fbpx
维基百科

超运算

超運算序列数学中一种二元运算序列,前三分别为加法乘法,一般來說,除了序列中第一項的加法運算之外,序列中每一項的運算都是重複的前一項的運算(例如乘法是重複的加法:,冪是重複的乘法:)。这些运算通称为超运算(或稱為hyper運算符)。序列中的第n项称为超-n运算n級的超運算,其符號為[n]。英文則由鲁賓·古德斯坦英语Reuben Goodstein命名,當n≥4時,由n希腊语前缀加上后缀-ation组成(例如超-4运算称为tetration超-5运算称为pentation英语pentation)。[1]n≥3 時,使用高德纳箭号表示法可将超-n运算的符號表示为(n-2)个箭头。

超运算可通过递归进行定义,對於所有正整數a,正整數b和正整數n

除这一最常见的定义之外,超运算还有其他的变体。(见下文

定义 编辑

超运算序列是定义在自然数 上的一个序列,记为 。前几项为加法(n=1)、乘法(n=2)和(n=3)。高阶超运算的参数与幂运算相似,[2]即a称为底数,b称为指数(或称超指数[3]),而n则称为阶数。

高德纳箭号表示法可以将超运算定义为

 

注意到,对于序列的前三项有:

  •  
  •  
  •  

通过这样的递归能够定义出高阶运算,从而输入很小的数就可以产生非常大的数。

其实,某一超运算就是一种基于低一阶超运算而进行数的复合的方法。我们可以以加法、乘法与幂的概念为例来说明。加法运算就是将指定次数的1加到原本的数上从而得到最终的结果(如2+3是将1三次加到2上),乘法运算就是将指定次数的某数通加(如 就是3个2相加),幂运算则是将指定次数的某数通乘(如 就是3个2相乘)。

实例 编辑

下表列出了前七个超运算:

n 运算 定义 名称 定义域
0     超-0运算、后继函数 任意b
1     超-1运算、加法 任意
2     超-2运算、乘法 任意
3     超-3运算、  ,b为实数;或 ,b为整数(某些情况下可扩展为复数)
4     超-4运算、迭代冪次(英文:tetration)  且为整数(某些情况下可扩展)
5     超-5运算 五級運算(英文:pentation) a和b都为整数,且 
6     超-6运算(英文:hexation) a和b都为整数,且 
n     超-n运算(英文:hyper-n) a和b都为整数,且 

历史 编辑

1914年,阿尔伯特·贝内特(Albert Bennett)最早提出了超运算,他发展出了一套交换超运算(见下文)的理论。[4]12年之后,威廉·阿克曼定义了函数 [5],和超运算序列已经有了某种程度上的相似。最早的使用三个自变量的阿克曼函数使用了同样的递归法则,但有两点与现在的超运算不同。一是它定义了 时为加法、 时为乘法、 时为幂运算,二是由其对 初始条件的定义能得到 ,最后的运算结果与超运算不同。[6][7][8]

1947年,鲁宾·古德斯坦[1]提出现在所使用的超运算序列,只是那时他使用记号 来表示,而非今天的 。在1947年的论文中,古德斯坦还引进了幂运算之后超运算的英文名称,即tetration、pentation、hexation等。

符号表示 编辑

下表列出了曾用来表示超运算的各种符号表示法:

名称 符号表示 注解
高德纳箭号表示法   高德纳使用(對於 [9],也在相关参考书目中提及[10][11]
古德斯坦表示法   鲁宾·古德斯坦使用[1]
初始阿克曼函数   与超运算并不完全相同
现代阿克曼函数   和以2为底的超运算相同
南比尔表示法   南比尔(K. K. Nambiar)使用(對於 [12]
框表示法   鲁佐勃夫(C. A. Rubtsov)与罗莫里奥(G. F. Romerio)使用[13][2]
上标表示法   默纳福(Robert Munafo)使用[14]
下标表示法   默纳福用来表示低级超运算[14]
方括号表示法   在一些在线论坛中使用,利于ASCII表示
康威鏈式箭號表示法   約翰·何頓·康威使用(對於 

