fbpx
维基百科

模糊集

模糊集模糊数学上的一个基本概念,是数学上普通集合的扩展。

定义 编辑

给定一个论域  ,那么从 到单位区间 的一个映射 称为 上的一个模糊集,或 的一个模糊子集[1]

表示 编辑

模糊集可以记为 。映射(函数) 或简记为 叫做模糊集 隶属函数。对于每个  叫做元素 对模糊集 隶属度

模糊集的常用表示法有下述几种:

  1. 解析法,也即给出隶属函数的具体表达式。
  2. Zadeh记法,例如 。分母是论域中的元素,分子是该元素对应的隶属度。有时候,若隶属度为0,该项可以忽略不写。
  3. 序偶法,例如 ,序偶对的前者是论域中的元素,后者是该元素对应的隶属度。
  4. 向量法,在有限论域的场合,给论域中元素规定一个表达的顺序,那么可以将上述序偶法简写为隶属度的向量式,如 

和传统集合的关系 编辑

和傳統的集合一樣,模糊集也有它的元素,但可以談論每個元素屬於該模糊集的程度,其從低至高一般用 0 到 1 之間的數來表示。模糊集理論是由盧菲特·澤德(1965)所引進的,是經典集合論的一種推廣[2]。在經典的集合論中,所謂的二分條件規定每個元素只能屬於不屬於某個集合(因此模糊集不是集合);可以說,每個元素對每個集合的歸屬性(membership)都只能是 0 或 1。而每模糊集則擁有一個歸屬函數(membership function),其值允許取閉區間 單位區間)中的任何實數,用來表示元素對該集的歸屬程度。比如設某模糊集 的歸屬函數為  ,而   為三個元素;如果   ,則可以說 「 完全屬於 」,「 完全不屬於 」,「  的歸屬度為 」(注意没有說「 有一半屬於 」,因為尚未規定 的歸屬度具有甚麼特殊含義)。作為特例,當歸屬函數的值只能取 0 或 1 時,就得到了傳統集合論常用的指示函数(indicator function)[3]。傳統集合在模糊集理論中通常稱作「明確集」(crisp set)。

截集与截积 编辑

  上的模糊集(记作  ),任取  ,则

 

   截集,而 称为阈值或置信水平。将上式中的 替换为 ,记为 ,称为强截集

截集和强截集都是经典集合。此外,显然  ,即 ;如果 ,则称 为正规模糊集,否则称为非正规模糊集。

截积是数与模糊集的积:

  ,则   截积(或称为 截集的数乘,记为 )定义为:

 

根据定义,截积仍是 上的模糊集合。

分解定理与表现定理 编辑

分解定理

 ,则

 

即任一模糊集 都可以表达为一族简单模糊集 的并。也即,一个模糊集可以由其自身分解出的集合套而“拼成”。

表现定理

  上的任何一个集合套,则

 

 上的一个模糊集,且 ,有

(1) 

(2) 

即任一集合套都能拼成一个模糊集。

模糊度 编辑

一个模糊集 的模糊度衡量、反映了 A 的模糊程度,一个直观的定义是这样的:

设映射 满足下述5条性质:

  1. 清晰性: 当且仅当 。(经典集的模糊度恒为0。)
  2. 模糊性: 当且仅当  。(隶属度都为0.5的模糊集最模糊。)
  3. 单调性: ,若 ,或者 ,则 
  4. 对称性: ,有 。(补集的模糊度相等。)
  5. 可加性: 

则称 是定义在 上的模糊度函数,而 为模糊集 模糊度

可以证明符合上述定义的模糊度是存在的[4],一个常用的公式(分别针对有限和无限论域)就是
 
其中 是参数,称为 Minkowski 模糊度。特别地,当 的时候称为 Hamming 模糊度或 Kaufmann 模糊指标,当 的时候称为 Euclid 模糊度。

模糊測度(Fuzzy measures) 编辑

 是輿集 的一種。

 函數定義 ,包含下列3項特性稱為模糊測度:

 

--- 函數代0值,表示沒有值為空值,用數學0來表示。 函數代 表示輿集全部帶進去了塞滿了,用1表示塞滿。

②若  , 則 .

