fbpx
维基百科

印度数学

印度數學在公元前1200年[1]印度次大陆[2]出现,到18世纪结束。在印度数学的古典时期(公元400年至1200年),阿耶波多婆羅摩笈多婆什迦羅第二伐罗诃密希罗等学者做出了重要的贡献。印度数学首先记录了今天使用的十进制[3][4]印度数学家早期的贡献包括对0作为数字的概念的研究[5]负数[6]算数,以及代数[7]另外,三角学[8] 在印度更加先进,特别是发展出了正弦余弦的现代定义。[9]这些数学概念被传播到中东,中国和欧洲[7],从而导致了进一步的发展,形成了现在许多数学领域的基础。

古代和中世纪的印度数学作品,都是用梵语写成,通常由称作契经的一部分组成,在其中为了帮助学生记忆,用极少的字词陈述了一些规则和问题。在这之后是第二部分,包括一篇散文评论(有时是来自不同学者的多篇评论),其更详细地解释了问题并为解决方案提供了更多的理由。在散文部分,形式(和记忆)比起其涉及的思想来说并不是很重要。[2][10]在公元前500年之前,所有的数学作品都是由口头传播,之后同时以口头和手稿的形式传播。现存的印度次大陆上最古老的数学文献是写在桦树皮上的巴赫沙利手稿,它在1881年于巴赫沙利村被发现,靠近白沙瓦(现位于巴基斯坦)并可能来自公元7世纪。[11][12]

印度数学的后期里程碑是公元15世纪喀拉拉邦学派的数学家对三角函数(正弦,余弦和反正切)的级数展开的发展。 他们的卓越工作,在欧洲发明微积分之前两个世纪完成,提供了现在被称为幂级数的第一个例子(除了等比数列)[13] 。 然而,他们没有制定出系统的微分积分理论,也没有任何直接证据证明他们的结果是在喀拉拉邦以外传播的[14][15][16][17]

史前時期 编辑

摩亨佐-達羅、哈拉帕與其他幾個印度河流域文明的遺址中,都發現了使用"實用數學"的證據。他們使用4:2:1的比例製造磚頭,此作法被認為有利於磚頭結構的穩定性。他們使用了標準化的砝碼,以比例:1/20, 1/10, 1/5, 1/2, 1, 2, 5, 10, 20, 50, 100, 200與500進行製作,其中的一單位的重量約等於28克。他們大量生產有規則形狀的砝碼,有六面體、桶形、錐形與柱形,從而展示出對於基本幾何的理解。[18]

印度文明的居民曾試圖對於長度量測進行高精準度的標準化。他們設計出了摩亨佐達羅尺,尺上的單位長度約為3.4公分,並且再分割成十等分。古代摩亨若達羅的磚頭尺寸通常是此單位長度的整數倍。[19][20]

在洛沙爾(Lothal,2200 BCE)與卓拉維拉(Dholavira)發現的貝殼製中空柱狀物體上面有8個裂縫,被認為可用來製作羅盤,證明了能在平面上測量角度的能力,並可藉此確定星星的位置進行導航。[21]

吠陀時期 编辑

吠陀時期的宗教文本提供了使用大數的證據。在《夜柔吠陀》(公元前1200-900年)文本中,包含的數字高達1012[1]

耆那學者(前400年-200年) 编辑

耆那學者認為世界是永恆的,只有形式上的變化,與婆羅門教創造萬物的理論不同。耆那教由筏陀摩那在前6世紀創立,但耆那數學著作大部分是在前6世紀後撰寫的。耆那學者將數字分為三類。

耆那重要數學家包括賢臂英语Bhadrabahu(Bhadrabahu,卒於公元前298年),他是兩部天文著作的作者。

書寫形式 编辑

巴赫沙利手稿 编辑

古典時期(400-1600年) 编辑

參見 编辑

  • Shulba Sutras英语Shulba Sutras
  • Kerala school of astronomy and mathematics英语Kerala school of astronomy and mathematics
  • Surya Siddhanta英语Surya Siddhanta
  • 婆羅摩笈多
  • 斯里尼瓦瑟·拉马努金
  • 巴赫沙利手稿
  • 印度数学家列表英语List of Indian mathematicians
  • 印度科学和技术英语Indian science and technology
  • 印度逻辑英语Indian logic
  • 印度天文学英语Indian astronomy
  • 数学史
  • List of numbers in Hindu scriptures英语List of numbers in Hindu scriptures