从a开始的变体形式 编辑

1928年,威廉·阿克曼提出了一个三自变量的函数 ,后来发展为现有的两个自变量的阿克曼函数。初始的阿克曼函数与现在的超运算之间的区别更大,因为他当时使用了初始条件:对所有 ,有 。另外他还将 指定为加法、 为乘法、 为幂。因而,幂运算及更高阶的运算就有了完全不同的结果。

n 运算 注释
0  
1  
2  
3   类似超-4运算,但其迭代函数比普通超-4运算更为复杂
4   不要与超-5运算相混淆

路莎·彼得(Rózsa Péter)还曾用 作初始条件,但无法形成一个超运算等级。

从0开始的变体形式 编辑

1984年,C.W.克莱恩肖(C. W. Clenshaw)和F.W.J.奥立弗(F. W. J. Olver)开始讨论如何使用超运算以防止计算机浮点数溢出。[15]此后,很多人[16][17][18]都开始对于超运算在浮点数表示中的应用产生兴趣。在探讨超-4运算时,克莱恩肖等人曾令 作为初始条件,这就产生了又一个超运算等级。

n 运算 注释
1  
2  
3  
4   类似超-4运算,但其迭代函数比普通超-4运算更为复杂
5   不要与超-5运算相混淆

交换超运算 编辑

1914年阿尔伯特·贝内特提出了超运算,很可能是关于超运算最早的尝试。交换超运算通过以下递归法则定义:

 

由于a和b的对称性,意味着所有的超运算都是可交换的。但由于序列并不包括幂运算,因此也就不能成为一个超运算等级。

n 运算 注释
0  
1  
2   对数性质而来
3   幂运算的可交换形式
4   不要与超-4运算相混淆

均衡超运算 编辑

均衡超运算于1991年首先由克莱门特·弗拉皮耶(Clément Frappier)提出[19],这种超运算是基于函数 的,因而与斯坦豪斯-莫泽表示法(Steinhaus-Moser notation)有关。均衡超运算的递归法则是

 
n 运算 注释
0 不存在
1  
2  
3   就是幂运算
4   不要与超-4运算相混淆

低级超运算 编辑

还有一种变化形式的特点是从左到右的顺序进行求值,即:

  •  
  •  
  •  

令(通过°或下标) ,有初始条件 ,且对所有  

这样所产生的一个问题是,在4阶时它就与通常的定义不同: 。出现这一问题的原因在于加法和乘法运算有一种称为结合律的对称性,但这在幂运算上并不成立。由于通过这种超运算所得到的结果在3阶以上都比普通的超运算更小,因而把这种超运算称为低级超运算。

n 运算 注释
0   后继函数
1  
2  
3   幂运算
4   不要与超-4运算相混淆
5   不要与超-5运算相混淆

其他變體 编辑

 
超運算等級推廣至實數的可能結果,當 的n為實數時。目前實數階的超運算未有相關理論能夠計算,但仍可以以近似的方式得出結果。[20]

在取不同的初始条件或不同的递归法则时,就会产生不同的运算。一些数学家扩展出了超运算的许多变体。

通常,超运算等级(hyperoperation hierarchy) 是一个以集合 索引集、基于集合 二元运算 。对于 ,有:

  •  (加法)
  •  (乘法)
  •  (幂)

如果不满足最后一个条件的话,就能将交换超运算包括在内。当然,也可以明确地定义每一个超运算,但这就超出了我们讨论的范围。大多数的变体形式只包含了对于后继函数(即加法)的定义,而乘法则由递归法则来进行定义。由于这属于对超运算等级的定义,而非等级本身的性质,很难给出形式上的定义。

对于超运算,除了古德斯坦给出的定义外,还有很多其他可能性。如果对  采用不同的初始条件,则产生的超运算在比幂运算更高阶时就会有不同的结果。现今的超运算定义的条件包括对所有  ,而在其他形式中也有  的情况。

关于超运算的一个未解决问题是超运算等级 是否能推广到 [21]:5甚至 ,以及 是否能成为一个拟群

使用超運算的记数系统 编辑

鲁賓·古德斯坦英语Reuben Goodstein使用超運算序列定義了一套能表達非負整數的记数系统[1]

