fbpx
维基百科

生物礦化

生物礦化(Biomineralization)是生物經細胞代謝產生礦物的過程,常用於製造硬組織(礦化組織英语Mineralized tissues)。各類群生物均能進行生物礦化,目前已知超過60種礦物可經由生物礦化生成,包括矽藻矽酸鹽軟體動物甲殼動物碳酸鈣、以及脊椎動物磷酸钙[9][10][11]。這些礦化組織具結構支持[12]、捕食[13]、防禦[14][15]與調節胞內環境等多種功能[16][17][18]

各類群真核生物生物礦化形成的礦物種類[1]演化樹為基於Adl et al. (2012)繪製[2],類群旁的字母表示該類群可形成此礦物,圓圈中的字母表示該礦物在該類群生物中被廣泛、大量合成。S:矽酸鹽;C:碳酸鈣;P:磷酸鈣;I:鐵礦物;X:草酸鈣;SO4硫酸鹽[3][4][5][6][7][8]

最常見的生物礦化產物為磷酸鈣與碳酸鈣,可與膠原蛋白幾丁質等有機聚合物一起組成堅硬的骨骼牙齒等礦化組織,其結構受多層次的精密調控而有複雜功能[19]。在生物學領域外,生物礦化也是材料工程等領域感興趣的議題[20][21]

功能

動物

動物的生物礦化產物有碳酸鈣、磷酸鈣與二氧化矽海綿動物骨針[22])等,有包括支撐組織、防禦與捕食等多種功能[23]

軟體動物

 
多種軟體動物的殼

軟體動物經生物礦化形成的英语Mollusc shell有95%至99%成分為碳酸鈣(霰石方解石等),剩下的1%至5%為有機物,其斷裂韌性為純碳酸鈣的3000倍,因而為材料科學界所關注[24]。殼形成的過程中有些蛋白為促進結晶的結晶核,其他蛋白則負責導引殼的成長。珍珠母即為著名的軟體動物殼,其結構複雜,各層結構與組成的晶體、有機物種類均不同,並可能因物種而異[11]

真菌

真菌也會進行生物礦化,在多種地質作用中扮演重要角色,「地質真菌學」(geomycology)即為研究真菌生物礦化、生物降解以及與金屬作用等過程的學門[25]。許多真菌可分泌蛋白質至胞外,作為結晶核以合成碳酸鹽等無機礦物,在金屬離子存在時可形成金屬碳酸鹽,例如粉色麵包黴菌與一些擬盤多毛孢屬漆斑菌属的真菌可礦化產生鹼式碳酸銅碳酸銨的混合物[26]。除碳酸鹽外,有些真菌可將基質中的礦化形成鈾的磷酸鹽,累積於其菌絲體中,放射性的鈾雖對生物體有害,但這些真菌一般耐受一定含量[27]

許多真菌也可分解礦物,特別是可分泌草酸的真菌(包括黑麴黴扇索状干腐菌英语Serpula himantioides雲芝等可分解尿素的真菌),可分解磷灰石方鉛礦等礦物[28]

細菌

有些細菌可進行生物礦化,但許多功能尚不明,有假說認為其作用可能是避免代謝產生的副產物抑制自身生長,也有學者認為其形成氧化鐵等礦物可能有助於促進自身代謝反應[29]

趨磁細菌可礦化生成磁鐵礦,組成名為磁小体的膜狀結構,可感應地磁而影響其排列、分布形式[30]

成分

大多數生物礦化的產物可分為矽酸鹽、碳酸鹽與磷酸鹽三大類[5]

矽酸鹽

 
具矽殼的有壳变形虫英语testate amoeba

矽酸鹽為許多海洋生物礦化的產物,如矽藻與放射蟲矽殼[33],以及海綿動物的骨針[22],陸地上可合成矽酸鹽的主要生物則為陸生植物[1]。矽酸鹽為三種生物礦物中在生物分類上分布最廣的,各大類群的真核生物都可合成[6]。不同生物組織矽化英语Silicification的程度也有區別,從僅與其他礦物共同組成結構(如笠螺英语limpet的牙齒[34])、自行組成微小的結構[35]至組成個體的主要結構者皆有[36]

碳酸鹽

生物礦化產生最常見的碳酸鹽為碳酸鈣,其中又以方解石(有孔蟲的殼與鈣板金藻颗石粒等)與霰石珊瑚礁)的形態為大宗,也有少數為六方方解石非晶質碳酸鈣英语Amorphous calcium carbonate(可能有結構功能[37][38],或作為生物礦化的中間產物[39][40])。有些生物礦化的產物為上述數種礦物以有組織分層的方式混合而成(如雙殼貝英语Bivalve shell)。碳酸鹽在海生動物的生物礦化中相當常見,但也見於陸生動物與淡水動物[41]