引用 编辑

  1. ^ 1.0 1.1 Hayashi 2005,pp.360–361)
  2. ^ 2.0 2.1 Encyclopaedia Britannica (Kim Plofker) 2007,第1頁
  3. ^ Ifrah 2000,第346頁: "The measure of the genius of Indian civilisation, to which we owe our modern (number) system, is all the greater in that it was the only one in all history to have achieved this triumph. Some cultures succeeded, earlier than the Indian, in discovering one or at best two of the characteristics of this intellectual feat. But none of them managed to bring together into a complete and coherent system the necessary and sufficient conditions for a number-system with the same potential as our own."
  4. ^ Plofker 2009,第44–47頁
  5. ^ Bourbaki 1998,第46頁: "...our decimal system, which (by the agency of the Arabs) is derived from Hindu mathematics, where its use is attested already from the first centuries of our era. It must be noted moreover that the conception of zero as a number and not as a simple symbol of separation) and its introduction into calculations, also count amongst the original contribution of the Hindus."
  6. ^ Bourbaki 1998,第49頁: Modern arithmetic was known during medieval times as "Modus Indorum" or method of the Indians. Leonardo of Pisa wrote that compared to method of the Indians all other methods is a mistake. This method of the Indians is none other than our very simple arithmetic of addition, subtraction, multiplication and division. Rules for these four simple procedures was first written down by Brahmagupta during 7th century AD. "On this point, the Hindus are already conscious of the interpretation that negative numbers must have in certain cases (a debt in a commercial problem, for instance). In the following centuries, as there is a diffusion into the West (by intermediary of the Arabs) of the methods and results of Greek and Hindu mathematics, one becomes more used to the handling of these numbers, and one begins to have other "representation" for them which are geometric or dynamic."
  7. ^ 7.0 7.1 "algebra" 2007. Britannica Concise Encyclopedia (页面存档备份,存于互联网档案馆). Encyclopædia Britannica Online. 16 May 2007. Quote: "A full-fledged decimal, positional system certainly existed in India by the 9th century (AD), yet many of its central ideas had been transmitted well before that time to China and the Islamic world. Indian arithmetic, moreover, developed consistent and correct rules for operating with positive and negative numbers and for treating zero like any other number, even in problematic contexts such as division. Several hundred years passed before European mathematicians fully integrated such ideas into the developing discipline of algebra."
  8. ^ Pingree 2003,p.45) Quote: "Geometry, and its branch trigonometry, was the mathematics Indian astronomers used most frequently. Greek mathematicians used the full chord and never imagined the half chord that we use today. Half chord was first used by Aryabhata which made trigonometry much more simple. In fact, the Indian astronomers in the third or fourth century, using a pre-Ptolemaic Greek table of chords, produced tables of sines and versines, from which it was trivial to derive cosines. This new system of trigonometry, produced in India, was transmitted to the Arabs in the late eighth century and by them, in an expanded form, to the Latin West and the Byzantine East in the twelfth century."
  9. ^ Bourbaki 1998,p.126): "As for trigonometry, it is disdained by geometers and abandoned to surveyors and astronomers; it is these latter (Aristarchus, Hipparchus, Ptolemy) who establish the fundamental relations between the sides and angles of a right angled triangle (plane or spherical) and draw up the first tables (they consist of tables giving the chord of the arc cut out by an angle   on a circle of radius r, in other words the number  ; the introduction of the sine, more easily handled, is due to Hindu mathematicians of the Middle Ages)."
  10. ^ Filliozat 2004,第140–143頁
  11. ^ Hayashi 1995
  12. ^ Encyclopaedia Britannica (Kim Plofker) 2007,第6頁
  13. ^ Stillwell 2004,第173頁
  14. ^ Bressoud 2002,第12頁 Quote: "There is no evidence that the Indian work on series was known beyond India, or even outside Kerala, until the nineteenth century. Gold and Pingree assert [4] that by the time these series were rediscovered in Europe, they had, for all practical purposes, been lost to India. The expansions of the sine, cosine, and arc tangent had been passed down through several generations of disciples, but they remained sterile observations for which no one could find much use."
  15. ^ Plofker 2001,第293頁 Quote: "It is not unusual to encounter in discussions of Indian mathematics such assertions as that “the concept of differentiation was understood [in India] from the time of Manjula (... in the 10th century)” [Joseph 1991, 300], or that "we may consider Madhava to have been the founder of mathematical analysis" (Joseph 1991, 293), or that Bhaskara II may claim to be "the precursor of Newton and Leibniz in the discovery of the principle of the differential calculus" (Bag 1979, 294). ... The points of resemblance, particularly between early European calculus and the Keralese work on power series, have even inspired suggestions of a possible transmission of mathematical ideas from the Malabar coast in or after the 15th century to the Latin scholarly world (e.g., in (Bag 1979, 285)). ... It should be borne in mind, however, that such an emphasis on the similarity of Sanskrit (or Malayalam) and Latin mathematics risks diminishing our ability fully to see and comprehend the former. To speak of the Indian "discovery of the principle of the differential calculus" somewhat obscures the fact that Indian techniques for expressing changes in the Sine by means of the Cosine or vice versa, as in the examples we have seen, remained within that specific trigonometric context. The differential "principle" was not generalised to arbitrary functions—in fact, the explicit notion of an arbitrary function, not to mention that of its derivative or an algorithm for taking the derivative, is irrelevant here"
  16. ^ Pingree 1992,第562頁 Quote:"One example I can give you relates to the Indian Mādhava's demonstration, in about 1400 A.D., of the infinite power series of trigonometrical functions using geometrical and algebraic arguments. When this was first described in English by Charles Matthew Whish, in the 1830s, it was heralded as the Indians' discovery of the calculus. This claim and Mādhava's achievements were ignored by Western historians, presumably at first because they could not admit that an Indian discovered the calculus, but later because no one read anymore the Transactions of the Royal Asiatic Society, in which Whish's article was published. The matter resurfaced in the 1950s, and now we have the Sanskrit texts properly edited, and we understand the clever way that Mādhava derived the series without the calculus; but many historians still find it impossible to conceive of the problem and its solution in terms of anything other than the calculus and proclaim that the calculus is what Mādhava found. In this case the elegance and brilliance of Mādhava's mathematics are being distorted as they are buried under the current mathematical solution to a problem to which he discovered an alternate and powerful solution."
  17. ^ Katz 1995,第173–174頁 Quote:"How close did Islamic and Indian scholars come to inventing the calculus? Islamic scholars nearly developed a general formula for finding integrals of polynomials by A.D. 1000—and evidently could find such a formula for any polynomial in which they were interested. But, it appears, they were not interested in any polynomial of degree higher than four, at least in any of the material that has come down to us. Indian scholars, on the other hand, were by 1600 able to use ibn al-Haytham's sum formula for arbitrary integral powers in calculating power series for the functions in which they were interested. By the same time, they also knew how to calculate the differentials of these functions. So some of the basic ideas of calculus were known in Egypt and India many centuries before Newton. It does not appear, however, that either Islamic or Indian mathematicians saw the necessity of connecting some of the disparate ideas that we include under the name calculus. They were apparently only interested in specific cases in which these ideas were needed. ... There is no danger, therefore, that we will have to rewrite the history texts to remove the statement that Newton and Leibniz invented calculus. They were certainly the ones who were able to combine many differing ideas under the two unifying themes of the derivative and the integral, show the connection between them, and turn the calculus into the great problem-solving tool we have today."
  18. ^ Sergent, Bernard, Genèse de l'Inde, Paris: Payot: 113, 1997, ISBN 978-2-228-89116-5 (法语) 
  19. ^ Coppa, A.; et al, Early Neolithic tradition of dentistry: Flint tips were surprisingly effective for drilling tooth enamel in a prehistoric population, Nature, 6 April 2006, 440 (7085): 755–6, Bibcode:2006Natur.440..755C, PMID 16598247, S2CID 6787162, doi:10.1038/440755a. 
  20. ^ Bisht, R. S., Excavations at Banawali: 1974–77, Possehl, Gregory L. (编), Harappan Civilisation: A Contemporary Perspective, New Delhi: Oxford and IBH Publishing Co.: 113–124, 1982 
  21. ^ S. R. Rao (1992). Marine Archaeology, Vol. 3,. pp. 61-62. Link http://drs.nio.org/drs/bitstream/handle/2264/3082/J_Mar_Archaeol_3_61.pdf?sequence=2 (页面存档备份,存于互联网档案馆