参考文献 编辑

  1. ^ 1.0 1.1 1.2 1.3 R. L. Goodstein. Transfinite Ordinals in Recursive Number Theory. Journal of Symbolic Logic. Dec 1947, 12 (4): 123–129 [2009-04-17]. doi:10.2307/2266486. (原始内容于2016-03-03). 
  2. ^ 2.0 2.1 G. F. Romerio. . Tetration Forum. 2008-01-21 [2009-04-21]. (原始内容存档于2011-10-02).  外部链接存在于|publisher= (帮助)
  3. ^ I. N. Galidakis. . 2003 [2009-04-17]. (原始内容存档于2009-04-20). 
  4. ^ Albert A. Bennett. Note on an Operation of the Third Grade. Annals of Mathematics, Second Series. Dec 1915, 17 (2): 74–75 [2009-04-17]. (原始内容于2016-09-17). 
  5. ^ Wilhelm Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische Annalen. 1928, 99: 118–133. doi:10.1007/BF01459088. 
  6. ^ Paul E. Black. . Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology (NIST). 2009-03-16 [2009-04-17]. (原始内容存档于2009-04-22).  外部链接存在于|work= (帮助)
  7. ^ Robert Munafo. Versions of Ackermann's Function. Large Numbers at MROB. 1999-11-03 [2009-04-17]. (原始内容于2008-12-21). 
  8. ^ J. Cowles and T. Bailey. Several Versions of Ackermann's Function. Dept. of Computer Science, University of Wyoming, Laramie, WY. 1988-09-30 [2009-04-17]. (原始内容于2008-10-04). 
  9. ^ Donald E. Knuth. Mathematics and Computer Science: Coping with Finiteness. Science. Dec 1976, 194 (4271): 1235–1242 [2009-04-21]. PMID 17797067. doi:10.1126/science.194.4271.1235. (原始内容于2008-12-08). 
  10. ^ Daniel Zwillinger. CRC standard mathematical tables and formulae, 31st Edition. CRC Press. 2002: 4. ISBN 1584882913. 
  11. ^ Eric W. Weisstein. CRC concise encyclopedia of mathematics, 2nd Edition. CRC Press. 2003: 127–128. ISBN 1584883472. 
  12. ^ K. K. Nambiar. Ackermann Functions and Transfinite Ordinals. Applied Mathematics Letters. 1995, 8 (6): 51–53 [2009-04-21]. doi:10.1016/0893-9659(95)00084-4. (原始内容于2008-12-08). 
  13. ^ C. A. Rubtsov and G. F. Romerio. Ackermann's Function and New Arithmetical Operation. 2005-12 [2009-04-17]. (原始内容于2008-05-29). 
  14. ^ 14.0 14.1 Robert Munafo. Inventing New Operators and Functions. Large Numbers at MROB. 1999-11 [2009-04-17]. (原始内容于2009-08-06). 
  15. ^ C.W. Clenshaw and F.W.J. Olver. Beyond floating point. Journal of the ACM. Apr 1984, 31 (2): 319–328 [2009-04-21]. doi:10.1145/62.322429. 
  16. ^ W. N. Holmes. Composite Arithmetic: Proposal for a New Standard. Computer. Mar 1997, 30 (3): 65–73 [2009-04-21]. doi:10.1109/2.573666. 
  17. ^ R. Zimmermann. (PDF). Lecture notes, Integrated Systems Laboratory, ETH Zürich. 1997 [2009-04-17]. (原始内容 (PDF)存档于2013-08-17). 
  18. ^ T. Pinkiewicz and N. Holmes and T. Jamil. Design of a composite arithmetic unit for rational numbers. Proceedings of the IEEE: 245–252. 2000 [2009-04-17]. 
  19. ^ C. Frappier. Iterations of a kind of exponentials. Fibonacci Quarterly. 1991, 29 (4): 351–361. 
  20. ^ José Crespo, Francisco Javier Montáns. Fractional Mathematical Operators and Their Computational Approximation. Mathematical Problems in Engineering. 2016, 2016: 1–11 [2021-06-12]. ISSN 1024-123X. doi:10.1155/2016/4356371. (原始内容于2021-05-06) (英语). 
  21. ^ Constantin A. Rubtsov and G. Romerio, Ackermann's Function and New Arithmetical Operation, 2004 [2021-10-02], (原始内容于2021-10-02) 

