fbpx
维基百科

亥姆霍兹分解

物理学数学中的向量分析中,亥姆霍兹定理[1][2] 或称向量分析基本定理[3][4][5][6][7][8][9] 指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理學家赫爾曼·馮·亥姆霍茲為名。[10]

这意味着任何矢量场 F,都可以视为两个势场(純量勢 φ向量勢 A)之和。

定理內容

假定 F 為定義在有界區域 VR3 裡的二次連續可微向量場,且 SV 的包圍面,則 F 可被分解成無旋度及無散度兩部份:[11]

 

其中

 


 


如果 V = R3,且 F 在無窮遠處消失的比   快,則純量勢及向量勢的第二項為零,也就是說 [12]

 


 

推導

假定我們有一個向量函數 ,且其旋度 及散度 已知。利用狄拉克δ函数可將函數改寫成

 
 

利用以下等式

 

可得

 
 

注意到 ,我們可將上式改寫成

 


利用以下二等式,

 
 

可得

 

利用散度定理,方程式可改寫成

 
 

定義

 
 

所以

 

利用傅利葉轉換做推導

(疑似有错误) 將F改寫成傅利葉轉換的形式:

 

純量場的傅利葉轉換是一個純量場,向量場的傅利葉轉換是一個維度相同的向量場。 現在考慮以下純量場及向量場:

 

所以

 
 

注释

  1. ^ On Helmholtz's Theorem in Finite Regions. By Jean Bladel. Midwestern Universities Research Association, 1958.
  2. ^ Hermann von Helmholtz. Clarendon Press, 1906. By Leo Koenigsberger. p357
  3. ^ An Elementary Course in the Integral Calculus. By Daniel Alexander Murray. American Book Company, 1898. p8.
  4. ^ J. W. Gibbs & Edwin Bidwell Wilson (1901) Vector Analysis, page 237, link from Internet Archive
  5. ^ Electromagnetic theory, Volume 1. By Oliver Heaviside. "The Electrician" printing and publishing company, limited, 1893.
  6. ^ Elements of the differential calculus. By Wesley Stoker Barker Woolhouse. Weale, 1854.
  7. ^ An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By William Woolsey Johnson. John Wiley & Sons, 1881.
    参见:流数法
  8. ^ Vector Calculus: With Applications to Physics. By James Byrnie Shaw. D. Van Nostrand, 1922. p205.
    参见:格林公式
  9. ^ A Treatise on the Integral Calculus, Volume 2. By Joseph Edwards. Chelsea Publishing Company, 1922.
  10. ^ 参见:
    • H. Helmholtz (1858) "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen" (页面存档备份,存于互联网档案馆) (On integrals of the hydrodynamic equations which correspond to vortex motions), Journal für die reine und angewandte Mathematik, 55: 25-55. On page 38, the components of the fluid's velocity (u, v, w) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (L, M, N).
    • However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849 ; published: 1856) "On the dynamical theory of diffraction," Transactions of the Cambridge Philosophical Society, vol. 9, part I, pages 1-62; see pages 9-10.
  11. ^ (PDF). University of Vermont. [2014-08-14]. (原始内容 (PDF)存档于2012-08-13). 
  12. ^ David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1999, p. 556.

参考文献

一般参考文献

  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
  • George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101

弱形式的参考文献

  • C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." Mathematical Methods in the Applied Sciences, 21, 823–864, 1998.
  • R. Dautray and J.-L. Lions. Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
  • V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.