--- 是屬於 的一部分,  裡面也可能跟 一樣大,則 

③If   ,   ⊆…,then  

---當 屬於 同時 包含於 ,則將 代入 函數趨小所得的值等同於先趨小 再代入 函數所求得的值。

模糊量測(measures of fuzziness) 编辑

模糊集的运算 编辑

各种算子 编辑

  • Zadeh 算子, 即为并, 即为交

 

  • 代数算子(概率和、代数积)

 

  • 有界算子

 

  • Einstein 算子

 

  • Hamacher 算子,其中 是参数,等于1时转化为代数算子,等于2时转化为 Einstein 算子

 

  • Yager 算子,其中 是参数,等于1时转化为有界算子,趋于无穷时转化为 Zadeh 算子

 

  •  算子,其中 是参数

 

  • Dobois-Prade 算子,其中 是参数

 

算子的性质 编辑

参见集合代数布尔代数

主要算子的性质对比表如下(.表示不满足,-表示未验证):

算子 结合律 交换律 分配律 互补律 同一律 幂等律 支配律 吸收律 双重否定律 德·摩根律
Zedah .
代数 . . . . -
有界 . . -

线性补偿是指: [5]

算子的并运算 幂等律 排中律 分配律 结合律 线性补偿
Zadeh . .
代数 . . . .
有界 . . .
Hamacher r = 0 . . . .
Yager . . . .
Hamacher . . . .
Dobois-Prade . . . .

模糊集之间的距离 编辑

使用度量理论 编辑

可以使用一般的度量理论来描述模糊集之间的距离。在这个意义上,我们需要在模糊幂集 上建立一个度量,此外,我们还可能需要将此度量标准化,也即映射到 区间上。例如可以这样来标准化 Minkowski 距离:

 

贴近度 编辑

另一种是使用贴近度概念。在某种意义上,贴近度就是 1 - 距离(这里的距离是上述标准化意义上的距离)。而之所以应用这个变换,是考虑到“度”的概念的直觉反映——距离越近,贴近的程度显然越“高”,因此它恰为距离的反数。

除了距离外,还有一些与模糊集的特殊操作有关系的贴近度定义。

  • 最大最小贴近度
 
  • 算术平均最小贴近度
 
  • 几何平均最小贴近度
 
  • 指数贴近度
 

參見 编辑

參考文獻 编辑

  1. ^ 要注意,严格地说,模糊集或子集是映射所确定的序对集,但由于模糊子集完全由其隶属函数所确定,因而我们不区分映射和映射所确定的序对集,而总是直接把模糊子集定义为一个满足上述定义的映射。
  2. ^ L. A. Zadeh (1965) "Fuzzy sets" 互联网档案馆的,存档日期2007-11-27.. Information and Control 8 (3) 338–353.
  3. ^ D. Dubois and H. Prade (1988) Fuzzy Sets and Systems. Academic Press, New York.
  4. ^ 陈水利等,模糊集理论及其应用,科学出版社,2005年,第20页。
  5. ^ Etienne E. Kerre 等,模糊集理论与近似推理,武汉大学出版社,2004年,第103页。