超运算, 超運算序列是数学中一种二元运算的序列, 前三项分别为加法, 乘法, 一般來說, 除了序列中第一項的加法運算之外, 序列中每一項的運算都是重複的前一項的運算, 例如乘法是重複的加法, displaystyle, cdot, underbrace, cdots, 冪是重複的乘法, displaystyle, underbrace, cdot, cdot, cdot, ldots, cdot, 这些运算通称为, 或稱為hyper運算符, 序列中的第n项称为超, n运算或第n級的超運算, 其符號為, 英文則由鲁賓. 超運算序列是数学中一种二元运算的序列 前三项分别为加法 乘法 幂 一般來說 除了序列中第一項的加法運算之外 序列中每一項的運算都是重複的前一項的運算 例如乘法是重複的加法 a b a a a a b displaystyle a cdot b underbrace a a a cdots a b 冪是重複的乘法 a b a a a a b displaystyle a b underbrace a cdot a cdot a cdot ldots cdot a b 这些运算通称为超运算 或稱為hyper運算符 序列中的第n项称为超 n运算或第n級的超運算 其符號為 n 英文則由鲁賓 古德斯坦 英语 Reuben Goodstein 命名 當n 4時 由n的希腊语前缀加上后缀 ation组成 例如超 4运算称为tetration 超 5运算称为pentation 英语 pentation 1 當n 3 時 使用高德纳箭号表示法可将超 n运算的符號表示为 n 2 个箭头 超运算可通过递归进行定义 對於所有正整數a 正整數b和正整數n a 1 b a b for n gt 1 a n b a n 1 a n 1 a n 1 a n 1 a n 1 a b displaystyle a 1 b a b text for n gt 1 a n b underbrace a n 1 a n 1 a n 1 cdots a n 1 a n 1 a b cdots 除这一最常见的定义之外 超运算还有其他的变体 见下文 目录 1 定义 2 实例 3 历史 4 符号表示 4 1 从a开始的变体形式 4 2 从0开始的变体形式 4 3 交换超运算 4 4 均衡超运算 4 5 低级超运算 4 6 其他變體 5 使用超運算的记数系统 6 参考文献定义 编辑超运算序列是定义在自然数集N displaystyle mathbb N nbsp 上的一个序列 记为H n displaystyle H n nbsp 前几项为加法 n 1 乘法 n 2 和幂 n 3 高阶超运算的参数与幂运算相似 2 即a称为底数 b称为指数 或称超指数 3 而n则称为阶数 用高德纳箭号表示法可以将超运算定义为 H n a b a n 2 b a n b b 1 n 0 a n 1 b 0 0 n 2 b 0 1 n 3 b 0 H n 1 a H n a b 1 otherwise displaystyle H n a b a uparrow n 2 b a n b begin cases b 1 amp n 0 a amp n 1 land b 0 0 amp n 2 land b 0 1 amp n geq 3 land b 0 H n 1 a H n a b 1 amp text otherwise end cases nbsp 注意到 对于序列的前三项有 a b 1 a b 1 displaystyle a b 1 a b 1 nbsp a b a a b 1 displaystyle a cdot b a a times b 1 nbsp a b a a b 1 displaystyle a b a cdot a b 1 nbsp 通过这样的递归能够定义出高阶运算 从而输入很小的数就可以产生非常大的数 其实 某一超运算就是一种基于低一阶超运算而进行数的复合的方法 我们可以以加法 乘法与幂的概念为例来说明 加法运算就是将指定次数的1加到原本的数上从而得到最终的结果 如2 3是将1三次加到2上 乘法运算就是将指定次数的某数通加 如2 3 displaystyle 2 times 3 nbsp 就是3个2相加 幂运算则是将指定次数的某数通乘 如2 3 displaystyle 2 3 nbsp 就是3个2相乘 实例 编辑下表列出了前七个超运算 n 运算 定义 名称 定义域0 1 b displaystyle 1 b nbsp 1 1 1 1 1 b displaystyle 1 underbrace 1 1 1 cdots 1 b nbsp 超 0运算 后继函数 任意b1 a b displaystyle a b nbsp a 1 1 1 1 b displaystyle a underbrace 1 1 1 cdots 1 b nbsp 超 1运算 加法 任意2 a b displaystyle ab nbsp a a a a b displaystyle underbrace a a a cdots a atop b nbsp 超 2运算 乘法 任意3 a 3 b a b displaystyle a 3 b a b nbsp a a a a a b displaystyle underbrace a cdot a cdot a cdot a cdot ldots cdot a atop b nbsp 超 3运算 幂 a gt 0 displaystyle a gt 0 nbsp b为实数 或a 0 displaystyle a not 0 nbsp b为整数 