参考文献 编辑

  • Bourbaki, Nicolas, Elements of the History of Mathematics, Berlin, Heidelberg, and New York: Springer-Verlag, 301 pages, 1998, ISBN 978-3-540-64767-6 .
  • Boyer, C. B.; Merzback (fwd. by Isaac Asimov), U. C., History of Mathematics, New York: John Wiley and Sons, 736 pages, 1991, ISBN 978-0-471-54397-8 .
  • Bressoud, David, Was Calculus Invented in India?, The College Mathematics Journal (Math. Assoc. Amer.), 2002, 33 (1): 2–13, JSTOR 1558972, doi:10.2307/1558972 .
  • Bronkhorst, Johannes, Panini and Euclid: Reflections on Indian Geometry, Journal of Indian Philosophy (Springer Netherlands), 2001, 29 (1–2): 43–80, doi:10.1023/A:1017506118885 .
  • Burnett, Charles, The Semantics of Indian Numerals in Arabic, Greek and Latin, Journal of Indian Philosophy (Springer-Netherlands), 2006, 34 (1–2): 15–30, doi:10.1007/s10781-005-8153-z .
  • Burton, David M., The History of Mathematics: An Introduction, The McGraw-Hill Companies, Inc.: 193–220, 1997 .
  • Cooke, Roger, The History of Mathematics: A Brief Course, New York: Wiley-Interscience, 632 pages, 2005, ISBN 978-0-471-44459-6 .
  • Dani, S. G., On the Pythagorean triples in the Śulvasūtras (PDF), Current Science, 25 July 2003, 85 (2): 219–224 [2019-08-11], (原始内容 (PDF)于2011-10-12) .
  • Datta, Bibhutibhusan, Early Literary Evidence of the Use of the Zero in India, The American Mathematical Monthly, December 1931, 38 (10): 566–572, JSTOR 2301384, doi:10.2307/2301384 .
  • Datta, Bibhutibhusan; Singh, Avadesh Narayan, History of Hindu Mathematics : A source book, Bombay: Asia Publishing House, 1962 .
  • De Young, Gregg, Euclidean Geometry in the Mathematical Tradition of Islamic India, Historia Mathematica, 1995, 22 (2): 138–153, doi:10.1006/hmat.1995.1014 .
  • Encyclopædia Britannica (Kim Plofker), mathematics, South Asian, Encyclopædia Britannica Online, 2007: 1–12 [18 May 2007] .
  • Filliozat, Pierre-Sylvain, Ancient Sanskrit Mathematics: An Oral Tradition and a Written Literature, Chemla, Karine; Cohen, Robert S.; Renn, Jürgen; et al (编), History of Science, History of Text (Boston Series in the Philosophy of Science), Dordrecht: Springer Netherlands, 254 pages, pp. 137–157: 360–375, 2004, ISBN 978-1-4020-2320-0 [失效連結].
  • Fowler, David, Binomial Coefficient Function, The American Mathematical Monthly, 1996, 103 (1): 1–17, JSTOR 2975209, doi:10.2307/2975209 .
  • Hayashi, Takao, The Bakhshali Manuscript, An ancient Indian mathematical treatise, Groningen: Egbert Forsten, 596 pages, 1995, ISBN 978-90-6980-087-5 .
  • Hayashi, Takao, Aryabhata's Rule and Table of Sine-Differences, Historia Mathematica, 1997, 24 (4): 396–406, doi:10.1006/hmat.1997.2160 .
  • Hayashi, Takao, Indian Mathematics, Grattan-Guinness, Ivor (编), Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, 1, pp. 118–130, Baltimore, MD: The Johns Hopkins University Press, 976 pages, 2003, ISBN 978-0-8018-7396-6 .
  • Hayashi, Takao, Indian Mathematics, Flood, Gavin (编), The Blackwell Companion to Hinduism, Oxford: Basil Blackwell, 616 pages, pp. 360–375: 360–375, 2005, ISBN 978-1-4051-3251-0 .
  • Henderson, David W., Square roots in the Sulba Sutras, Gorini, Catherine A. (编), Geometry at Work: Papers in Applied Geometry, 53, pp. 39–45, Washington DC: Mathematical Association of America Notes, 236 pages: 39–45, 2000 [2019-08-11], ISBN 978-0-88385-164-7, (原始内容于2015-03-10) .
  • Joseph, G. G., The Crest of the Peacock: The Non-European Roots of Mathematics, Princeton, NJ: Princeton University Press, 416 pages, 2000, ISBN 978-0-691-00659-8 .
  • Katz, Victor J., Ideas of Calculus in Islam and India, Mathematics Magazine (Math. Assoc. Amer.), 1995, 68 (3): 163–174, JSTOR 2691411, doi:10.2307/2691411 .
  • Katz, Victor J. (编), The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton, NJ: Princeton University Press, 685 pages, pp 385–514, 2007, ISBN 978-0-691-11485-9 .
  • Keller, Agathe, Making diagrams speak, in Bhāskara I's commentary on the Aryabhaṭīya, Historia Mathematica, 2005, 32 (3): 275–302, doi:10.1016/j.hm.2004.09.001 .
  • Kichenassamy, Satynad, Baudhāyana's rule for the quadrature of the circle, Historia Mathematica, 2006, 33 (2): 149–183, doi:10.1016/j.hm.2005.05.001 .
  • Pingree, David, On the Greek Origin of the Indian Planetary Model Employing a Double Epicycle, Journal of Historical Astronomy, 1971, 2 (1): 80–85, doi:10.1177/002182867100200202 .
  • Pingree, David, The Mesopotamian Origin of Early Indian Mathematical Astronomy, Journal of Historical Astronomy, 1973, 4 (1): 1–12, doi:10.1177/002182867300400102 .
  • Pingree, David; Staal, Frits, Reviewed Work(s): The Fidelity of Oral Tradition and the Origins of Science by Frits Staal, Journal of the American Oriental Society, 1988, 108 (4): 637–638, JSTOR 603154, doi:10.2307/603154 .
  • Pingree, David, Hellenophilia versus the History of Science, Isis, 1992, 83 (4): 554–563, Bibcode:1992Isis...83..554P, JSTOR 234257, doi:10.1086/356288 
  • Pingree, David, The logic of non-Western science: mathematical discoveries in medieval India, Daedalus, 2003, 132 (4): 45–54 [2019-08-11], doi:10.1162/001152603771338779, (原始内容于2011-01-15) .
  • Plofker, Kim, An Example of the Secant Method of Iterative Approximation in a Fifteenth-Century Sanskrit Text, Historia Mathematica, 1996, 23 (3): 246–256, doi:10.1006/hmat.1996.0026 .
  • Plofker, Kim, The "Error" in the Indian "Taylor Series Approximation" to the Sine, Historia Mathematica, 2001, 28 (4): 283–295, doi:10.1006/hmat.2001.2331 .
  • Plofker, K., Mathematics of India, Katz, Victor J. (编), The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, Princeton, NJ: Princeton University Press, 685 pages, pp 385–514: 385–514, 2007, ISBN 978-0-691-11485-9 .
  • Plofker, Kim, Mathematics in India: 500 BCE–1800 CE, Princeton, NJ: Princeton University Press. Pp. 384., 2009, ISBN 978-0-691-12067-6 .
  • Price, John F., (PDF), Gorini, Catherine A. (编), Geometry at Work: Papers in Applied Geometry, 53, pp. 46–58, Washington DC: Mathematical Association of America Notes, 236 pages: 46–58, 2000 [2019-08-11], ISBN 978-0-88385-164-7, (原始内容 (PDF)存档于2007-09-27) .
  • Roy, Ranjan, Discovery of the Series Formula for   by Leibniz, Gregory, and Nilakantha, Mathematics Magazine (Math. Assoc. Amer.), 1990, 63 (5): 291–306, JSTOR 2690896, doi:10.2307/2690896 .
  • Singh, A. N., On the Use of Series in Hindu Mathematics, Osiris, 1936, 1 (1): 606–628, JSTOR 301627, doi:10.1086/368443 
  • Staal, Frits, The Fidelity of Oral Tradition and the Origins of Science, Mededelingen der Koninklijke Nederlandse Akademie von Wetenschappen, Afd. Letterkunde, NS 49, 8. Amsterdam: North Holland Publishing Company, 40 pages, 1986 .
  • Staal, Frits, The Sanskrit of science, Journal of Indian Philosophy (Springer Netherlands), 1995, 23 (1): 73–127, doi:10.1007/BF01062067 .
  • Staal, Frits, Greek and Vedic Geometry, Journal of Indian Philosophy, 1999, 27 (1–2): 105–127, doi:10.1023/A:1004364417713 .
  • Staal, Frits, Squares and oblongs in the Veda, Journal of Indian Philosophy (Springer Netherlands), 2001, 29 (1–2): 256–272, doi:10.1023/A:1017527129520 .
  • Staal, Frits, Artificial Languages Across Sciences and Civilisations, Journal of Indian Philosophy (Springer Netherlands), 2006, 34 (1): 89–141, doi:10.1007/s10781-005-8189-0 .
  • Stillwell, John, Mathematics and its History, Undergraduate Texts in Mathematics 2, Springer, Berlin and New York, 568 pages, 2004, ISBN 978-0-387-95336-6, doi:10.1007/978-1-4684-9281-1 .
  • Thibaut, George, Mathematics in the Making in Ancient India: reprints of 'On the Sulvasutras' and 'Baudhyayana Sulva-sutra', Calcutta and Delhi: K. P. Bagchi and Company (orig. Journal of Asiatic Society of Bengal), 133 pages, 1984 [1875] .
  • van der Waerden, B. L., Geometry and Algebra in Ancient Civilisations, Berlin and New York: Springer, 223 pages, 1983, ISBN 978-0-387-12159-8 
  • van der Waerden, B. L., On the Romaka-Siddhānta, Archive for History of Exact Sciences, 1988, 38 (1): 1–11, doi:10.1007/BF00329976 
  • van der Waerden, B. L., Reconstruction of a Greek table of chords, Archive for History of Exact Sciences, 1988, 38 (1): 23–38, doi:10.1007/BF00329978 
  • Van Nooten, B., Binary numbers in Indian antiquity, Journal of Indian Philosophy (Springer Netherlands), 1993, 21 (1): 31–50, doi:10.1007/BF01092744 
  • Whish, Charles, On the Hindú Quadrature of the Circle, and the infinite Series of the proportion of the circumference to the diameter exhibited in the four S'ástras, the Tantra Sangraham, Yucti Bháshá, Carana Padhati, and Sadratnamála, Transactions of the Royal Asiatic Society of Great Britain and Ireland, 1835, 3 (3): 509–523, JSTOR 25581775, doi:10.1017/S0950473700001221 
  • Yano, Michio, Oral and Written Transmission of the Exact Sciences in Sanskrit, Journal of Indian Philosophy (Springer Netherlands), 2006, 34 (1–2): 143–160, doi:10.1007/s10781-005-8175-6 