磷酸鹽

 
蟬形齒指蝦蛄以堅硬的掠肢攻擊獵物[42]

生物礦化產生最常見的磷酸鹽為羥磷灰石(HA),為一種天然的磷灰石,是脊椎動物骨骼、牙齒與魚鱗的主要成分[43]。骨骼有65%至70%為羥磷灰石組成,其餘則為膠原蛋白交織而成的網絡;牙齒的象牙質琺瑯質也有70%至80%為羥磷灰石,其中後者的蛋白網絡為釉原蛋白英语amelogenin釉蛋白英语Enamelin組成,而非膠原蛋白[44]牙齒再礦化英语Remineralisation即為新的鈣與磷酸離子沈積形成羥磷灰石的過程,可修補酸化造成的牙齒損傷[45]

蟬形齒指蝦蛄可形成非常堅硬的掠肢(dactyl club),其結構極為緻密,抗衝擊能力極高[46],可分為衝擊層(表層)、週期層與橫紋層等三層,其中衝擊層等主要成分為羥磷灰石,其餘兩層為磷酸鈣與碳酸鈣的混合物,其鈣離子與磷酸離子的含量從外至內遞減,大大降低其模量,可抑制裂痕的延伸,迫使新形成的裂痕轉換方向,且內外兩層的模量差異巨大也有助於減少跨層的能量傳導[46]

 
多毛綱纓鰓蟲科Glomerula piloseta所形成的柱狀霰石結構
成分 生物
碳酸鈣
(方解石或霰石)
二氧化硅
矽酸鹽
磷灰石
磷酸鹽礦物

其他礦物

 
石鱉的牙齒具磁鐵礦
 
帽貝的牙齒具針鐵礦
 
等辐骨亚纲的放射蟲外殼成分為天青石

除上述三大類礦物外,還有若干種礦物能經生物礦化形成,其中許多為生存在特殊環境的生物產生,用以形成具特定物理性質的結構。有些動物因取食堅硬的基質而加強牙齒的結構,如石鱉的牙齒覆有磁鐵礦[47]笠螺英语Limpet的牙齒具針鐵礦[48];居於海底熱泉周邊的腹足綱動物外殼除碳酸鈣外還有黃鐵礦硫複鐵礦英语Greigite以加固結構[49]

天青石硫酸鍶組成的礦物[50]等辐骨亚纲放射蟲外殼成分即為天青石,質地緻密,因其密度較大,可使放射蟲快速沈澱至半深海帶,而有礦物壓載(mineral ballast)的功能[50][51][52]

演化

 

最早的生物礦化可能為距今20億年前生成磁鐵礦的趨磁細菌,兩側動物的共祖應已有此途徑,在寒武紀時因基因擴增而產生另一套平行的礦化系統,用以合成含鈣的礦物[53]真核生物的生物礦化痕跡可追溯至距今7億5000萬年前[54][55],類似海綿的生物可能在距今6億3000萬年前即出現方解石的外骨骼[56],但多數動物類群的生物礦化應是起源自寒武紀奧陶紀[57]。動物礦化的碳酸鈣結晶形式可能取決該類群祖先在礦化演化出現當下的環境因子,其衍生的類群隨後即沿用該形式的礦物[58][59][60],水層中鈣與鎂離子的比例與大氣中的二氧化碳英语Carbon dioxide in Earth's atmosphere濃度皆會影響礦化演化出現時各類礦物的穩定度[58]

生物礦化在各類群生物中多次演化出現[61],許多演化上無關的生物類群都使用類似的礦化途徑(訊息傳遞因子、抑制物與轉錄因子[62],如碳酸酐酶在各類群動物的礦化中均有類似功能,可能在動物的共祖中即已出現[63]。),顯示這些同源的反應途徑與蛋白可能在生物礦化出現前(前寒武紀)即存在生物中,並具礦化以外的功能[5],在生物礦化出現後它們多負責調控礦化中較根本的步驟(如決定哪些細胞將被用來合成礦物),而後續微調礦化反應的步驟(如結晶的具體形狀與排列方式)在演化上則一般較晚出現,為在各類群生物中各自獨立演化產生[23][64]。有假說認為前者由非礦化功能演化出礦化反應的動力是避免在離子近飽和的海水中發生不受控制的自發礦化[62],許多參與礦化反應的黏液可能最初即有此類抑制自發礦化的功能[65]。此外各類群動物中,控制細胞內鈣離子濃度的蛋白高度同源,在各類群分化後各自演化產生礦化功能[66],如石珊瑚的galaxin蛋白原本具其他功能,在三疊紀左右演化出礦化的新功能[67]