模糊集, 是模糊数学上的一个基本概念, 是数学上普通集合的扩展, 目录, 定义, 表示, 和传统集合的关系, 截集与截积, 分解定理与表现定理, 模糊度, 模糊測度, fuzzy, measures, 模糊量測, measures, fuzziness, 的运算, 各种算子, 算子的性质, 之间的距离, 使用度量理论, 贴近度, 參見, 參考文獻定义, 编辑给定一个论域u, displaystyle, nbsp, 那么从u, displaystyle, nbsp, 到单位区间, displaystyle, nbsp. 模糊集是模糊数学上的一个基本概念 是数学上普通集合的扩展 目录 1 定义 2 表示 3 和传统集合的关系 3 1 截集与截积 3 2 分解定理与表现定理 4 模糊度 4 1 模糊測度 Fuzzy measures 4 2 模糊量測 measures of fuzziness 5 模糊集的运算 5 1 各种算子 5 2 算子的性质 6 模糊集之间的距离 6 1 使用度量理论 6 2 贴近度 7 參見 8 參考文獻定义 编辑给定一个论域U displaystyle U nbsp 那么从U displaystyle U nbsp 到单位区间 0 1 displaystyle 0 1 nbsp 的一个映射m A U 0 1 displaystyle mu A U mapsto 0 1 nbsp 称为U displaystyle U nbsp 上的一个模糊集 或U displaystyle U nbsp 的一个模糊子集 1 表示 编辑模糊集可以记为A displaystyle A nbsp 映射 函数 m A displaystyle mu A cdot nbsp 或简记为A displaystyle A cdot nbsp 叫做模糊集A displaystyle A nbsp 的隶属函数 对于每个x U displaystyle x in U nbsp m A x displaystyle mu A x nbsp 叫做元素x displaystyle x nbsp 对模糊集A displaystyle A nbsp 的隶属度 模糊集的常用表示法有下述几种 解析法 也即给出隶属函数的具体表达式 Zadeh记法 例如A 1 x 1 0 5 x 2 0 72 x 3 0 x 4 displaystyle A 1 over x 1 0 5 over x 2 0 72 over x 3 0 over x 4 nbsp 分母是论域中的元素 分子是该元素对应的隶属度 有时候 若隶属度为0 该项可以忽略不写 序偶法 例如A x 1 1 x 2 0 5 x 3 0 72 x 4 0 displaystyle A x 1 1 x 2 0 5 x 3 0 72 x 4 0 nbsp 序偶对的前者是论域中的元素 后者是该元素对应的隶属度 向量法 在有限论域的场合 给论域中元素规定一个表达的顺序 那么可以将上述序偶法简写为隶属度的向量式 如A 1 0 5 0 72 0 displaystyle A 1 0 5 0 72 0 nbsp 和传统集合的关系 编辑和傳統的集合一樣 模糊集也有它的元素 但可以談論每個元素屬於該模糊集的程度 其從低至高一般用 0 到 1 之間的數來表示 模糊集理論是由盧菲特 澤德 1965 所引進的 是經典集合論的一種推廣 2 在經典的集合論中 所謂的二分條件規定每個元素只能屬於或不屬於某個集合 因此模糊集不是集合 可以說 每個元素對每個集合的歸屬性 membership 都只能是 0 或 1 而每模糊集則擁有一個歸屬函數 membership function 其值允許取閉區間 0 1 displaystyle 0 1 nbsp 單位區間 中的任何實數 用來表示元素對該集的歸屬程度 比如設某模糊集A displaystyle A nbsp 的歸屬函數為M displaystyle M nbsp 而a displaystyle a nbsp b displaystyle b nbsp c displaystyle c nbsp 為三個元素 如果M a 1 displaystyle M a 1 nbsp M b 0 displaystyle M b 0 nbsp M c 1 2 displaystyle M c frac 1 2 nbsp 則可以說 a displaystyle a nbsp 完全屬於A displaystyle A nbsp b displaystyle b nbsp 完全不屬於A displaystyle A nbsp c displaystyle c nbsp 對A displaystyle A nbsp 的歸屬度為1 2 displaystyle frac 1 2 nbsp 注意没有說 c displaystyle c nbsp 有一半屬於A displaystyle A nbsp 因為尚未規定1 2 displaystyle frac 1 2 nbsp 的歸屬度具有甚麼特殊含義 作為特例 當歸屬函數的值只能取 0 或 1 時 就得到了傳統集合論常用的指示函数 indicator function 3 傳統集合在模糊集理論中通常稱作 明確集 crisp set 截集与截积 编辑 设 A displaystyle A nbsp 为 U displaystyle U nbsp 上的模糊集 记作 A F U displaystyle A in mathcal F U nbsp 任取 l 0 1 displaystyle lambda in 0 1 nbsp 则 A l u U A u l displaystyle A lambda u in U