延伸阅读 编辑

梵语文献 编辑

  • Keller, Agathe, Expounding the Mathematical Seed. Vol. 1: The Translation: A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya, Basel, Boston, and Berlin: Birkhäuser Verlag, 172 pages, 2006, ISBN 978-3-7643-7291-0 .
  • Keller, Agathe, Expounding the Mathematical Seed. Vol. 2: The Supplements: A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya, Basel, Boston, and Berlin: Birkhäuser Verlag, 206 pages, 2006, ISBN 978-3-7643-7292-7 .
  • Neugebauer, Otto; Pingree, David (编), The Pañcasiddhāntikā of Varāhamihira, New edition with translation and commentary, (2 Vols.), Copenhagen, 1970 .
  • Pingree, David (编), The Yavanajātaka of Sphujidhvaja, edited, translated and commented by D. Pingree, Cambridge, MA: Harvard Oriental Series 48 (2 vols.), 1978 .
  • Sarma, K. V. (编), Āryabhaṭīya of Āryabhaṭa with the commentary of Sūryadeva Yajvan, critically edited with Introduction and Appendices, New Delhi: Indian National Science Academy, 1976 .
  • Sen, S. N.; Bag, A. K. (编), The Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and Mānava, with Text, English Translation and Commentary, New Delhi: Indian National Science Academy, 1983 .
  • Shukla, K. S. (编), Āryabhaṭīya of Āryabhaṭa with the commentary of Bhāskara I and Someśvara, critically edited with Introduction, English Translation, Notes, Comments and Indexes, New Delhi: Indian National Science Academy, 1976 .
  • Shukla, K. S. (编), Āryabhaṭīya of Āryabhaṭa, critically edited with Introduction, English Translation, Notes, Comments and Indexes, in collaboration with K.V. Sarma, New Delhi: Indian National Science Academy, 1988 .