某些情况下可扩展为复数 4 a 4 b displaystyle a 4 b nbsp a 3 a 3 a 3 3 a 3 a 3 a b displaystyle underbrace a 3 a 3 a 3 cdots 3 a 3 a 3 a cdots atop b nbsp 超 4运算 迭代冪次 英文 tetration a gt 0 b 1 displaystyle a gt 0 b geq 1 nbsp 且为整数 某些情况下可扩展 5 a 5 b displaystyle a 5 b nbsp a 4 a 4 a 4 4 a 4 a 4 a b displaystyle underbrace a 4 a 4 a 4 cdots 4 a 4 a 4 a cdots atop b nbsp 超 5运算 五級運算 英文 pentation a和b都为整数 且a gt 0 b 0 displaystyle a gt 0 b geq 0 nbsp 6 a 6 b displaystyle a 6 b nbsp a 5 a 5 a 5 5 a 5 a 5 a b displaystyle underbrace a 5 a 5 a 5 cdots 5 a 5 a 5 a cdots atop b nbsp 超 6运算 英文 hexation a和b都为整数 且a gt 0 b 0 displaystyle a gt 0 b geq 0 nbsp n a n b displaystyle a n b nbsp a n 1 a n 1 a n 1 n 1 a n 1 a n 1 a b displaystyle underbrace a n 1 a n 1 a n 1 cdots n 1 a n 1 a n 1 a cdots atop b nbsp 超 n运算 英文 hyper n a和b都为整数 且a gt 0 b 0 displaystyle a gt 0 b geq 0 nbsp 历史 编辑1914年 阿尔伯特 贝内特 Albert Bennett 最早提出了超运算 他发展出了一套交换超运算 见下文 的理论 4 12年之后 威廉 阿克曼定义了函数ϕ a b n displaystyle phi a b n nbsp 5 和超运算序列已经有了某种程度上的相似 最早的使用三个自变量的阿克曼函数使用了同样的递归法则 但有两点与现在的超运算不同 一是它定义了n 0 displaystyle n 0 nbsp 时为加法 n 1 displaystyle n 1 nbsp 时为乘法 n 2 displaystyle n 2 nbsp 时为幂运算 二是由其对ϕ displaystyle phi nbsp 初始条件的定义能得到ϕ a b 3 a 4 b 1 displaystyle phi a b 3 a 4 b 1 nbsp 最后的运算结果与超运算不同 6 7 8 1947年 鲁宾 古德斯坦 1 提出现在所使用的超运算序列 只是那时他使用记号G n a b displaystyle G n a b nbsp 来表示 而非今天的a n b displaystyle a n b nbsp 在1947年的论文中 古德斯坦还引进了幂运算之后超运算的英文名称 即tetration pentation hexation等 符号表示 编辑下表列出了曾用来表示超运算的各种符号表示法 名称 符号表示 注解高德纳箭号表示法 a n 2 b displaystyle a uparrow n 2 b nbsp 高德纳使用 對於n 3 displaystyle n geq 3 nbsp 9 也在相关参考书目中提及 10 11 古德斯坦表示法 G n a b displaystyle G n a b nbsp 鲁宾 古德斯坦使用 1 初始阿克曼函数 A a b n 1 displaystyle A a b n 1 nbsp 与超运算并不完全相同现代阿克曼函数 A n b 3 3 2 n b displaystyle A n b 3 3 2 n b nbsp 和以2为底的超运算相同南比尔表示法 a n 1 b displaystyle a otimes n 1 b nbsp 南比尔 K K Nambiar 使用 對於n 1 displaystyle n geq 1 nbsp 12 框表示法 a n b displaystyle a begin array c hline n hline end array b nbsp 鲁佐勃夫 C A Rubtsov 与罗莫里奥 G F Romerio 使用 13 2 上标表示法 a n b displaystyle a n b nbsp 默纳福 Robert Munafo 使用 14 下标表示法 a n b displaystyle a n b nbsp 默纳福用来表示低级超运算 14 方括号表示法 a n b displaystyle a n b nbsp 在一些在线论坛中使用 利于ASCII表示康威鏈式箭號表示法 a b n 2 displaystyle a to b to n 2 nbsp 約翰 何頓 康威使用 對於n 3 displaystyle n geq 3 nbsp 从a开始的变体形式 编辑 1928年 威廉 阿克曼提出了一个三自变量的函数ϕ a b n displaystyle phi a b n nbsp 后来发展为现有的两个自变量的阿克曼函数 初始的阿克曼函数与现在的超运算之间的区别更大 因为他当时使用了初始条件 对所有n gt 2 displaystyle n gt 2 nbsp 有ϕ a 0 n a displaystyle