mid A u geq lambda nbsp 称A l displaystyle A lambda nbsp 为A displaystyle A nbsp 的l displaystyle lambda nbsp 截集 而l displaystyle lambda nbsp 称为阈值或置信水平 将上式中的 displaystyle geq nbsp 替换为 gt displaystyle gt nbsp 记为A S l displaystyle A S lambda nbsp 称为强截集 截集和强截集都是经典集合 此外 显然A 1 displaystyle A 1 nbsp 为A displaystyle A nbsp 的核 即ker A displaystyle ker A nbsp 如果ker A displaystyle ker A neq varnothing nbsp 则称A displaystyle A nbsp 为正规模糊集 否则称为非正规模糊集 截积是数与模糊集的积 设l 0 1 displaystyle lambda in 0 1 nbsp A F U displaystyle A in F U nbsp 则 u U displaystyle forall u in U nbsp l displaystyle lambda nbsp 与A displaystyle A nbsp 的截积 或称为l displaystyle lambda nbsp 截集的数乘 记为l A displaystyle lambda A nbsp 定义为 l A u l A u A u l A u l l lt A u displaystyle lambda A u lambda wedge A u begin cases A u amp lambda geq A u lambda amp lambda lt A u end cases nbsp 根据定义 截积仍是U displaystyle U nbsp 上的模糊集合 分解定理与表现定理 编辑 分解定理 设A F U displaystyle A in F U nbsp 则 A l 0 1 l A l displaystyle A bigcup limits lambda in 0 1 lambda A lambda nbsp 即任一模糊集A displaystyle A nbsp 都可以表达为一族简单模糊集 l a l displaystyle left lambda a lambda right nbsp 的并 也即 一个模糊集可以由其自身分解出的集合套而 拼成 表现定理 设H displaystyle H nbsp 为U displaystyle U nbsp 上的任何一个集合套 则 A l 0 1 l H l displaystyle A bigcup limits lambda in 0 1 lambda H lambda nbsp 是U displaystyle U nbsp 上的一个模糊集 且 l 0 1 displaystyle forall lambda in 0 1 nbsp 有 1 A S l a gt l H a displaystyle A S lambda cup alpha gt lambda H alpha nbsp 2 A l a lt l H a displaystyle A lambda cap alpha lt lambda H alpha nbsp 即任一集合套都能拼成一个模糊集 模糊度 编辑一个模糊集A displaystyle A nbsp 的模糊度衡量 反映了 A 的模糊程度 一个直观的定义是这样的 设映射D F U 0 1 displaystyle D F U rightarrow 0 1 nbsp 满足下述5条性质 清晰性 D A 0 displaystyle D A 0 nbsp 当且仅当A P U displaystyle A in P U nbsp 经典集的模糊度恒为0 模糊性 D A 1 displaystyle D A 1 nbsp 当且仅当 u U displaystyle forall u in U nbsp 有A u 0 5 displaystyle A u 0 5 nbsp 隶属度都为0 5的模糊集最模糊 单调性 u U displaystyle forall u in U nbsp 若A u B u 0 5 displaystyle A u leq B u leq 0 5 nbsp 或者A u B u 0 5 displaystyle A u geq B u geq 0 5 nbsp 则D A D B displaystyle D A leq D B nbsp 对称性 A F U displaystyle forall A in F U nbsp 有D A c D A displaystyle D A c D A nbsp 补集的模糊度相等 可加性 D A B D A B D A D B displaystyle D A cup B D A cap B D A D B nbsp 则称D displaystyle D nbsp 是定义在F U displaystyle F U nbsp 上的模糊度函数 而D A displaystyle D A nbsp 为模糊集A displaystyle A nbsp 的模糊度 可以证明符合上述定义的模糊度是存在的 4 一个常用的公式 分别针对有限和无限论域 就是D p A 2 n 1 p i 1 n A u i A 0 5 u i p 1 p D A A u A 0 5 u d u displaystyle begin