外部链接 编辑

  • Science and Mathematics in India(页面存档备份,存于互联网档案馆
  • , MacTutor History of Mathematics archive, St Andrew University, 2000.
  • Indian Mathematicians (页面存档备份,存于互联网档案馆
  • Index of Ancient Indian mathematics (页面存档备份,存于互联网档案馆), MacTutor History of Mathematics Archive, St Andrews University, 2004.
  • Indian Mathematics: Redressing the balance, Student Projects in the History of Mathematics (页面存档备份,存于互联网档案馆). Ian Pearce. MacTutor History of Mathematics Archive, St Andrews University, 2002.
  • Indian Mathematics,In Our Time (BBC Radio 4)英语BBC Radio 4的《In Our Time》節目。
  • InSIGHT 2009(页面存档备份,存于互联网档案馆), a workshop on traditional Indian sciences for school children conducted by the Computer Science department of Anna University, Chennai, India.
  • Mathematics in ancient India by R. Sridharan(页面存档备份,存于互联网档案馆
  • Combinatorial methods in ancient India (页面存档备份,存于互联网档案馆
  • Mathematics before S. Ramanujan (页面存档备份,存于互联网档案馆

印度数学, 此條目目前正依照其他维基百科上的内容进行翻译, 2019年8月11日, 如果您擅长翻译, 並清楚本條目的領域, 欢迎协助翻譯, 改善或校对本條目, 此外, 长期闲置, 未翻譯或影響閱讀的内容可能会被移除, 印度數學在公元前1200年, 于印度次大陆, 出现, 到18世纪结束, 在的古典时期, 公元400年至1200年, 阿耶波多, 婆羅摩笈多, 婆什迦羅第二和伐罗诃密希罗等学者做出了重要的贡献, 首先记录了今天使用的十进制, 家早期的贡献包括对0作为数字的概念的研究, 负数, 算数, 以及代数, 另外,. 此條目目前正依照其他维基百科上的内容进行翻译 2019年8月11日 如果您擅长翻译 並清楚本條目的領域 欢迎协助翻譯 改善或校对本條目 此外 长期闲置 未翻譯或影響閱讀的内容可能会被移除 印度數學在公元前1200年 1 于印度次大陆 2 出现 到18世纪结束 在印度数学的古典时期 公元400年至1200年 阿耶波多 婆羅摩笈多 婆什迦羅第二和伐罗诃密希罗等学者做出了重要的贡献 印度数学首先记录了今天使用的十进制 3 4 印度数学家早期的贡献包括对0作为数字的概念的研究 5 负数 6 算数 以及代数 7 另外 三角学 8 在印度更加先进 特别是发展出了正弦和余弦的现代定义 9 这些数学概念被传播到中东 中国和欧洲 7 从而导致了进一步的发展 形成了现在许多数学领域的基础 古代和中世纪的印度数学作品 都是用梵语写成 通常由称作契经的一部分组成 在其中为了帮助学生记忆 用极少的字词陈述了一些规则和问题 在这之后是第二部分 包括一篇散文评论 有时是来自不同学者的多篇评论 其更详细地解释了问题并为解决方案提供了更多的理由 在散文部分 形式 和记忆 比起其涉及的思想来说并不是很重要 2 10 在公元前500年之前 所有的数学作品都是由口头传播 之后同时以口头和手稿的形式传播 现存的印度次大陆上最古老的数学文献是写在桦树皮上的巴赫沙利手稿 它在1881年于巴赫沙利村被发现 靠近白沙瓦 现位于巴基斯坦 并可能来自公元7世纪 11 12 印度数学的后期里程碑是公元15世纪喀拉拉邦学派的数学家对三角函数 正弦 余弦和反正切 的级数展开的发展 他们的卓越工作 在欧洲发明微积分之前两个世纪完成 提供了现在被称为幂级数的第一个例子 除了等比数列 13 然而 他们没有制定出系统的微分和积分理论 也没有任何直接证据证明他们的结果是在喀拉拉邦以外传播的 14 15 16 17 目录 1 史前時期 2 吠陀時期 3 耆那學者 前400年 200年 4 書寫形式 5 巴赫沙利手稿 6 古典時期 400 1600年 7 參見 8 引用 9 参考文献 10 延伸阅读 10 1 梵语文献 11 外部链接史前時期 编辑在摩亨佐 達羅 哈拉帕與其他幾個印度河流域文明的遺址中 都發現了使用 實用數學 的證據 他們使用4 2 1的比例製造磚頭 此作法被認為有利於磚頭結構的穩定性 他們使用了標準化的砝碼 以比例 1 20 1 10 1 5 1 2 1 2 5 10 20 50 100 200與500進行製作 其中的一單位的重量約等於28克 他們大量生產有規則形狀的砝碼 有六面體 桶形 錐形與柱形 從而展示出對於基本幾何的理解 18 印度文明的居民曾試圖對於長度量測進行高精準度的標準化 他們設計出了摩亨佐達羅尺 尺上的單位長度約為3 4公分 並且再分割成十等分 古代摩亨若達羅的磚頭尺寸通常是此單位長度的整數倍 19 20 在洛沙爾 Lothal 2200 BCE 與卓拉維拉 Dholavira 發現的貝殼製中空柱狀物體上面有8個裂縫 被認為可用來製作羅盤 證明了能在平面上測量角度的能力 並可藉此確定星星的位置進行導航 21 吠陀時期 编辑吠陀時期的宗教文本提供了使用大數的證據 在 夜柔吠陀 公元前1200 900年 文本中 包含的數字高達1012 1 耆那學者 前400年 200年 编辑耆那學者認為世界是永恆的 只有形式上的變化 與婆羅門教創造萬物的理論不同 耆那教由筏陀摩那在前6世紀創立 但耆那數學著作大部分是在前6世紀後撰寫的 耆那學者將數字分為三類 耆那重要數學家包括賢臂 英语 Bhadrabahu Bhadrabahu 卒於公元前298年 他是兩部天文著作的作者 書寫形式 编辑巴赫沙利手稿 编辑古典時期 400 1600年 编辑參見 编辑Shulba Sutras 英语 Shulba Sutras Kerala school of astronomy and mathematics 英语 Kerala school of astronomy and mathematics Surya Siddhanta 英语 Surya Siddhanta 婆羅摩笈多 斯里尼瓦瑟 拉马努金 巴赫沙利手稿 印度数学家列表 英语 List of Indian mathematicians 印度科学和技术 英语 Indian science and technology 印度逻辑 英语 Indian logic 印度天文学 英语 Indian astronomy 数学史 List of numbers in Hindu scriptures 英语 List of numbers in Hindu scriptures 引用 编辑 1 0 1 1 Hayashi 2005 pp 360 361 2 0 2 1 Encyclopaedia Britannica Kim Plofker 2007 第1頁harvnb error no target CITEREFEncyclopaedia Britannica Kim Plofker 2007 help Ifrah 2000 第346頁harvnb error no target CITEREFIfrah2000 help The measure of the genius of Indian civilisation to which we owe our modern number system is all the greater in that it was the only one in all history to have achieved this triumph Some cultures succeeded earlier than the Indian in discovering one or at best two of the characteristics of this intellectual feat But none of them managed to bring together into a complete and coherent system the necessary and sufficient conditions for a number system with the same potential as our own Plofker 2009 第44 47頁 Bourbaki 1998 第46頁 our decimal system which by the agency of the Arabs is derived from Hindu mathematics where its use is attested already from the first centuries of our era It must be noted moreover that the conception of zero as a number and not as a simple symbol of separation and its introduction into calculations also count amongst the original contribution of the Hindus Bourbaki 1998 第49頁 Modern arithmetic was known during medieval times as Modus Indorum or method of the Indians Leonardo of Pisa wrote that compared to method of the Indians all other methods is a mistake This method of the Indians is none other than our very simple arithmetic of addition subtraction multiplication and division Rules for these four simple procedures was first written down by Brahmagupta during 7th century AD On this point the Hindus are already conscious of the interpretation that negative numbers must have in certain cases a debt in a commercial problem for instance In the following centuries as there is a diffusion into the West by intermediary of the Arabs of the methods and results of Greek and Hindu mathematics one becomes more used to the handling of these numbers and one begins to have other representation for them which are geometric or dynamic 7 0 7 1 algebra 2007 Britannica Concise Encyclopedia 页面存档备份 存于互联网档案馆 Encyclopaedia Britannica Online 16 May 2007 Quote A full fledged decimal positional system certainly existed in India by the 9th century AD yet many of its central ideas had been transmitted well before that time to China and the Islamic world Indian arithmetic moreover developed consistent and correct rules for operating with positive and negative numbers and for treating zero like any other number even in problematic contexts such as division Several hundred years passed before European mathematicians fully integrated such ideas into the developing