有研究將軟體動物殼的珠母層移植到人類牙齒上,發現此移植並未觸發免疫排斥反應,移植的礦物可被人類牙齒吸收;也有研究發現腕足動物門與軟體動物門動物生物礦化的反應途徑高度類似,皆使用若干演化上保守的基因,顯示生物礦化可能是冠輪動物祖徵英语Primitive (phylogenetics)[68]。與生物礦化有關的基因演化迅速,至今仍有許多基因座具有很大的變異[64]

一般來說若產生礦化組織所需的能量小於產生等量有機組織所需的能量,進行生物礦化便是演化上有利的[69][70][71],例如產生矽酸鹽所需的能量僅為製造等量木質素的約5%,即製造等量多醣(如纖維素)的10%[72]

應用

工程上許多製造奈米材料的傳統方法相當耗能,需高溫高壓等嚴苛條件,並可能生成有毒的副產物,產量有限且經常難以重複[73][74]。相較之下許多生物礦化所形成的材料物理性質超越人工的材料,且在溫和環境條件下即可在溶液中使用大分子與離子合成,可重複可靠地生成材料。無機礦物與有機物(蛋白質等)相結合而成的生物組織結構經常比純礦物更為堅固,例如矽藻的矽殼是已知每單位密度強度最強的生物材料[75][76],海綿的骨針彈性也比純矽酸鹽高得多[77][78]。有仿生學研究即以模仿生物礦化作用合成所需材料為宗旨[73][74]

有研究利用可生成碳酸鈣的細菌(巨大芽孢杆菌英语Bacillus megaterium)來製造可「自我癒合」的混凝土,即在混凝土中加入細菌的內孢子與有機分子等材料,當建築出現裂縫時,滲水可將有機分子溶解,使孢子萌發,細菌即可礦化生成新的碳酸鈣以修補裂縫[79][80]。除被動修補外,未來生物礦化可能在建築中扮演更多角色,如隨環境變化而精密控制材料生成的時間、位點或物理性質,使建築得以隨時感測環境因子並作出反應[81][82][83]

移除污染物

 
鈣鈾雲母結晶

生物礦化可被用於移除被污染的水層。有些細菌與真菌細胞表面配體上帶負電的磷酸離子可與水中帶正電的UO22+離子結合,當濃度夠高時可作為結晶核,和UO22+礦化生成鈣鈾雲母(Ca(UO2)2(PO4)2·10–12H2O)等含鈾的結晶礦物,將鈾自水中礦化移除。與直接往水中加入磷酸根以生成沈澱相較,生物礦化移除鈾的特異性較高,較不易與水中其他金屬離子結合,因而移除鈾的效率較高[84][85]

天體生物學

生物礦化產生的礦物以及與其關聯的生命印跡是搜索地外生命時可以使用的線索[86]

參見

  • 生物結晶英语Biocrystallization
  • 生物薄膜
  • 生物介面英语Biointerface
  • 生物礦化多毛蟲英语Biomineralising polychaete:能行生物礦化產生碳酸鈣的多毛綱動物
  • 微生物誘導碳酸鈣沉澱英语Microbiologically induced calcite precipitation(MICP)
  • 骨礦物質英语Bone mineral
  • 礦化組織英语Mineralized tissues