aligned D p A amp frac 2 n 1 p left sum limits i 1 n left A u i A 0 5 u i right p right 1 p D A amp int infty infty A u A 0 5 u mbox d u end aligned nbsp 其中p gt 0 displaystyle p gt 0 nbsp 是参数 称为 Minkowski 模糊度 特别地 当p 1 displaystyle p 1 nbsp 的时候称为 Hamming 模糊度或 Kaufmann 模糊指标 当p 2 displaystyle p 2 nbsp 的时候称为 Euclid 模糊度 模糊測度 Fuzzy measures 编辑 B displaystyle mathfrak B nbsp 是輿集X displaystyle mathrm X nbsp 的一種 用g displaystyle g nbsp 函數定義B displaystyle mathfrak B nbsp 包含下列3項特性稱為模糊測度 g 0 0 g X 1 displaystyle g 0 0 g mathrm X 1 nbsp g displaystyle g nbsp 函數代0值 表示沒有值為空值 用數學0來表示 g displaystyle g nbsp 函數代X displaystyle X nbsp 表示輿集全部帶進去了塞滿了 用1表示塞滿 若A B B displaystyle A B in mathfrak B nbsp 和A B displaystyle A subseteq B nbsp 則g A g B displaystyle g A leq g B nbsp A B displaystyle A B nbsp 是屬於B displaystyle mathfrak B nbsp 的一部分 A displaystyle A nbsp 在B displaystyle B nbsp 裡面也可能跟B displaystyle B nbsp 一樣大 則g A g B displaystyle g A leq g B nbsp If A n displaystyle A n nbsp B displaystyle mathfrak B nbsp A 1 displaystyle A 1 nbsp A 2 displaystyle A 2 nbsp then lim n g A n g lim n A n displaystyle lim n to infty g A n g lim n to infty A n nbsp 當A n displaystyle A n nbsp 屬於B displaystyle mathfrak B nbsp 同時A 1 displaystyle A 1 nbsp 包含於A 2 displaystyle A 2 subseteq ldots nbsp 則將A n displaystyle A n nbsp 代入g displaystyle g nbsp 函數趨小所得的值等同於先趨小A n displaystyle A n nbsp 再代入g displaystyle g nbsp 函數所求得的值 模糊量測 measures of fuzziness 编辑模糊集的运算 编辑各种算子 编辑 Zadeh 算子 max displaystyle max nbsp 即为并 min displaystyle min nbsp 即为交a b max a b a b min a b displaystyle begin aligned a vee b amp max a b a wedge b amp min a b end aligned nbsp 代数算子 概率和 代数积 a b a b a b a b a b displaystyle begin aligned a stackrel wedge b amp a b ab a cdot b amp ab end aligned nbsp 有界算子a b min 1 a b a b max 0 a b 1 displaystyle begin aligned a oplus b amp min 1 a b a odot b amp max 0 a b 1 end aligned nbsp Einstein 算子a ϵ b a b 1 a b a ϵ b a b 1 1 a 1 b displaystyle begin aligned a stackrel epsilon b amp frac a b 1 ab a stackrel cdot epsilon b amp frac ab 1 1 a 1 b end aligned nbsp Hamacher 算子 其中n 0 displaystyle nu in 0 infty nbsp 是参数 等于1时转化为代数算子 等于2时转化为 Einstein 算子a n b a b a b 1 n a b n 1 n 1 a b a n b a b n 1 n a b a b displaystyle begin aligned a stackrel nu b amp frac a b ab 1 nu ab nu 1 nu 1 ab a stackrel cdot nu b amp frac ab nu 1 nu a b ab end aligned nbsp Yager 算子 其中p displaystyle p nbsp 是参数 等于1时转化为有界算子 趋于无穷时转化为 Zadeh 算子a Y p b min 1 a p b p 