fbpx
维基百科

费米黄金定则

量子物理中,費米黃金定則是用來描述受一微擾後量子系統從某個能量特徵態到一群連續能態的單位時間的躍遷機率公式。若微擾的強度不隨時間變化,此單位時間躍遷機率亦不隨時間變化,且正比於系統初始態和終末態間的耦合強度(由躍遷的矩陣元英语Matrix element (physics)平方來描述)以及態密度。若終末態不是連續態的一部分,但這一躍遷過程中存在量子去相干(例如原子弛豫過程,或微擾中存在噪聲的情形),此定則也可以應用——此時公式中的態密度项应替換為末態去相干頻寬的倒數。

概述

雖然黃金定則以恩里科·費米的名字命名,但推導该定則所涉大部分工作是由保羅·狄拉克完成的——他在20年前就推出了包含三項(常數 ,微擾的矩陣元與能量差)的公式;这一公式与今天惯用的费米黄金定则在形式上是非常相似的。[1][2] 定则之所以以費米的名字命名,是由於費米强调了它的重要性,称其為「第二黃金定則」。[3]

大多數文献提及費米黃金定則時,指的是「第二黃金定則」。費米「第一黃金定則」具有与第二定則相似的形式,但前者刻畵的是每秒發生間接躍遷的機率。[4]

推導

費米黃金定則描述一個有著未被擾動的哈密頓量 H0、處於初始態 的量子系統,在擾動哈密頓量 H'作用下,躍遷到連續終末態的情形。若 H'不含時,系統只會躍遷到與初始能量相同的末態。若 H'角頻率ω隨時間正弦震盪(即簡諧震盪),則會躍遷到能量與初始態相差 ħω終末態。

在此兩種例子中,從初始態  到一套終末態  的「每秒躍遷的機率」基本上是一常數。考慮一階微擾後,可求得此常數的具體值:

 

這裡的   是初始態和終末態之間微擾量 H'矩陣元素英语Matrix element (physics)(使用狄拉克符號),而   是終末態能量 態密度(在無限小的能量區間  中的連續態數量)。此躍遷機率也稱為「衰變機率」,并正比於平均壽命的倒數。因此,測得系統處於 的機率正比於 

推導公式的標準方法是從含時微擾理論開始,並假設測量時間遠大於實際躍遷所需時間,對吸收率(作爲時間 的函數)取 的極限。[5][6]

只有矩陣元素   的量值在費米黃金定律中作為變數。而矩陣元素的相位,包含躍遷過程中離散的資訊。 費米黃金定則也出現在電子傳輸的半古典波茲曼方程式方法。[8]

量子光學的應用

當考慮兩個離散的能階躍遷,費米黃金定則可以寫成

 

這裡的  是光子在該能量的態密度, 光子的能量而 角頻率。此表示以存在終末(光子)態的連續體為前提,即容許存在的光子能量是連續的。[9]

Drexhage的實驗

 
偶極子的放射圖案和總功率(正比於衰變率)依賴於與鏡子的距離。

費米黃金定則預測了激發態根據態密度的衰變機率。實驗上這一現象可藉由測量鏡子附近的偶極子的衰變律:當鏡子創造出高低態密度的區域時,測量到的衰變率由鏡子和偶極子之間的距離決定。[10][11]