phi a 0 n a nbsp 另外他还将n 0 displaystyle n 0 nbsp 指定为加法 n 1 displaystyle n 1 nbsp 为乘法 n 2 displaystyle n 2 nbsp 为幂 因而 幂运算及更高阶的运算就有了完全不同的结果 n 运算 注释0 F 0 a b a b displaystyle F 0 a b a b nbsp 1 F 1 a b a b displaystyle F 1 a b ab nbsp 2 F 2 a b a b displaystyle F 2 a b a b nbsp 3 F 3 a b a 4 b 1 displaystyle F 3 a b a 4 b 1 nbsp 类似超 4运算 但其迭代函数比普通超 4运算更为复杂4 F 4 a b x a 4 x 1 b a displaystyle F 4 a b x mapsto a 4 x 1 b a nbsp 不要与超 5运算相混淆路莎 彼得 Rozsa Peter 还曾用A 0 b 2 b 1 displaystyle A 0 b 2b 1 nbsp 作初始条件 但无法形成一个超运算等级 从0开始的变体形式 编辑 1984年 C W 克莱恩肖 C W Clenshaw 和F W J 奥立弗 F W J Olver 开始讨论如何使用超运算以防止计算机浮点数溢出 15 此后 很多人 16 17 18 都开始对于超运算在浮点数表示中的应用产生兴趣 在探讨超 4运算时 克莱恩肖等人曾令F n a 0 0 displaystyle F n a 0 0 nbsp 作为初始条件 这就产生了又一个超运算等级 n 运算 注释1 F 1 a b a b displaystyle F 1 a b a b nbsp 2 F 2 a b a b e ln a ln b displaystyle F 2 a b ab e ln a ln b nbsp 3 F 3 a b a b e b ln a displaystyle F 3 a b a b e b ln a nbsp 4 F 4 a b a 4 b 1 displaystyle F 4 a b a 4 b 1 nbsp 类似超 4运算 但其迭代函数比普通超 4运算更为复杂5 F 5 a b x a 4 x 1 b 0 displaystyle F 5 a b x mapsto a 4 x 1 b 0 nbsp 不要与超 5运算相混淆交换超运算 编辑 1914年阿尔伯特 贝内特提出了超运算 很可能是关于超运算最早的尝试 交换超运算通过以下递归法则定义 F n 1 a b exp F n ln a ln b displaystyle F n 1 a b exp F n ln a ln b nbsp 由于a和b的对称性 意味着所有的超运算都是可交换的 但由于序列并不包括幂运算 因此也就不能成为一个超运算等级 n 运算 注释0 F 0 a b ln e a e b displaystyle F 0 a b ln e a e b nbsp 1 F 1 a b a b ln e a e b displaystyle F 1 a b a b ln e a e b nbsp 2 F 2 a b a b e ln a ln b displaystyle F 2 a b ab e ln a ln b nbsp 由对数性质而来3 F 3 a b e ln a ln b displaystyle F 3 a b e ln a ln b nbsp 幂运算的可交换形式4 F 4 a b e e ln ln a ln ln b displaystyle F 4 a b e e ln ln a ln ln b nbsp 不要与超 4运算相混淆均衡超运算 编辑 均衡超运算于1991年首先由克莱门特 弗拉皮耶 Clement Frappier 提出 19 这种超运算是基于函数x x displaystyle x x nbsp 的 因而与斯坦豪斯 莫泽表示法 Steinhaus Moser notation 有关 均衡超运算的递归法则是 F n 1 a b x F n x x log 2 b a displaystyle F n 1 a b x to F n x x log 2 b a nbsp n 运算 注释0 不存在1 F 1 a b a b displaystyle F 1 a b a b nbsp 2 F 2 a b a b a 2 log 2 b displaystyle F 2 a b ab a2 log 2 b nbsp 3 F 3 a b a b a 2 log 2 b displaystyle F 3 a b a b a 2 log 2 b nbsp 就是幂运算4 F 4 a b x x x log 2 b a displaystyle F 4 a b x to x x log 2 b a nbsp 不要与超 4运算相混淆低级超运算 编辑 还有一种变化形式的特点是从左到右的顺序进行求值 即 a b a b 1 1 displaystyle a b a b 1 1 nbsp a b a b 1 a displaystyle a times b a times b 1 a nbsp a b a b 1 a displaystyle a b a b 1 times a nbsp 令 通过 或下标 a n 1 b a n 1 b 1 n a displaystyle a n 1 b a n 1 b 1 n a nbsp 有初始条件a 1 b a b a 2 0 0 displaystyle a 