1 p a y p b 1 min 1 1 a p 1 b p 1 p displaystyle begin aligned a Y p b amp min 1 a p b p 1 p a y p b amp 1 min 1 1 a p 1 b p 1 p end aligned nbsp l g displaystyle lambda gamma nbsp 算子 其中l g 0 1 displaystyle lambda gamma in 0 1 nbsp 是参数a l b l a b 1 l a b a b a g b a b 1 g a a b g displaystyle begin aligned a lambda b amp lambda ab 1 lambda a b ab a gamma b amp ab 1 gamma a ab gamma end aligned nbsp Dobois Prade 算子 其中l 0 1 displaystyle lambda in 0 1 nbsp 是参数a d b a b a b min 1 l a b max l 1 a 1 b a d b a b max l a b displaystyle begin aligned a vee d b amp frac a b ab min 1 lambda a b max lambda 1 a 1 b a wedge d b amp frac ab max lambda a b end aligned nbsp 算子的性质 编辑 参见集合代数和布尔代数 主要算子的性质对比表如下 表示不满足 表示未验证 算子 结合律 交换律 分配律 互补律 同一律 幂等律 支配律 吸收律 双重否定律 德 摩根律Zedah 代数 有界 线性补偿是指 x y k 0 1 x k y k U x k y k U x y displaystyle forall x y k in 0 1 x k wedge y k Rightarrow U x k y k U x y nbsp 5 算子的并运算 幂等律 排中律 分配律 结合律 线性补偿Zadeh 代数 有界 Hamacher r 0 Yager Hamacher Dobois Prade 模糊集之间的距离 编辑使用度量理论 编辑 可以使用一般的度量理论来描述模糊集之间的距离 在这个意义上 我们需要在模糊幂集F U displaystyle F U nbsp 上建立一个度量 此外 我们还可能需要将此度量标准化 也即映射到 0 1 displaystyle 0 1 nbsp 区间上 例如可以这样来标准化 Minkowski 距离 d x y 1 n i 1 n x i y i p 1 p displaystyle tilde d x y left 1 over n sum limits i 1 n left x i y i right p right 1 over p nbsp 贴近度 编辑 主条目 贴近度 另一种是使用贴近度概念 在某种意义上 贴近度就是 1 距离 这里的距离是上述标准化意义上的距离 而之所以应用这个变换 是考虑到 度 的概念的直觉反映 距离越近 贴近的程度显然越 高 因此它恰为距离的反数 除了距离外 还有一些与模糊集的特殊操作有关系的贴近度定义 最大最小贴近度s A B i 1 n A u i B u i i 1 n A u i B u i displaystyle displaystyle sigma A B frac sum i 1 n A u i wedge B u i sum i 1 n A u i vee B u i nbsp 算术平均最小贴近度s A B i 1 n A u i B u i 1 2 i 1 n A u i B u i displaystyle displaystyle sigma A B frac sum i 1 n A u i wedge B u i 1 over 2 sum i 1 n A u i B u i nbsp 几何平均最小贴近度s A B i 1 n A u i B u i i 1 n A u i B u i displaystyle displaystyle sigma A B frac sum i 1 n A u i wedge B u i sum i 1 n sqrt A u i cdot B u i nbsp 指数贴近度s A B 1 e A B displaystyle displaystyle sigma A B frac 1 e A B nbsp 參見 编辑粗集合 解模糊參考文獻 编辑 要注意 严格地说 模糊集或子集是映射所确定的序对集 但由于模糊子集完全由其隶属函数所确定 因而我们不区分映射和映射所确定的序对集 而总是直接把模糊子集定义为一个满足上述定义的映射 L A Zadeh 1965 Fuzzy sets 互联网档案馆的存檔 存档日期2007 11 27 Information and Control 8 3 338 353 D Dubois and H Prade 1988 Fuzzy Sets and Systems Academic Press New York 陈水利等 模糊集理论及其应用 科学出版社 2005年 第20页 Etienne E Kerre 等 模糊集理论与近似推理 武汉大学出版社 2004年 第103页 取自 https zh wikipedia org w index php title 模糊集 amp oldid 70770097, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。