discipline of algebra Pingree 2003 p 45 Quote Geometry and its branch trigonometry was the mathematics Indian astronomers used most frequently Greek mathematicians used the full chord and never imagined the half chord that we use today Half chord was first used by Aryabhata which made trigonometry much more simple In fact the Indian astronomers in the third or fourth century using a pre Ptolemaic Greek table of chords produced tables of sines and versines from which it was trivial to derive cosines This new system of trigonometry produced in India was transmitted to the Arabs in the late eighth century and by them in an expanded form to the Latin West and the Byzantine East in the twelfth century Bourbaki 1998 p 126 As for trigonometry it is disdained by geometers and abandoned to surveyors and astronomers it is these latter Aristarchus Hipparchus Ptolemy who establish the fundamental relations between the sides and angles of a right angled triangle plane or spherical and draw up the first tables they consist of tables giving the chord of the arc cut out by an angle 8 lt p displaystyle theta lt pi nbsp on a circle of radius r in other words the number 2 r sin 8 2 displaystyle 2r sin left theta 2 right nbsp the introduction of the sine more easily handled is due to Hindu mathematicians of the Middle Ages Filliozat 2004 第140 143頁 Hayashi 1995 Encyclopaedia Britannica Kim Plofker 2007 第6頁harvnb error no target CITEREFEncyclopaedia Britannica Kim Plofker 2007 help Stillwell 2004 第173頁 Bressoud 2002 第12頁 Quote There is no evidence that the Indian work on series was known beyond India or even outside Kerala until the nineteenth century Gold and Pingree assert 4 that by the time these series were rediscovered in Europe they had for all practical purposes been lost to India The expansions of the sine cosine and arc tangent had been passed down through several generations of disciples but they remained sterile observations for which no one could find much use Plofker 2001 第293頁 Quote It is not unusual to encounter in discussions of Indian mathematics such assertions as that the concept of differentiation was understood in India from the time of Manjula in the 10th century Joseph 1991 300 or that we may consider Madhava to have been the founder of mathematical analysis Joseph 1991 293 or that Bhaskara II may claim to be the precursor of Newton and Leibniz in the discovery of the principle of the differential calculus Bag 1979 294 The points of resemblance particularly between early European calculus and the Keralese work on power series have even inspired suggestions of a possible transmission of mathematical ideas from the Malabar coast in or after the 15th century to the Latin scholarly world e g in Bag 1979 285 It should be borne in mind however that such an emphasis on the similarity of Sanskrit or Malayalam and Latin mathematics risks diminishing our ability fully to see and comprehend the former To speak of the Indian discovery of the principle of the differential calculus somewhat obscures the fact that Indian techniques for expressing changes in the Sine by means of the Cosine or vice versa as in the examples we have seen remained within that specific trigonometric context The differential principle was not generalised to arbitrary functions in fact the explicit notion of an arbitrary function not to mention that of its derivative or an algorithm for taking the derivative is irrelevant here Pingree 1992 第562頁 Quote One example I can give you relates to the Indian Madhava s demonstration in about 1400 A D of the infinite power series of trigonometrical functions using geometrical and algebraic arguments When this was first described in English by Charles Matthew Whish in the 1830s it was heralded as the Indians discovery of the calculus This claim and Madhava s achievements were ignored by Western historians presumably at first because they could not admit that an Indian discovered the calculus but later because no one read anymore the Transactions of the Royal Asiatic Society in which Whish s article was published The matter resurfaced in the 1950s and now we have the Sanskrit texts properly edited and we understand the clever way that Madhava derived the series without the calculus but many historians still find it impossible to conceive of the problem and its solution in terms of anything other than the calculus and proclaim that the calculus is what Madhava found In this case the elegance and brilliance of Madhava s mathematics are being distorted as they are buried under the current mathematical solution to a problem to which he discovered an alternate and powerful solution Katz 1995 第173 174頁 Quote How close did Islamic and Indian scholars come to inventing the calculus Islamic scholars nearly developed a general formula for finding integrals of polynomials by A D 1000 and evidently could find such a formula for any polynomial in which they were interested But it appears they were not interested in any polynomial of degree higher than four at least in any of the material that has come down to us Indian scholars on the other hand were by 1600 able to use ibn al Haytham s sum formula for arbitrary integral powers in calculating power series for the functions in which they were interested By the same time they also knew how to calculate the differentials of these functions So some of the basic ideas of calculus were known in Egypt and India many centuries before Newton It does not appear however that either Islamic or Indian mathematicians saw the necessity of connecting some of the disparate ideas that we include under the name calculus They were apparently only interested in specific cases in which these ideas were needed There is no danger therefore that we will have