外部链接

亥姆霍兹分解, 在物理学和数学中的向量分析中, 亥姆霍兹定理, 或称向量分析基本定理, 指出对于任意足够光滑, 快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和, 这个过程被称作, 此定理以物理學家赫爾曼, 亥姆霍茲為名, 这意味着任何矢量场, 都可以视为两个势场, 純量勢, 和向量勢, 之和, 目录, 定理內容, 推導, 利用傅利葉轉換做推導, 注释, 参考文献, 一般参考文献, 弱形式的参考文献, 外部链接定理內容, 编辑假定, 為定義在有界區域, 裡的二次連續可微向量場, 的包圍面, 可被分解成. 在物理学和数学中的向量分析中 亥姆霍兹定理 1 2 或称向量分析基本定理 3 4 5 6 7 8 9 指出对于任意足够光滑 快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和 这个过程被称作亥姆霍兹分解 此定理以物理學家赫爾曼 馮 亥姆霍茲為名 10 这意味着任何矢量场 F 都可以视为两个势场 純量勢 f 和向量勢 A 之和 目录 1 定理內容 2 推導 2 1 利用傅利葉轉換做推導 3 注释 4 参考文献 4 1 一般参考文献 4 2 弱形式的参考文献 5 外部链接定理內容 编辑假定 F 為定義在有界區域 V R3 裡的二次連續可微向量場 且 S 為 V 的包圍面 則 F 可被分解成無旋度及無散度兩部份 11 F F A displaystyle mathbf F boldsymbol nabla Phi boldsymbol nabla times mathbf A 其中 F r 1 4 p V F r r r d V 1 4 p S n F r r r d S displaystyle Phi left mathbf r right frac 1 4 pi int V frac boldsymbol nabla cdot mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V frac 1 4 pi oint S mathbf hat n cdot frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S A r 1 4 p V F r r r d V 1 4 p S n F r r r d S displaystyle mathbf A left mathbf r right frac 1 4 pi int V frac boldsymbol nabla times mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V frac 1 4 pi oint S mathbf hat n times frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S 如果 V R3 且 F 在無窮遠處消失的比 1 r displaystyle 1 r 快 則純量勢及向量勢的第二項為零 也就是說 12 F r 1 4 p all space F r r r d V displaystyle Phi left mathbf r right frac 1 4 pi int text all space frac boldsymbol nabla cdot mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V A r 1 4 p all space F r r r d V displaystyle mathbf A left mathbf r right frac 1 4 pi int text all space frac boldsymbol nabla times mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V 推導 编辑假定我們有一個向量函數F r displaystyle mathbf F left mathbf r right 且其旋度 F displaystyle boldsymbol nabla times mathbf F 及散度 F displaystyle boldsymbol nabla cdot mathbf F 已知 利用狄拉克d函数可將函數改寫成 d r r 1 4 p 2 1 r r displaystyle delta left mathbf r mathbf r right frac 1 4 pi nabla 2 frac 1 left mathbf r mathbf r right F r V F r d r r d V V F r 1 4 p 2 1 r r d V 1 4 p 2 V F r r r d V displaystyle mathbf F left mathbf r right int V mathbf F left mathbf r right delta left mathbf r mathbf r right mathrm d V int V mathbf F left mathbf r right left frac 1 4 pi nabla 2 frac 1 left mathbf r mathbf r right right mathrm d V frac 1 4 pi nabla 2 int V frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V 利用以下等式 2 a a a displaystyle nabla 2 mathbf a boldsymbol nabla left boldsymbol nabla cdot mathbf a right boldsymbol nabla times left boldsymbol nabla times mathbf a right 可得 F r 1 4 p V F r r r d V V F r r r d V displaystyle mathbf F left mathbf r right frac 1 4 pi left boldsymbol nabla left boldsymbol nabla cdot int V frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V right boldsymbol nabla times left boldsymbol nabla times int V frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V right right 1 4 p V F r 1 r r d V V F r 1 r r d V displaystyle frac 1 4 pi left boldsymbol nabla left int V mathbf F left mathbf r right cdot boldsymbol nabla frac 1 left mathbf r mathbf r right mathrm d V right boldsymbol nabla times left int V mathbf F left mathbf r right times boldsymbol nabla frac 1 left mathbf r mathbf r right mathrm d V right right dd dd 注意到 1 r r 1 r r displaystyle boldsymbol nabla frac 1 left mathbf r mathbf r right boldsymbol nabla frac 1 left mathbf r mathbf r right 我們可將上式改寫成 F r 1 4 p V F r 1 r r d V V F r 1 r r d V displaystyle mathbf F left mathbf r right frac 1 4 pi left boldsymbol nabla left int V mathbf F left mathbf r right cdot boldsymbol nabla frac 1 left mathbf r mathbf r right mathrm d V right boldsymbol nabla times left int V mathbf F left mathbf r right times boldsymbol nabla frac 1 left mathbf r mathbf r right mathrm d V right right 利用以下二等式 a ps ps a ps a displaystyle mathbf a cdot boldsymbol nabla psi psi left boldsymbol nabla cdot mathbf a right boldsymbol nabla cdot left psi mathbf a right a ps ps a ps a displaystyle mathbf a times boldsymbol nabla psi psi left boldsymbol nabla times mathbf a right boldsymbol nabla times left psi mathbf a right 可得 F r 1 4 p V F r r r d V V F r r r d V V F r r r d V V F r r r d V displaystyle mathbf F left mathbf r right frac 1 4 pi left boldsymbol nabla left int V frac boldsymbol nabla cdot mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V int V boldsymbol nabla cdot frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V right boldsymbol nabla times left int V frac boldsymbol nabla times mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V int V boldsymbol nabla times frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V right right 利用散度定理 方程式可改寫成 F r 1 4 p V F r r r d V S n F r r r d S V F r r r d V S n F r r r d S displaystyle mathbf F left mathbf r right frac 1 4 pi left boldsymbol nabla left int V frac boldsymbol nabla cdot mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V oint S mathbf hat n cdot frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S right boldsymbol nabla times left int V frac boldsymbol nabla times mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V oint S mathbf hat n times frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S right