參考文獻

  1. ^ 1.0 1.1 Hendry KR, Marron AO, Vincent F, Conley DJ, Gehlen M, Ibarbalz FM, Quéguiner B, Bowler C. Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. Frontiers in Marine Science. 2018, 5. S2CID 12447257. doi:10.3389/fmars.2018.00022 .  Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License (页面存档备份,存于互联网档案馆).
  2. ^ Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification of eukaryotes. The Journal of Eukaryotic Microbiology. September 2012, 59 (5): 429–493. PMC 3483872 . PMID 23020233. doi:10.1111/j.1550-7408.2012.00644.x. 
  3. ^ Ensikat HJ, Geisler T, Weigend M. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants' teeth against herbivores. Scientific Reports. May 2016, 6 (1): 26073. Bibcode:2016NatSR...626073E. PMC 4872142 . PMID 27194462. doi:10.1038/srep26073. 
  4. ^ Gal A, Hirsch A, Siegel S, Li C, Aichmayer B, Politi Y, et al. Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. Chemistry. August 2012, 18 (33): 10262–10270. PMID 22696477. doi:10.1002/chem.201201111. 
  5. ^ 5.0 5.1 5.2 Knoll, A.H. (PDF). Dove PM, DeYoreo JJ, Weiner S (编). Reviews in Mineralogy and Geochemistry. 2004. (原始内容 (PDF)存档于2010-06-20). 
  6. ^ 6.0 6.1 Marron AO, Ratcliffe S, Wheeler GL, Goldstein RE, King N, Not F, et al. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution. December 2016, 33 (12): 3226–3248. PMC 5100055 . PMID 27729397. doi:10.1093/molbev/msw209. 
  7. ^ Raven JA, Knoll AH. Non-Skeletal Biomineralization by Eukaryotes: Matters of Moment and Gravity. Geomicrobiology Journal. 2010, 27 (6–7): 572–584 [2022-11-05]. S2CID 37809270. doi:10.1080/01490451003702990. (原始内容于2021-03-25). 
  8. ^ Weich RG, Lundberg P, Vogel HJ, Jensén P. Phosphorus-31 NMR Studies of Cell Wall-Associated Calcium-Phosphates in Ulva lactuca. Plant Physiology. May 1989, 90 (1): 230–236. PMC 1061703 . PMID 16666741. doi:10.1104/pp.90.1.230. 
  9. ^ Sigel A, Sigel H, Sigel RK (编). Biomineralization: From Nature to Application. Metal Ions in Life Sciences 4. Wiley. 2008. ISBN 978-0-470-03525-2. 
  10. ^ Weiner S, Lowenstam HA. On biomineralization. Oxford [Oxfordshire]: Oxford University Press. 1989. ISBN 978-0-19-504977-0. 
  11. ^ 11.0 11.1 Cuif JP, Dauphin Y, Sorauf JE. Biominerals and fossils through time. Cambridge. 2011. ISBN 978-0-521-87473-1. 
  12. ^ Weaver JC, Aizenberg J, Fantner GE, Kisailus D, Woesz A, Allen P, et al. Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. Journal of Structural Biology. April 2007, 158 (1): 93–106. PMID 17175169. doi:10.1016/j.jsb.2006.10.027. 
  13. ^ Nesbit KT, Roer RD. Silicification of the medial tooth in the blue crab Callinectes sapidus. Journal of Morphology. December 2016, 277 (12): 1648–1660. PMID 27650814. S2CID 46840652. doi:10.1002/jmor.20614. 
  14. ^ Pondaven P, Gallinari M, Chollet S, Bucciarelli E, Sarthou G, Schultes S, Jean F. Grazing-induced changes in cell wall silicification in a marine diatom. Protist. January 2007, 158 (1): 21–28. PMID 17081802. doi:10.1016/j.protis.2006.09.002. 
  15. ^ Friedrichs L, Hörnig M, Schulze L, Bertram A, Jansen S, Hamm C. Size and biomechanic properties of diatom frustules influence food uptake by copepods. Marine Ecology Progress Series. 2013, 481: 41–51 [2022-11-05]. Bibcode:2013MEPS..481...41F. doi:10.3354/meps10227. (原始内容于2022-10-15). 
  16. ^ Desouky M, Jugdaohsingh R, McCrohan CR, White KN, Powell JJ. Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis. Proceedings of the National Academy of Sciences of the United States of America. March 2002, 99 (6): 3394–3399. Bibcode:2002PNAS...99.3394D. PMC 122534 . PMID 11891333. doi:10.1073/pnas.062478699 . 
  17. ^ Neumann D, zur Nieden U. Silicon and heavy metal tolerance of higher plants. Phytochemistry. April 2001, 56 (7): 685–692. PMID 11314953. doi:10.1016/S0031-9422(00)00472-6. 
  18. ^ Milligan AJ, Morel FM. A proton buffering role for silica in diatoms. Science. September 2002, 297 (5588): 1848–1850. Bibcode:2002Sci...297.1848M. PMID 12228711. S2CID 206507070. doi:10.1126/science.1074958. 