相關條目

參考文獻

  1. ^ Bransden, B. H.; Joachain, C. J. Quantum Mechanics 2nd. 1999: 443. ISBN 978-0582356917. 
  2. ^ Dirac, P.A.M. The Quantum Theory of Emission and Absorption of Radiation. Proceedings of the Royal Society A. 1 March 1927, 114 (767): 243–265. Bibcode:1927RSPSA.114..243D. JSTOR 94746. doi:10.1098/rspa.1927.0039.  See equations (24) and (32).
  3. ^ Fermi, E. Nuclear Physics. University of Chicago Press. 1950. ISBN 978-0226243658.  formula VIII.2
  4. ^ Fermi, E. Nuclear Physics. University of Chicago Press. 1950. ISBN 978-0226243658.  formula VIII.19
  5. ^ R Schwitters' UT Notes on Derivation (PDF). [2010-01-07]. (原始内容 (PDF)于2005-03-04). 
  6. ^ It is remarkable in that the rate is constant and not linearly increasing in time, as might be naively expected for transitions with strict conservation of energy enforced. This comes about from interference of oscillatory contributions of transitions to numerous continuum states with only approximate unperturbed energy conservation, cf. Wolfgang Pauli, Wave Mechanics: Volume 5 of Pauli Lectures on Physics (Dover Books on Physics, 2000) ISBN 0486414620 , pp. 150-151.
  7. ^ Merzbacher, Eugen. 19.7 (PDF). Quantum Mechanics 3rd. Wiley, John & Sons, Inc. 1998 [2019-11-09]. ISBN 978-0-471-88702-7. (原始内容 (PDF)于2016-03-04). 
  8. ^ N. A. Sinitsyn, Q. Niu and A. H. MacDonald. Coordinate Shift in Semiclassical Boltzmann Equation and Anomalous Hall Effect. Phys. Rev. B. 2006, 73 (7): 075318. Bibcode:2006PhRvB..73g5318S. arXiv:cond-mat/0511310 . doi:10.1103/PhysRevB.73.075318. 
  9. ^ Fox, Mark. Quantum Optics: An Introduction. Oxford: Oxford University Press. 2006: 51. ISBN 9780198566731. 
  10. ^ K. H. Drexhage, H. Kuhn, F. P. Schäfer. Variation of the Fluorescence Decay Time of a Molecule in Front of a Mirror. BERICHTE DER BUNSEN-GESELLSCHAFT FUR PHYSIKALISCHE CHEMIE. 1968, 72: 329. doi:10.1002/bbpc.19680720261. 
  11. ^ K. H. Drexhage. Influence of a dielectric interface on fluorescence decay time. Journal of Luminescence. 1970, 1: 693. doi:10.1016/0022-2313(70)90082-7. 

外部連結

  • More information on Fermi's golden rule (页面存档备份,存于互联网档案馆
  • Derivation of Fermi’s Golden Rule (页面存档备份,存于互联网档案馆
  • Time-dependent perturbation theory (页面存档备份,存于互联网档案馆
  • Fermi's golden rule: its derivation and breakdown by an ideal model (页面存档备份,存于互联网档案馆