1 b a b a 2 0 0 nbsp 且对所有n gt 2 displaystyle n gt 2 nbsp 有 a n 0 1 displaystyle a n 0 1 nbsp 这样所产生的一个问题是 在4阶时它就与通常的定义不同 a 4 b a a b 1 displaystyle a 4 b a a b 1 nbsp 出现这一问题的原因在于加法和乘法运算有一种称为结合律的对称性 但这在幂运算上并不成立 由于通过这种超运算所得到的结果在3阶以上都比普通的超运算更小 因而把这种超运算称为低级超运算 n 运算 注释0 a 1 displaystyle a 1 nbsp 后继函数1 F 1 a b a b displaystyle F 1 a b a b nbsp 2 F 2 a b a b displaystyle F 2 a b ab nbsp 3 F 3 a b a b displaystyle F 3 a b a b nbsp 幂运算4 F 4 a b a a b 1 displaystyle F 4 a b a a b 1 nbsp 不要与超 4运算相混淆5 F 5 a b x x x a 1 b 1 a displaystyle F 5 a b x to x x a 1 b 1 a nbsp 不要与超 5运算相混淆其他變體 编辑 nbsp 超運算等級推廣至實數的可能結果 當F n 3 3 displaystyle F n 3 3 nbsp 的n為實數時 目前實數階的超運算未有相關理論能夠計算 但仍可以以近似的方式得出結果 20 在取不同的初始条件或不同的递归法则时 就会产生不同的运算 一些数学家扩展出了超运算的许多变体 通常 超运算等级 hyperoperation hierarchy S I F displaystyle S I F nbsp 是一个以集合I displaystyle I nbsp 为索引集 基于集合S displaystyle S nbsp 的二元运算族 F n n I displaystyle F n n in I nbsp 对于i j k I displaystyle i j k in I nbsp 有 F i a b a b displaystyle F i a b a b nbsp 加法 F j a b a b displaystyle F j a b ab nbsp 乘法 F k a b a b displaystyle F k a b a b nbsp 幂 如果不满足最后一个条件的话 就能将交换超运算包括在内 当然 也可以明确地定义每一个超运算 但这就超出了我们讨论的范围 大多数的变体形式只包含了对于后继函数 即加法 的定义 而乘法则由递归法则来进行定义 由于这属于对超运算等级的定义 而非等级本身的性质 很难给出形式上的定义 对于超运算 除了古德斯坦给出的定义外 还有很多其他可能性 如果对F n a 0 displaystyle F n a 0 nbsp 和F n a 1 displaystyle F n a 1 nbsp 采用不同的初始条件 则产生的超运算在比幂运算更高阶时就会有不同的结果 现今的超运算定义的条件包括对所有n 3 displaystyle n geq 3 nbsp 有F n a 0 1 displaystyle F n a 0 1 nbsp 而在其他形式中也有F n a 0 a displaystyle F n a 0 a nbsp 或F n a 0 0 displaystyle F n a 0 0 nbsp 的情况 关于超运算的一个未解决问题是超运算等级 N N F displaystyle mathbb N mathbb N F nbsp 是否能推广到 R R F displaystyle mathbb R mathbb R F nbsp 21 5甚至 C C F displaystyle mathbb C mathbb C F nbsp 以及 C F n displaystyle mathbb C F n nbsp 是否能成为一个拟群 使用超運算的记数系统 编辑鲁賓 古德斯坦 英语 Reuben Goodstein 使用超運算序列定義了一套能表達非負整數的记数系统 1 参考文献 编辑 1 0 1 1 1 2 1 3 R L Goodstein Transfinite Ordinals in Recursive Number Theory Journal of Symbolic Logic Dec 1947 12 4 123 129 2009 04 17 doi 10 2307 2266486 原始内容存档于2016 03 03 2 0 2 1 G F Romerio Hyperoperations Terminology Tetration Forum 2008 01 21 2009 04 21 原始内容存档于2011 10 02 外部链接存在于 publisher 帮助 I N Galidakis Mathematics 2003 2009 04 17 原始内容存档于2009 04 20 Albert A Bennett Note on an Operation of the Third Grade Annals of Mathematics Second Series Dec 1915 17 2 74 75 2009 04 17 原始内容存档于2016 09 17 Wilhelm Ackermann Zum Hilbertschen Aufbau der reellen Zahlen Mathematische Annalen 1928 99 118 133 