  19. ^ Vinn O. Occurrence, formation and function of organic sheets in the mineral tube structures of Serpulidae (polychaeta, Annelida). PLOS ONE. 2013, 8 (10): e75330. Bibcode:2013PLoSO...875330V. PMC 3792063 . PMID 24116035. doi:10.1371/journal.pone.0075330 . 
  20. ^ Boskey AL. Biomineralization: conflicts, challenges, and opportunities. Journal of Cellular Biochemistry. 1998, 30–31 (S30-31): 83–91. PMID 9893259. S2CID 46004807. doi:10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F. 
  21. ^ Sarikaya M. Biomimetics: materials fabrication through biology. Proceedings of the National Academy of Sciences of the United States of America. December 1999, 96 (25): 14183–14185. Bibcode:1999PNAS...9614183S. PMC 33939 . PMID 10588672. doi:10.1073/pnas.96.25.14183 . 
  22. ^ 22.0 22.1 Hooper, John. . Queensland Museum. 2018 [27 September 2019]. (原始内容存档于26 September 2019). 
  23. ^ 23.0 23.1 Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, et al. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Developmental Biology. December 2006, 300 (1): 335–348. PMID 16987510. doi:10.1016/j.ydbio.2006.07.047 . 
  24. ^ Currey JD. The design of mineralised hard tissues for their mechanical functions. The Journal of Experimental Biology. December 1999, 202 (Pt 23): 3285–3294. PMID 10562511. doi:10.1242/jeb.202.23.3285. 
  25. ^ Gadd GM. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research. January 2007, 111 (Pt 1): 3–49. PMID 17307120. doi:10.1016/j.mycres.2006.12.001. 
  26. ^ Li Q, Gadd GM. Biosynthesis of copper carbonate nanoparticles by ureolytic fungi. Applied Microbiology and Biotechnology. October 2017, 101 (19): 7397–7407. PMC 5594056 . PMID 28799032. doi:10.1007/s00253-017-8451-x. 
  27. ^ Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM. Uranium phosphate biomineralization by fungi. Environmental Microbiology. June 2015, 17 (6): 2064–2075. PMID 25580878. S2CID 9699895. doi:10.1111/1462-2920.12771. 
  28. ^ Adeyemi AO, Gadd GM. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals. June 2005, 18 (3): 269–281. PMID 15984571. S2CID 35004304. doi:10.1007/s10534-005-1539-2. 
  29. ^ Fortin D. Geochemistry. What biogenic minerals tell us. Science. March 2004, 303 (5664): 1618–1619. PMID 15016984. S2CID 41179538. doi:10.1126/science.1095177. 
  30. ^ Komeili, Arash; Li, Zhuo; Newman, Dianne K.; Jensen, Grant J. Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK. Science (American Association for the Advancement of Science (AAAS)). 2006-01-13, 311 (5758): 242–245. ISSN 0036-8075. S2CID 36909813. doi:10.1126/science.1123231. 
  31. ^ Sorby, Henry Clifton. On the organic origin of the so-called 'Crystalloids' of the chalk. Annals and Magazine of Natural History. Ser. 3. 1861, 8 (45): 193–200 [2022-11-05]. doi:10.1080/00222936108697404. (原始内容于2022-11-05). 
  32. ^ Junqueira, Luiz Carlos; José Carneiro. Foltin, Janet; Lebowitz, Harriet; Boyle, Peter J. , 编. Basic Histology, Text & Atlas  10th. McGraw-Hill Companies. 2003: 144. ISBN 978-0-07-137829-1. Inorganic matter represents about 50% of the dry weight of bone ... crystals show imperfections and are not identical to the hydroxyapatite found in the rock minerals 
  33. ^ Demaster DJ. Marine Silica Cycle. Encyclopedia of Ocean Sciences. 2001: 1659–1667. ISBN 9780122274305. doi:10.1006/rwos.2001.0278. 
  34. ^ Sone ED, Weiner S, Addadi L. Biomineralization of limpet teeth: a cryo-TEM study of the organic matrix and the onset of mineral deposition. Journal of Structural Biology. June 2007, 158 (3): 428–444. PMID 17306563. doi:10.1016/j.jsb.2007.01.001. 
  35. ^ Foissner W, Weissenbacher B, Krautgartner WD, Lütz-Meindl U. A cover of glass: first report of biomineralized silicon in a ciliate, Maryna umbrellata (Ciliophora: Colpodea). The Journal of Eukaryotic Microbiology. 2009, 56 (6): 519–530. PMC 2917745 . PMID 19883440. doi:10.1111/j.1550-7408.2009.00431.x. 