费米黄金定则, 在量子物理中, 費米黃金定則是用來描述受一微擾後量子系統從某個能量特徵態到一群連續能態的單位時間的躍遷機率公式, 若微擾的強度不隨時間變化, 此單位時間躍遷機率亦不隨時間變化, 且正比於系統初始態和終末態間的耦合強度, 由躍遷的矩陣元, 英语, matrix, element, physics, 平方來描述, 以及態密度, 若終末態不是連續態的一部分, 但這一躍遷過程中存在量子去相干, 例如原子弛豫過程, 或微擾中存在噪聲的情形, 此定則也可以應用, 此時公式中的態密度项应替換為末態去相干頻寬的倒數. 在量子物理中 費米黃金定則是用來描述受一微擾後量子系統從某個能量特徵態到一群連續能態的單位時間的躍遷機率公式 若微擾的強度不隨時間變化 此單位時間躍遷機率亦不隨時間變化 且正比於系統初始態和終末態間的耦合強度 由躍遷的矩陣元 英语 Matrix element physics 平方來描述 以及態密度 若終末態不是連續態的一部分 但這一躍遷過程中存在量子去相干 例如原子弛豫過程 或微擾中存在噪聲的情形 此定則也可以應用 此時公式中的態密度项应替換為末態去相干頻寬的倒數 目录 1 概述 2 推導 3 量子光學的應用 3 1 Drexhage的實驗 4 相關條目 5 參考文獻 6 外部連結概述 编辑雖然黃金定則以恩里科 費米的名字命名 但推導该定則所涉大部分工作是由保羅 狄拉克完成的 他在20年前就推出了包含三項 常數2 p ℏ displaystyle frac 2 pi hbar 微擾的矩陣元與能量差 的公式 这一公式与今天惯用的费米黄金定则在形式上是非常相似的 1 2 定则之所以以費米的名字命名 是由於費米强调了它的重要性 称其為 第二黃金定則 3 大多數文献提及費米黃金定則時 指的是 第二黃金定則 費米 第一黃金定則 具有与第二定則相似的形式 但前者刻畵的是每秒發生間接躍遷的機率 4 推導 编辑費米黃金定則描述一個有著未被擾動的哈密頓量H 0 處於初始態 i displaystyle i rangle 的量子系統 在擾動哈密頓量H 作用下 躍遷到連續終末態的情形 若H 不含時 系統只會躍遷到與初始能量相同的末態 若H 以角頻率w 隨時間正弦震盪 即簡諧震盪 則會躍遷到能量與初始態相差ħw 終末態 在此兩種例子中 從初始態 i displaystyle i rangle 到一套終末態 f displaystyle f rangle 的 每秒躍遷的機率 基本上是一常數 考慮一階微擾後 可求得此常數的具體值 G i f 2 p ℏ f H i 2 r E f displaystyle Gamma i rightarrow f frac 2 pi hbar left langle f H i rangle right 2 rho E f dd 這裡的 f H i displaystyle langle f H i rangle 是初始態和終末態之間微擾量H 的 矩陣元素 英语 Matrix element physics 使用狄拉克符號 而 r E f displaystyle rho E f 是終末態能量E f displaystyle E f 的態密度 在無限小的能量區間 E d E displaystyle E dE 中的連續態數量 此躍遷機率也稱為 衰變機率 并正比於平均壽命的倒數 因此 測得系統處於 f displaystyle f rangle 的機率正比於e G i f t displaystyle e Gamma i rightarrow f t 推導公式的標準方法是從含時微擾理論開始 並假設測量時間遠大於實際躍遷所需時間 對吸收率 作爲時間t displaystyle t 的函數 取t displaystyle t rightarrow infty 的極限 5 6 以含時微擾理論推導主条目 含時微擾理論 黃金定則是薛丁格方程式解哈密頓量最低階微擾H 的直接結果 總哈密頓量是 原 哈密頓量H0 和微擾量的的和 H H 0 H displaystyle H H 0 H 在 相互作用绘景下 我們可以用未微擾的系統 n displaystyle n rangle 的能量特徵態搭配H 0 n E n n displaystyle H 0 n rangle E n n rangle 展開任一量子態的時間演化 被微擾的系統的量子態的級數展開在一時間t是 ps t n a n t e i E n t ℏ n displaystyle psi t rangle sum n a n t e iE n t hbar n rangle 係數an t 是在狄拉克繪景下用來產生機率幅的未知含時函數 此一量子態遵循含時薛丁格方程式 H ps t i ℏ t ps t displaystyle H psi t rangle i hbar frac partial partial t psi t rangle 展開哈密頓量和量子態到一階微擾 H 0 H i ℏ t n a n t n e i t E n ℏ 0 displaystyle left H 0 H mathrm i hbar frac partial partial t right sum n a n t n rangle mathrm e mathrm i tE n hbar 0 這裡 En 和 n 是穩定態H 0的特徵值和特徵函數 此等式可以被重寫成一個針對a n t displaystyle a n t 的時間演化的微分方程式系統 i ℏ d a k t d t n k H n a n t e i t E k E n ℏ displaystyle mathrm i hbar frac mathrm d a k t mathrm d t sum n langle k H n rangle a n t mathrm e mathrm i t E k E n hbar 此等式相當簡潔但實際上無法普通地解開 對於一個施加在t 0的常數微擾H 我們可以用微擾理論i displaystyle i 即 如果H 0 displaystyle H 0 很明顯的a n t d n i displaystyle a n t delta n i 簡明的表述系統仍在初始態i displaystyle i 對於k i displaystyle k neq i 情況下 因為H 0 displaystyle H neq 0 所以a k t 0 displaystyle a k t neq 0 且因為微擾的影響上述幾項量值皆假設很小 因此 可將a n t d n i displaystyle a n t delta n i 放入上述等式0階項來得出第一個修正的振幅a k t displaystyle a k t i ℏ d a k t d t k H i e i t E k E i ℏ displaystyle mathrm i hbar frac mathrm d a k t mathrm d t langle k H i rangle mathrm e mathrm i t E k E i hbar 經過積分後 i ℏ a k t 2 k H i e i w t 2 sin w t 2 w displaystyle mathrm i hbar a k t 2 langle k H i rangle mathrm e mathrm i omega t 2 frac sin omega t 2 omega 對於w E k E i ℏ displaystyle omega equiv E k E i hbar 和 ai 0 1 ak 0 0 躍遷到 ak t 態 k i displaystyle k neq i 躍遷速率是 G i k d d t a k t 2 2 k H i 2 ℏ 2 sin w t w displaystyle Gamma i rightarrow k frac mathrm d mathrm d t left a k t right 2 frac 2 langle k H i rangle 2 hbar 2 frac sin omega t omega 一個對於小 w 迅速上升的sinc函數 當w 0 