 编辑 F ℝ3 ℝ4 其各分量為 y1 x1 displaystyle y 1 x 1 nbsp y2 5x3 displaystyle y 2 5x 3 nbsp y3 4x22 2x3 displaystyle y 3 4x 2 2 2x 3 nbsp y4 x3sin x1 displaystyle y 4 x 3 sin x 1 nbsp 其雅可比矩阵为 JF x1 x2 x3 y1 x1 y1 x2 y1 x3 y2 x1 y2 x2 y2 x3 y3 x1 y3 x2 y3 x3 y4 x1 y4 x2 y4 x3 10000508x2 2x3cos x10sin x1 displaystyle J F x 1 x 2 x 3 begin bmatrix frac partial y 1 partial x 1 amp frac partial y 1 partial x 2 amp frac partial y 1 partial x 3 3pt frac partial y 2 partial x 1 amp frac partial y 2 partial x 2 amp frac partial y 2 partial x 3 3pt frac partial y 3 partial x 1 amp frac partial y 3 partial x 2 amp frac partial y 3 partial x 3 3pt frac partial y 4 partial x 1 amp frac partial y 4 partial x 2 amp frac partial y 4 partial x 3 end bmatrix begin bmatrix 1 amp 0 amp 0 0 amp 0 amp 5 0 amp 8x 2 amp 2 x 3 cos x 1 amp 0 amp sin x 1 end bmatrix nbsp 此例子说明雅可比矩阵不一定为方阵 在动力系统中 编辑考虑形为 x F x displaystyle x prime F x nbsp 的动力系统 F Rn Rn displaystyle F mathbb R n rightarrow mathbb R n nbsp 如果 F x0 0 displaystyle F x 0 0 nbsp 那么 x0 displaystyle x 0 nbsp 是一个臨界點 系统接近臨界點时的行為跟 JF x0 displaystyle J F x 0 nbsp 的特征值相關 雅可比行列式 编辑如果 m n 那么 F 是从 ℝn 映射到 ℝn 的函数 且它的雅可比矩阵是一个方陣 于是我们可以取它的行列式 称为雅可比行列式 在某个给定点的雅可比行列式提供了 F 在接近该点时的表现的重要資訊 例如 如果连续可微函数 F 在 p 点的Jacobi行列式不等於零 那么它在该点附近有 F 的反函数 这称为反函数定理 更进一步 如果 p 点的Jacobi行列式是正数 则 F 在 p 点保持定向 preserves orientation 如果是负数 则 F 逆轉定向 reverses orientation 而从Jacobi行列式的绝对值 就可以知道函数 F 在 p 點附近是放大或縮小體積 这就是它出现在换元积分法中的原因 例子一 编辑 设有函数 F ℝ3 ℝ3 其分量为 y1 5x2 displaystyle y 1 5x 2 nbsp y2 4x12 2sin x2x3 displaystyle y 2 4x 1 2 2 sin x 2 x 3 nbsp y3 x2x3 displaystyle y 3 x 2 x 3 nbsp 则它的Jacobi行列式为 0508x1 2x3cos x2x3 2x2cos x2x3 0x3x2 8x1 50x3x2 40x1x2 displaystyle begin vmatrix 0 amp 5 amp 0 8x 1 amp 2x 3 cos x 2 x 3 amp 2x 2 cos x 2 x 3 0 amp x 3 amp x 2 end vmatrix 8x 1 cdot begin vmatrix 5 amp 0 x 3 amp x 2 end vmatrix 40x 1 x 2 nbsp 从中我们可以看到 當 x1 和 x2 同号时 F 逆轉定向 该函数处处具有反函数 除了在 x1 0 或 x2 0 的點 例子二 编辑 这是一个与巴塞尔问题 n 1 1n2 p26 displaystyle sum n 1 infty frac 1 n 2 frac pi 2 6 nbsp 较为相似的级数 n 0 1 2n 1 2 p28 displaystyle sum n 0 infty frac 1 2n 1 2 frac pi 2 8 nbsp 的求解方法 首先可以转化为二重积分 在这里 D1 指 x 与 y 皆为从 0 到 1 的正方形区域 n 0 1 2n 1 2 D1 n 1 xy 2ndxdy D1dxdy1 x2y2 displaystyle sum n 0 infty frac 1 2n 1 2 iint limits D 1 sum n 1 infty xy 2n mathrm d x mathrm d y iint limits D 1 frac mathrm d x mathrm d y 1 x 2 y 2 nbsp 此时定义映射 F ℝ2 ℝ2 满足 u arctan x1 y21 x2 v arctan y1 x21 y2 x sin ucos vy sin vcos u displaystyle begin cases u arctan left x sqrt dfrac 1 y 2 1 x 2 right v arctan left y sqrt dfrac 1 x 2 1 y 2 right end cases iff begin cases x dfrac sin u cos v y dfrac sin v cos u end cases nbsp 于是有相应的雅可比行列式 x u x v y u y v cos ucos vsin usin vcos2 vsin usin vcos2 ucos vcos u 1 sin2 usin2 vcos2 ucos2 v 1 x2y2 displaystyle begin vmatrix dfrac partial x partial u amp dfrac partial x partial v dfrac partial y partial u amp dfrac partial y partial v end vmatrix begin vmatrix dfrac cos u cos v amp dfrac sin u sin v cos 2 v dfrac sin u sin v cos 2 u amp dfrac cos v cos u end vmatrix 1 frac sin 2 u sin 2 v cos 2 u cos 2 v 1 x 2 y 2 nbsp 因此dxdy 1 x2y2 dudv displaystyle mathrm d x mathrm d y 1 x 2 y 2 mathrm d u mathrm d v nbsp 并且将正方形 D1 映射成 u gt 0 v gt 0 u v lt p 2 的等腰直角三角形 记为 D2 得到 D1dxdy1 x2y2 D2dudv 0p2 0p2 vdu dv p28 displaystyle iint limits D 1 frac mathrm d x mathrm d y 1 x 2 y 2 iint limits D 2 mathrm d u mathrm d v int 0 frac pi 2 left int 0 frac pi 2 v mathrm d u right mathrm d v frac pi 2 8 nbsp 逆矩陣 编辑根據反函數定理 一個可逆函數 存在反函數的函數 的雅可比矩陣的逆矩陣即為該函數的反函數的雅可比矩陣 即 若函數 F Rn Rn displaystyle F mathbb R n rightarrow mathbb R n nbsp 在點 p Rn displaystyle p in mathbb R n nbsp 的雅可比矩陣是連續且可逆的 則 F displaystyle F nbsp 在點 p displaystyle p nbsp 的某一鄰域內也是可逆的 且有 JF 1 f JF 1 displaystyle J F 1 circ f J F 1 nbsp 成立 相反 倘若雅可比行列式在某一個點不為零 那麽該函數在這個點的某一鄰域內可逆 存在反函數 一個多項式函數的可逆性與未經證明的雅可比猜想有關 其斷言 如果函數的雅可比行列式為一個非零實數 相當於其不存在複零點 則該函數可逆且其反函數也為一個多項式 参看 编辑前推 黑塞矩阵参考资料 编辑 W Weisstein Eric Jacobian mathworld wolfram com 2 May 2018 原始内容存档于3 November 2017 外部链接 编辑Ian Craw的本科教学网页 雅可比行列式的通俗解释 Mathworld 页面存档备份 存于互联网档案馆 更技术型的雅可比行列式的解释 取自 https zh wikipedia org w index php title 雅可比矩阵 amp oldid 77862649, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。