  36. ^ Preisig HR. Siliceous structures and silicification in flagellated protists. Protoplasma. 1994, 181 (1–4): 29–42. S2CID 27698051. doi:10.1007/BF01666387. 
  37. ^ Pokroy B, Kabalah-Amitai L, Polishchuk I, DeVol RT, Blonsky AZ, Sun CY, Marcus MA, Scholl A, Gilbert PU. Narrowly Distributed Crystal Orientation in Biomineral Vaterite. Chemistry of Materials. 2015-10-13, 27 (19): 6516–6523. ISSN 0897-4756. S2CID 118355403. arXiv:1609.05449 . doi:10.1021/acs.chemmater.5b01542. 
  38. ^ Neues F, Hild S, Epple M, Marti O, Ziegler A. Amorphous and crystalline calcium carbonate distribution in the tergite cuticle of moulting Porcellio scaber (Isopoda, Crustacea) (PDF). Journal of Structural Biology. July 2011, 175 (1): 10–20 [2022-11-05]. PMID 21458575. doi:10.1016/j.jsb.2011.03.019. (原始内容 (PDF)于2022-10-17). 
  39. ^ Jacob DE, Wirth R, Agbaje OB, Branson O, Eggins SM. Planktic foraminifera form their shells via metastable carbonate phases. Nature Communications. November 2017, 8 (1): 1265. Bibcode:2017NatCo...8.1265J. PMC 5668319 . PMID 29097678. doi:10.1038/s41467-017-00955-0. 
  40. ^ Mass T, Giuffre AJ, Sun CY, Stifler CA, Frazier MJ, Neder M, et al. Amorphous calcium carbonate particles form coral skeletons. Proceedings of the National Academy of Sciences of the United States of America. September 2017, 114 (37): E7670–E7678. Bibcode:2017PNAS..114E7670M. PMC 5604026 . PMID 28847944. doi:10.1073/pnas.1707890114 . 
  41. ^ Raven JA, Giordano M. Biomineralization by photosynthetic organisms: evidence of coevolution of the organisms and their environment?. Geobiology. March 2009, 7 (2): 140–154. PMID 19207569. S2CID 42962176. doi:10.1111/j.1472-4669.2008.00181.x. 
  42. ^ Patek SN, Caldwell RL. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. The Journal of Experimental Biology. October 2005, 208 (Pt 19): 3655–3664. PMID 16169943. S2CID 312009. doi:10.1242/jeb.01831 . 
  43. ^ Onozato H, Watabe N. Studies on fish scale formation and resorption. III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: Cyprinidae). Cell and Tissue Research. October 1979, 201 (3): 409–422. PMID 574424. S2CID 2222515. doi:10.1007/BF00236999. 
  44. ^ Habibah TU, Amlani DB, Brizuela M. Biomaterials, Hydroxyapatite. Stat Pearls. January 2018 [2018-08-12]. PMID 30020686. (原始内容于2020-03-28). 
  45. ^ Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization-remineralization dynamics in teeth and bone. International Journal of Nanomedicine. 2016, 11: 4743–4763. PMC 5034904 . PMID 27695330. doi:10.2147/IJN.S107624. 
  46. ^ 46.0 46.1 Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science. June 2012, 336 (6086): 1275–1280 [2017-12-02]. Bibcode:2012Sci...336.1275W. PMID 22679090. S2CID 8509385. doi:10.1126/science.1218764. (原始内容于2020-09-13). 
  47. ^ Joester D, Brooker LR. The Chiton Radula: A Model System for Versatile Use of Iron Oxides*. Faivre D (编). Iron Oxides 1st. Wiley. 2016-07-05: 177–206. ISBN 978-3-527-33882-5. doi:10.1002/9783527691395.ch8. 
  48. ^ Barber AH, Lu D, Pugno NM. Extreme strength observed in limpet teeth. Journal of the Royal Society, Interface. April 2015, 12 (105): 20141326. PMC 4387522 . PMID 25694539. doi:10.1098/rsif.2014.1326. 
  49. ^ Chen C, Linse K, Copley JT, Rogers AD. The 'scaly-foot gastropod': a new genus and species of hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae) from the Indian Ocean. Journal of Molluscan Studies. August 2015, 81 (3): 322–334. ISSN 0260-1230. doi:10.1093/mollus/eyv013 . 
  50. ^ 50.0 50.1 Le Moigne FA. Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump. Frontiers in Marine Science. 2019, 6. doi:10.3389/fmars.2019.00634 . 
  51. ^ Martin P, Allen JT, Cooper MJ, Johns DG, Lampitt RS, Sanders R, Teagle DA. Sedimentation of acantharian cysts in the Iceland Basin: Strontium as a ballast for deep ocean particle flux, and implications for acantharian reproductive strategies. Limnology and Oceanography. 2010, 55 (2): 604–614. doi:10.4319/lo.2009.55.2.0604. 