to rewrite the history texts to remove the statement that Newton and Leibniz invented calculus They were certainly the ones who were able to combine many differing ideas under the two unifying themes of the derivative and the integral show the connection between them and turn the calculus into the great problem solving tool we have today Sergent Bernard Genese de l Inde Paris Payot 113 1997 ISBN 978 2 228 89116 5 法语 Coppa A et al Early Neolithic tradition of dentistry Flint tips were surprisingly effective for drilling tooth enamel in a prehistoric population Nature 6 April 2006 440 7085 755 6 Bibcode 2006Natur 440 755C PMID 16598247 S2CID 6787162 doi 10 1038 440755a Bisht R S Excavations at Banawali 1974 77 Possehl Gregory L 编 Harappan Civilisation A Contemporary Perspective New Delhi Oxford and IBH Publishing Co 113 124 1982 S R Rao 1992 Marine Archaeology Vol 3 pp 61 62 Link http drs nio org drs bitstream handle 2264 3082 J Mar Archaeol 3 61 pdf sequence 2 页面存档备份 存于互联网档案馆 参考文献 编辑Bourbaki Nicolas Elements of the History of Mathematics Berlin Heidelberg and New York Springer Verlag 301 pages 1998 ISBN 978 3 540 64767 6 Boyer C B Merzback fwd by Isaac Asimov U C History of Mathematics New York John Wiley and Sons 736 pages 1991 ISBN 978 0 471 54397 8 Bressoud David Was Calculus Invented in India The College Mathematics Journal Math Assoc Amer 2002 33 1 2 13 JSTOR 1558972 doi 10 2307 1558972 Bronkhorst Johannes Panini and Euclid Reflections on Indian Geometry Journal of Indian Philosophy Springer Netherlands 2001 29 1 2 43 80 doi 10 1023 A 1017506118885 Burnett Charles The Semantics of Indian Numerals in Arabic Greek and Latin Journal of Indian Philosophy Springer Netherlands 2006 34 1 2 15 30 doi 10 1007 s10781 005 8153 z Burton David M The History of Mathematics An Introduction The McGraw Hill Companies Inc 193 220 1997 Cooke Roger The History of Mathematics A Brief Course New York Wiley Interscience 632 pages 2005 ISBN 978 0 471 44459 6 Dani S G On the Pythagorean triples in the Sulvasutras PDF Current Science 25 July 2003 85 2 219 224 2019 08 11 原始内容存档 PDF 于2011 10 12 Datta Bibhutibhusan Early Literary Evidence of the Use of the Zero in India The American Mathematical Monthly December 1931 38 10 566 572 JSTOR 2301384 doi 10 2307 2301384 Datta Bibhutibhusan Singh Avadesh Narayan History of Hindu Mathematics A source book Bombay Asia Publishing House 1962 De Young Gregg Euclidean Geometry in the Mathematical Tradition of Islamic India Historia Mathematica 1995 22 2 138 153 doi 10 1006 hmat 1995 1014 Encyclopaedia Britannica Kim Plofker mathematics South Asian Encyclopaedia Britannica Online 2007 1 12 18 May 2007 Filliozat Pierre Sylvain Ancient Sanskrit Mathematics An Oral Tradition and a Written Literature Chemla Karine Cohen Robert S Renn Jurgen et al 编 History of Science History of Text Boston Series in the Philosophy of Science Dordrecht Springer Netherlands 254 pages pp 137 157 360 375 2004 ISBN 978 1 4020 2320 0 失效連結 Fowler David Binomial Coefficient Function The American Mathematical Monthly 1996 103 1 1 17 JSTOR 2975209 doi 10 2307 2975209 Hayashi Takao The Bakhshali Manuscript An ancient Indian mathematical treatise Groningen Egbert Forsten 596 pages 1995 ISBN 978 90 6980 087 5 Hayashi Takao Aryabhata s Rule and Table of Sine Differences Historia Mathematica 1997 24 4 396 406 doi 10 1006 hmat 1997 2160 Hayashi Takao Indian Mathematics Grattan Guinness Ivor 编 Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences 1 pp 118 130 Baltimore MD The Johns Hopkins University Press 976 pages 2003 ISBN 978 0 8018 7396 6 Hayashi Takao Indian Mathematics Flood Gavin 编 The Blackwell Companion to Hinduism Oxford Basil Blackwell 616 pages pp 360 375 360 375 2005 ISBN 978 1 4051 3251 0 Henderson David W Square roots in the Sulba Sutras Gorini Catherine A 编 Geometry at Work Papers in Applied Geometry 53 pp 39 45 Washington DC Mathematical Association of America Notes 236 pages 39 45 2000 2019 08 11 ISBN 978 0 88385 164 7 原始内容存档于2015 03 10 Joseph G G The Crest of the Peacock The Non European Roots of Mathematics Princeton NJ Princeton University Press 416 pages 2000 ISBN 978 0 691 00659 8 Katz Victor J Ideas of Calculus in Islam and India Mathematics Magazine Math Assoc Amer 1995 68 3 163 174 JSTOR 2691411 doi 10 2307 2691411 Katz Victor J 编 The Mathematics of Egypt Mesopotamia China India and Islam A Sourcebook Princeton NJ Princeton University Press 685 pages pp 385 514 2007 ISBN 978 0 691 11485 9 Keller Agathe Making diagrams speak in Bhaskara I s commentary on the Aryabhaṭiya Historia Mathematica 2005 32 3 275 302 doi 10 1016 j hm 2004 09 001 Kichenassamy Satynad Baudhayana s rule for the quadrature of the circle Historia Mathematica 2006 33 2 149 183 doi 10 1016 j hm 2005 05 001 Pingree David On the Greek Origin of the Indian Planetary Model Employing a Double Epicycle Journal of Historical Astronomy 1971 2 1 80 85 doi 10 1177 002182867100200202 Pingree David The Mesopotamian Origin of Early Indian Mathematical Astronomy Journal of Historical Astronomy 1973 4 1 1 12 doi 10 1177 002182867300400102 Pingree David Staal Frits Reviewed Work s The Fidelity of Oral Tradition and the Origins of Science by Frits Staal Journal of the American Oriental Society 1988 108 4 637 638 JSTOR 603154 doi 10 2307 603154 Pingree David Hellenophilia versus the History of Science Isis 1992 83 4 554 563 Bibcode 1992Isis 83 554P JSTOR 234257 doi 10 1086 356288 Pingree David The logic of non Western science mathematical discoveries in medieval India Daedalus 2003 132 4 45 54 2019 08 11 doi 10 1162 001152603771338779 原始内容存档于2011 01 15 Plofker Kim An Example of the Secant Method of Iterative Approximation in a Fifteenth Century Sanskrit Text Historia Mathematica 1996 23 3 246 256 doi 10 1006 hmat 1996 0026 