doi 10 1007 BF01459088 Paul E Black Ackermann s function Dictionary of Algorithms and Data Structures U S National Institute of Standards and Technology NIST 2009 03 16 2009 04 17 原始内容存档于2009 04 22 外部链接存在于 work 帮助 Robert Munafo Versions of Ackermann s Function Large Numbers at MROB 1999 11 03 2009 04 17 原始内容存档于2008 12 21 J Cowles and T Bailey Several Versions of Ackermann s Function Dept of Computer Science University of Wyoming Laramie WY 1988 09 30 2009 04 17 原始内容存档于2008 10 04 Donald E Knuth Mathematics and Computer Science Coping with Finiteness Science Dec 1976 194 4271 1235 1242 2009 04 21 PMID 17797067 doi 10 1126 science 194 4271 1235 原始内容存档于2008 12 08 Daniel Zwillinger CRC standard mathematical tables and formulae 31st Edition CRC Press 2002 4 ISBN 1584882913 Eric W Weisstein CRC concise encyclopedia of mathematics 2nd Edition CRC Press 2003 127 128 ISBN 1584883472 K K Nambiar Ackermann Functions and Transfinite Ordinals Applied Mathematics Letters 1995 8 6 51 53 2009 04 21 doi 10 1016 0893 9659 95 00084 4 原始内容存档于2008 12 08 C A Rubtsov and G F Romerio Ackermann s Function and New Arithmetical Operation 2005 12 2009 04 17 原始内容存档于2008 05 29 14 0 14 1 Robert Munafo Inventing New Operators and Functions Large Numbers at MROB 1999 11 2009 04 17 原始内容存档于2009 08 06 C W Clenshaw and F W J Olver Beyond floating point Journal of the ACM Apr 1984 31 2 319 328 2009 04 21 doi 10 1145 62 322429 W N Holmes Composite Arithmetic Proposal for a New Standard Computer Mar 1997 30 3 65 73 2009 04 21 doi 10 1109 2 573666 R Zimmermann Computer Arithmetic Principles Architectures and VLSI Design PDF Lecture notes Integrated Systems Laboratory ETH Zurich 1997 2009 04 17 原始内容 PDF 存档于2013 08 17 T Pinkiewicz and N Holmes and T Jamil Design of a composite arithmetic unit for rational numbers Proceedings of the IEEE 245 252 2000 2009 04 17 C Frappier Iterations of a kind of exponentials Fibonacci Quarterly 1991 29 4 351 361 Jose Crespo Francisco Javier Montans Fractional Mathematical Operators and Their Computational Approximation Mathematical Problems in Engineering 2016 2016 1 11 2021 06 12 ISSN 1024 123X doi 10 1155 2016 4356371 原始内容存档于2021 05 06 英语 Constantin A Rubtsov and G Romerio Ackermann s Function and New Arithmetical Operation 2004 2021 10 02 原始内容存档于2021 10 02 取自 https zh wikipedia org w index php title 超运算 amp oldid 77724712, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。