  52. ^ Belcher A, Manno C, Thorpe S, Tarling G. Acantharian cysts: High flux occurrence in the bathypelagic zone of the Scotia Sea, Southern Ocean (PDF). Marine Biology. 2018, 165 (7) [2022-11-05]. S2CID 90349921. doi:10.1007/s00227-018-3376-1. (原始内容 (PDF)于2022-08-17). 
  53. ^ Kirschvink JL, Hagadorn JW. 10 A Grand Unified theory of Biomineralization.. Bäuerlein E (编). The Biomineralisation of Nano- and Micro-Structures. Weinheim, Germany: Wiley-VCH. 2000: 139–150. 
  54. ^ Porter S. The rise of predators. Geology. 2011, 39 (6): 607–608. Bibcode:2011Geo....39..607P. doi:10.1130/focus062011.1 . 
  55. ^ Cohen PA, Schopf JW, Butterfield NJ, Kudryavtsev AB, Macdonald FA. Phosphate biomineralization in mid-Neoproterozoic protists. Geology. 2011, 39 (6): 539–542. Bibcode:2011Geo....39..539C. S2CID 32229787. doi:10.1130/G31833.1. 
  56. ^ Maloof AC, Rose CV, Beach R, Samuels BM, Calmet CC, Erwin DH, et al. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience. 2010, 3 (9): 653–659. Bibcode:2010NatGe...3..653M. S2CID 13171894. doi:10.1038/ngeo934. 
  57. ^ Wood RA, Grotzinger JP, Dickson JA. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science. June 2002, 296 (5577): 2383–2386. Bibcode:2002Sci...296.2383W. PMID 12089440. S2CID 9515357. doi:10.1126/science.1071599. 
  58. ^ 58.0 58.1 Zhuravlev AY, Wood RA. Eve of biomineralization: Controls on skeletal mineralogy (PDF). Geology. 2008, 36 (12): 923 [2022-11-05]. Bibcode:2008Geo....36..923Z. doi:10.1130/G25094A.1. (原始内容 (PDF)于2016-03-04). 
  59. ^ Porter SM. Seawater chemistry and early carbonate biomineralization. Science. June 2007, 316 (5829): 1302. Bibcode:2007Sci...316.1302P. PMID 17540895. S2CID 27418253. doi:10.1126/science.1137284. 
  60. ^ Maloof AC, Porter SM, Moore JL, Dudás FÖ, Bowring SA, Higgins JA, Fike DA, Eddy MP. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin. 2010, 122 (11–12): 1731–1774. Bibcode:2010GSAB..122.1731M. S2CID 6694681. doi:10.1130/B30346.1. 
  61. ^ Murdock DJ, Donoghue PC. Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs. 2011, 194 (2–4): 98–102. PMID 21625061. S2CID 45466684. doi:10.1159/000324245. 
  62. ^ 62.0 62.1 Westbroek P, Marin F. A marriage of bone and nacre. Nature. April 1998, 392 (6679): 861–862. Bibcode:1998Natur.392..861W. PMID 9582064. S2CID 4348775. doi:10.1038/31798 . 
  63. ^ Jackson DJ, Macis L, Reitner J, Degnan BM, Wörheide G. Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis. Science. June 2007, 316 (5833): 1893–1895. Bibcode:2007Sci...316.1893J. PMID 17540861. S2CID 7042860. doi:10.1126/science.1141560. 
  64. ^ 64.0 64.1 Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, et al. Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution. March 2010, 27 (3): 591–608. PMID 19915030. doi:10.1093/molbev/msp278 . 
  65. ^ Marin F, Smith M, Isa Y, Muyzer G, Westbroek P. Skeletal matrices, muci, and the origin of invertebrate calcification. Proceedings of the National Academy of Sciences of the United States of America. February 1996, 93 (4): 1554–1559. Bibcode:1996PNAS...93.1554M. PMC 39979 . PMID 11607630. doi:10.1073/pnas.93.4.1554 . 
  66. ^ Lowenstam HA, Margulis L. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Bio Systems. 1980, 12 (1–2): 27–41. PMID 6991017. doi:10.1016/0303-2647(80)90036-2. 
  67. ^ Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evolutionary Biology. July 2009, 9 (1): 178. PMC 2726143 . PMID 19638240. doi:10.1186/1471-2148-9-178. 
  68. ^ Wernström JV, Gąsiorowski L, Hejnol A. Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage. EvoDevo. September 2022, 13 (1): 17. PMC 9484238 . PMID 36123753. doi:10.1186/s13227-022-00202-8. 
  69. ^ Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. 2001 [2022-11-05]. ISBN 9780198508823. (原始内容于2022-11-12). 
  70. ^ Raven JA, Waite AM. The evolution of silicification in diatoms: Inescapable sinking and sinking as escape?. New Phytologist. 2004, 162 (1): 45–61. doi:10.1111/j.1469-8137.2004.01022.x. 