displaystyle omega 0 sin w t w t displaystyle sin omega t omega t 所以到一個孤立的 k displaystyle k rangle 量子態的躍遷率隨時間t 線性變化 對於連續分布在能量E 的量子態 它們一定要全部都被考慮到 因此需要在一能量區間中的態密度r E 來對它們的能量積分 同時也對應到w G i f 2 ℏ d w r w f H i 2 sin w t w displaystyle Gamma i rightarrow f frac 2 hbar int infty infty mathrm d omega rho omega langle f H i rangle 2 frac sin omega t omega 考慮很長一段時間 sinc函數在w 0迅速攀升 以及可忽略外部區間只考慮 p t p t 密度以及躍遷元素可以被拿出積分 因此躍遷率 G i f 2 r f H i 2 ℏ d w sin w t w displaystyle Gamma i rightarrow f frac 2 rho langle f H i rangle 2 hbar int infty infty mathrm d omega frac sin omega t omega 只正比於狄利克雷積分 常數p 含時的部分消失了 黃金定則是 常數衰變率 7 它作為一個常數影響輻射的粒子衰變 然而經過相當長的時間後只要ak ai ak t 的長期增長不會對最低階的微擾理論產生影響 只有矩陣元素 f H i displaystyle langle f H i rangle 的量值在費米黃金定律中作為變數 而矩陣元素的相位 包含躍遷過程中離散的資訊 費米黃金定則也出現在電子傳輸的半古典波茲曼方程式方法 8 量子光學的應用 编辑當考慮兩個離散的能階躍遷 費米黃金定則可以寫成 G i f 2 p ℏ f H i 2 g ℏ w displaystyle Gamma i rightarrow f frac 2 pi hbar left langle f H i rangle right 2 g hbar omega dd 這裡的g ℏ w displaystyle g hbar omega 是光子在該能量的態密度 ℏ w displaystyle hbar omega 是光子的能量而w displaystyle omega 是角頻率 此表示以存在終末 光子 態的連續體為前提 即容許存在的光子能量是連續的 9 Drexhage的實驗 编辑 偶極子的放射圖案和總功率 正比於衰變率 依賴於與鏡子的距離 費米黃金定則預測了激發態根據態密度的衰變機率 實驗上這一現象可藉由測量鏡子附近的偶極子的衰變律 當鏡子創造出高低態密度的區域時 測量到的衰變率由鏡子和偶極子之間的距離決定 10 11 相關條目 编辑 物理学主题 指数衰减 以恩里科 费米的名字命名的事物列表 粒子衰變 Sinc函数 含時微擾理論 薩晉定律參考文獻 编辑 Bransden B H Joachain C J Quantum Mechanics 2nd 1999 443 ISBN 978 0582356917 Dirac P A M The Quantum Theory of Emission and Absorption of Radiation Proceedings of the Royal Society A 1 March 1927 114 767 243 265 Bibcode 1927RSPSA 114 243D JSTOR 94746 doi 10 1098 rspa 1927 0039 See equations 24 and 32 Fermi E Nuclear Physics University of Chicago Press 1950 ISBN 978 0226243658 formula VIII 2 Fermi E Nuclear Physics University of Chicago Press 1950 ISBN 978 0226243658 formula VIII 19 R Schwitters UT Notes on Derivation PDF 2010 01 07 原始内容存档 PDF 于2005 03 04 It is remarkable in that the rate is constant and not linearly increasing in time as might be naively expected for transitions with strict conservation of energy enforced This comes about from interference of oscillatory contributions of transitions to numerous continuum states with only approximate unperturbed energy conservation cf Wolfgang Pauli Wave Mechanics Volume 5 of Pauli Lectures on Physics Dover Books on Physics 2000 ISBN 0486414620 pp 150 151 Merzbacher Eugen 19 7 PDF Quantum Mechanics 3rd Wiley John amp Sons Inc 1998 2019 11 09 ISBN 978 0 471 88702 7 原始内容存档 PDF 于2016 03 04 N A Sinitsyn Q Niu and A H MacDonald Coordinate Shift in Semiclassical Boltzmann Equation and Anomalous Hall Effect Phys Rev B 2006 73 7 075318 Bibcode 2006PhRvB 73g5318S arXiv cond mat 0511310 doi 10 1103 PhysRevB 73 075318 Fox Mark Quantum Optics An Introduction Oxford Oxford University Press 2006 51 ISBN 9780198566731 K H Drexhage H Kuhn F P Schafer Variation of the Fluorescence Decay Time of a Molecule in Front of a Mirror BERICHTE DER BUNSEN GESELLSCHAFT FUR PHYSIKALISCHE CHEMIE 1968 72 329 doi 10 1002 bbpc 19680720261 K H Drexhage Influence of a dielectric interface on fluorescence decay time Journal of Luminescence 1970 1 693 doi 10 1016 0022 2313 70 90082 7 外部連結 编辑More information on Fermi s golden rule 页面存档备份 存于互联网档案馆 Derivation of Fermi s Golden Rule 页面存档备份 存于互联网档案馆 Time dependent perturbation theory 页面存档备份 存于互联网档案馆 Fermi s golden rule its derivation and breakdown by an ideal model 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 费米黄金定则 amp oldid 65688811, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。