Plofker Kim The Error in the Indian Taylor Series Approximation to the Sine Historia Mathematica 2001 28 4 283 295 doi 10 1006 hmat 2001 2331 Plofker K Mathematics of India Katz Victor J 编 The Mathematics of Egypt Mesopotamia China India and Islam A Sourcebook Princeton NJ Princeton University Press 685 pages pp 385 514 385 514 2007 ISBN 978 0 691 11485 9 Plofker Kim Mathematics in India 500 BCE 1800 CE Princeton NJ Princeton University Press Pp 384 2009 ISBN 978 0 691 12067 6 Price John F Applied geometry of the Sulba Sutras PDF Gorini Catherine A 编 Geometry at Work Papers in Applied Geometry 53 pp 46 58 Washington DC Mathematical Association of America Notes 236 pages 46 58 2000 2019 08 11 ISBN 978 0 88385 164 7 原始内容 PDF 存档于2007 09 27 Roy Ranjan Discovery of the Series Formula for p displaystyle pi nbsp by Leibniz Gregory and Nilakantha Mathematics Magazine Math Assoc Amer 1990 63 5 291 306 JSTOR 2690896 doi 10 2307 2690896 Singh A N On the Use of Series in Hindu Mathematics Osiris 1936 1 1 606 628 JSTOR 301627 doi 10 1086 368443 Staal Frits The Fidelity of Oral Tradition and the Origins of Science Mededelingen der Koninklijke Nederlandse Akademie von Wetenschappen Afd Letterkunde NS 49 8 Amsterdam North Holland Publishing Company 40 pages 1986 Staal Frits The Sanskrit of science Journal of Indian Philosophy Springer Netherlands 1995 23 1 73 127 doi 10 1007 BF01062067 Staal Frits Greek and Vedic Geometry Journal of Indian Philosophy 1999 27 1 2 105 127 doi 10 1023 A 1004364417713 Staal Frits Squares and oblongs in the Veda Journal of Indian Philosophy Springer Netherlands 2001 29 1 2 256 272 doi 10 1023 A 1017527129520 Staal Frits Artificial Languages Across Sciences and Civilisations Journal of Indian Philosophy Springer Netherlands 2006 34 1 89 141 doi 10 1007 s10781 005 8189 0 Stillwell John Mathematics and its History Undergraduate Texts in Mathematics 2 Springer Berlin and New York 568 pages 2004 ISBN 978 0 387 95336 6 doi 10 1007 978 1 4684 9281 1 Thibaut George Mathematics in the Making in Ancient India reprints of On the Sulvasutras and Baudhyayana Sulva sutra Calcutta and Delhi K P Bagchi and Company orig Journal of Asiatic Society of Bengal 133 pages 1984 1875 van der Waerden B L Geometry and Algebra in Ancient Civilisations Berlin and New York Springer 223 pages 1983 ISBN 978 0 387 12159 8 van der Waerden B L On the Romaka Siddhanta Archive for History of Exact Sciences 1988 38 1 1 11 doi 10 1007 BF00329976 van der Waerden B L Reconstruction of a Greek table of chords Archive for History of Exact Sciences 1988 38 1 23 38 doi 10 1007 BF00329978 Van Nooten B Binary numbers in Indian antiquity Journal of Indian Philosophy Springer Netherlands 1993 21 1 31 50 doi 10 1007 BF01092744 Whish Charles On the Hindu Quadrature of the Circle and the infinite Series of the proportion of the circumference to the diameter exhibited in the four S astras the Tantra Sangraham Yucti Bhasha Carana Padhati and Sadratnamala Transactions of the Royal Asiatic Society of Great Britain and Ireland 1835 3 3 509 523 JSTOR 25581775 doi 10 1017 S0950473700001221 Yano Michio Oral and Written Transmission of the Exact Sciences in Sanskrit Journal of Indian Philosophy Springer Netherlands 2006 34 1 2 143 160 doi 10 1007 s10781 005 8175 6 延伸阅读 编辑梵语文献 编辑 Keller Agathe Expounding the Mathematical Seed Vol 1 The Translation A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya Basel Boston and Berlin Birkhauser Verlag 172 pages 2006 ISBN 978 3 7643 7291 0 Keller Agathe Expounding the Mathematical Seed Vol 2 The Supplements A Translation of Bhaskara I on the Mathematical Chapter of the Aryabhatiya Basel Boston and Berlin Birkhauser Verlag 206 pages 2006 ISBN 978 3 7643 7292 7 Neugebauer Otto Pingree David 编 The Pancasiddhantika of Varahamihira New edition with translation and commentary 2 Vols Copenhagen 1970 Pingree David 编 The Yavanajataka of Sphujidhvaja edited translated and commented by D Pingree Cambridge MA Harvard Oriental Series 48 2 vols 1978 Sarma K V 编 Aryabhaṭiya of Aryabhaṭa with the commentary of Suryadeva Yajvan critically edited with Introduction and Appendices New Delhi Indian National Science Academy 1976 Sen S N Bag A K 编 The Sulbasutras of Baudhayana Apastamba Katyayana and Manava with Text English Translation and Commentary New Delhi Indian National Science Academy 1983 Shukla K S 编 Aryabhaṭiya of Aryabhaṭa with the commentary of Bhaskara I and Somesvara critically edited with Introduction English Translation Notes Comments and Indexes New Delhi Indian National Science Academy 1976 Shukla K S 编 Aryabhaṭiya of Aryabhaṭa critically edited with Introduction English Translation Notes Comments and Indexes in collaboration with K V Sarma New Delhi Indian National Science Academy 1988 外部链接 编辑Science and Mathematics in India 页面存档备份 存于互联网档案馆 An overview of Indian mathematics MacTutor History of Mathematics archive St Andrew University 2000 Indian Mathematicians 页面存档备份 存于互联网档案馆 Index of Ancient Indian mathematics 页面存档备份 存于互联网档案馆 MacTutor History of Mathematics Archive St Andrews University 2004 Indian Mathematics Redressing the balance Student Projects in the History of Mathematics 页面存档备份 存于互联网档案馆 Ian Pearce MacTutor History of Mathematics Archive St Andrews University 2002 Indian Mathematics In Our Time BBC Radio 4 英语 BBC Radio 4 的 In Our Time 節目 InSIGHT 2009 页面存档备份 存于互联网档案馆 a workshop on traditional Indian sciences for school children conducted by the Computer Science department of Anna University Chennai India Mathematics in ancient India by R Sridharan 页面存档备份 存于互联网档案馆 Combinatorial methods in ancient India 页面存档备份 存于互联网档案馆 Mathematics before S Ramanujan 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 印度数学 amp oldid 76504046, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。