right 1 4 p V F r r r d V 1 4 p S n F r r r d S 1 4 p V F r r r d V 1 4 p S n F r r r d S displaystyle boldsymbol nabla left frac 1 4 pi int V frac boldsymbol nabla cdot mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V frac 1 4 pi oint S mathbf hat n cdot frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S right boldsymbol nabla times left frac 1 4 pi int V frac boldsymbol nabla times mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V frac 1 4 pi oint S mathbf hat n times frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S right dd dd 定義 F r 1 4 p V F r r r d V 1 4 p S n F r r r d S displaystyle Phi left mathbf r right equiv frac 1 4 pi int V frac boldsymbol nabla cdot mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V frac 1 4 pi oint S mathbf hat n cdot frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S A r 1 4 p V F r r r d V 1 4 p S n F r r r d S displaystyle mathbf A left mathbf r right equiv frac 1 4 pi int V frac boldsymbol nabla times mathbf F left mathbf r right left mathbf r mathbf r right mathrm d V frac 1 4 pi oint S mathbf hat n times frac mathbf F left mathbf r right left mathbf r mathbf r right mathrm d S 所以 F F A displaystyle mathbf F boldsymbol nabla Phi boldsymbol nabla times mathbf A 利用傅利葉轉換做推導 编辑 疑似有错误 將F改寫成傅利葉轉換的形式 F r G w e i w r d w displaystyle vec mathbf F vec r iiint vec mathbf G vec omega e displaystyle i vec omega cdot vec r d vec omega 純量場的傅利葉轉換是一個純量場 向量場的傅利葉轉換是一個維度相同的向量場 現在考慮以下純量場及向量場 G F w i G w w w 2 G A w i w G w i G F w w F r G F w e i w r d w A r G A w e i w r d w displaystyle begin array lll G Phi vec omega i frac displaystyle vec mathbf G vec omega cdot vec omega vec omega 2 amp quad quad amp vec mathbf G mathbf A vec omega i vec omega times left vec mathbf G vec omega iG Phi vec omega vec omega right amp amp Phi vec r displaystyle iiint G Phi vec omega e displaystyle i vec omega cdot vec r d vec omega amp amp vec mathbf A vec r displaystyle iiint vec mathbf G mathbf A vec omega e displaystyle i vec omega cdot vec r d vec omega end array 所以 G w i w G F w i w G A w displaystyle vec mathbf G vec omega i vec omega G Phi vec omega i vec omega times vec mathbf G mathbf A vec omega F r i w G F w e i w r d w i w G A w e i w r d w F r A r displaystyle begin array lll vec mathbf F vec r amp amp displaystyle iiint i vec omega G Phi vec omega e displaystyle i vec omega cdot vec r d vec omega iiint i vec omega times vec mathbf G mathbf A vec omega e displaystyle i vec omega cdot vec r d vec omega amp amp boldsymbol nabla Phi vec r boldsymbol nabla times vec mathbf A vec r end array 注释 编辑 On Helmholtz s Theorem in Finite Regions By Jean Bladel Midwestern Universities Research Association 1958 Hermann von Helmholtz Clarendon Press 1906 By Leo Koenigsberger p357 An Elementary Course in the Integral Calculus By Daniel Alexander Murray American Book Company 1898 p8 J W Gibbs amp Edwin Bidwell Wilson 1901 Vector Analysis page 237 link from Internet Archive Electromagnetic theory Volume 1 By Oliver Heaviside The Electrician printing and publishing company limited 1893 Elements of the differential calculus By Wesley Stoker Barker Woolhouse Weale 1854 An Elementary Treatise on the Integral Calculus Founded on the Method of Rates Or Fluxions By William Woolsey Johnson John Wiley amp Sons 1881 参见 流数法 Vector Calculus With Applications to Physics By James Byrnie Shaw D Van Nostrand 1922 p205 参见 格林公式 A Treatise on the Integral Calculus Volume 2 By Joseph Edwards Chelsea Publishing Company 1922 参见 H Helmholtz 1858 Uber Integrale der hydrodynamischen Gleichungen welcher der Wirbelbewegungen entsprechen 页面存档备份 存于互联网档案馆 On integrals of the hydrodynamic equations which correspond to vortex motions Journal fur die reine und angewandte Mathematik 55 25 55 On page 38 the components of the fluid s velocity u v w are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential L M N However Helmholtz was largely anticipated by George Stokes in his paper G G Stokes presented 1849 published 1856 On the dynamical theory of diffraction Transactions of the Cambridge Philosophical Society vol 9 part I pages 1 62 see pages 9 10 Helmholtz Theorem PDF University of Vermont 2014 08 14 原始内容 PDF 存档于2012 08 13 David J Griffiths Introduction to Electrodynamics Prentice Hall 1999 p 556 参考文献 编辑一般参考文献 编辑 George B Arfken and Hans J Weber Mathematical Methods for Physicists 4th edition Academic Press San Diego 1995 pp 92 93 George B Arfken and Hans J Weber Mathematical Methods for Physicists International Edition 6th edition Academic Press San Diego 2005 pp 95 101弱形式的参考文献 编辑 C Amrouche C Bernardi M Dauge and V Girault Vector potentials in three dimensional non smooth domains Mathematical Methods in the Applied Sciences 21 823 864 1998 R Dautray and J L Lions Spectral Theory and Applications volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology Springer Verlag 1990 V Girault and P A Raviart Finite Element Methods for Navier Stokes Equations Theory and Algorithms Springer Series in Computational Mathematics Springer Verlag 1986 外部链接 编辑Helmholtz theorem 页面存档备份 存于互联网档案馆 MathWorld 取自 https zh wikipedia org w index php title 亥姆霍兹分解 amp oldid 64334666, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。