  71. ^ Finkel ZV, Kotrc B. Silica Use Through Time: Macroevolutionary Change in the Morphology of the Diatom Fustule. Geomicrobiology Journal. 2010, 27 (6–7): 596–608. S2CID 85218013. doi:10.1080/01490451003702941. 
  72. ^ Raven JA. The Transport and Function of Silicon in Plants. Biological Reviews. 1983, 58 (2): 179–207. S2CID 86067386. doi:10.1111/j.1469-185X.1983.tb00385.x. 
  73. ^ 73.0 73.1 Sigel A, Sigel H, Sigel RK. Biomineralization: From Nature to Application. 30 April 2008 [2022-11-05]. ISBN 9780470986318. (原始内容于2022-11-12). 
  74. ^ 74.0 74.1 Aparicio C, Ginebra MP. Biomineralization and Biomaterials: Fundamentals and Applications. 28 September 2015 [2022-11-05]. ISBN 9781782423560. (原始内容于2022-11-12). 
  75. ^ Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. Architecture and material properties of diatom shells provide effective mechanical protection (PDF). Nature. February 2003, 421 (6925): 841–843 [2022-11-05]. Bibcode:2003Natur.421..841H. PMID 12594512. S2CID 4336989. doi:10.1038/nature01416. (原始内容 (PDF)于2022-10-17). 
  76. ^ Aitken ZH, Luo S, Reynolds SN, Thaulow C, Greer JR. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule. Proceedings of the National Academy of Sciences of the United States of America. February 2016, 113 (8): 2017–2022. Bibcode:2016PNAS..113.2017A. PMC 4776537 . PMID 26858446. doi:10.1073/pnas.1519790113 . 
  77. ^ Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, et al. Nanostructural Organization of Naturally Occurring Composites—Part I: Silica-Collagen-Based Biocomposites. Journal of Nanomaterials. 2008, 2008: 1–8. doi:10.1155/2008/623838 . 
  78. ^ Shimizu K, Amano T, Bari MR, Weaver JC, Arima J, Mori N. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proceedings of the National Academy of Sciences of the United States of America. September 2015, 112 (37): 11449–11454. Bibcode:2015PNAS..11211449S. PMC 4577155 . PMID 26261346. doi:10.1073/pnas.1506968112 . 
  79. ^ Jonkers HM. Self healing concrete: a biological approach. van der Zwaag S (编). Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science. Springer. 2007: 195–204 [2022-11-05]. ISBN 9781402062506. (原始内容于2022-11-12). 
  80. ^ US 8728365,Dosier GK,「Methods for making construction material using enzyme producing bacteria」,发行于2014,指定于Biomason Inc. 
  81. ^ Rubinstein SM, Kolodkin-Gal I, McLoon A, Chai L, Kolter R, Losick R, Weitz DA. Osmotic pressure can regulate matrix gene expression in Bacillus subtilis. Molecular Microbiology. October 2012, 86 (2): 426–436. PMC 3828655 . PMID 22882172. doi:10.1111/j.1365-2958.2012.08201.x. 
  82. ^ Chan JM, Guttenplan SB, Kearns DB. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. Journal of Bacteriology. February 2014, 196 (4): 740–753. PMC 3911173 . PMID 24296669. doi:10.1128/JB.01217-13. 
  83. ^ Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature: growing buildings with bacterial biofilms. Microbial Biotechnology. September 2017, 10 (5): 1157–1163. PMC 5609236 . PMID 28815998. doi:10.1111/1751-7915.12833. 
  84. ^ Newsome L, Morris K, Lloyd JR. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology. 2014, 363: 164–184. Bibcode:2014ChGeo.363..164N. doi:10.1016/j.chemgeo.2013.10.034 . 
  85. ^ Lloyd JR, Macaskie LE. Environmental microbe-metal interactions: Bioremediation of radionuclide-containing wastewaters. Washington, DC: ASM Press. 2000: 277–327. ISBN 978-1-55581-195-2. 
  86. ^ Steele A, Beaty D (编). Final report of the MEPAG Astrobiology Field Laboratory Science Steering Group (AFL-SSG) (.doc). The Astrobiology Field Laboratory. U.S.A.: Mars Exploration Program Analysis Group (MEPAG) - NASA. September 26, 2006: 72 [2009-07-22]. (原始内容于2020-05-11). 

生物礦化, biomineralization, 是生物經細胞代謝產生礦物的過程, 常用於製造硬組織, 礦化組織, 英语, mineralized, tissues, 各類群生物均能進行, 目前已知超過60種礦物可經由生成, 包括矽藻的矽酸鹽, 軟體動物與甲殼動物的碳酸鈣, 以及脊椎動物的磷酸钙等, 這些礦化組織具結構支持, 捕食, 防禦, 與調節胞內環境等多種功能, 各類群真核生物形成的礦物種類, 演化樹為基於adl, 2012, 繪製, 類群旁的字母表示該類群可形成此礦物, 圓圈中的字母表示該礦物在該類群生物中. 生物礦化 Biomineralization 是生物經細胞代謝產生礦物的過程 常用於製造硬組織 礦化組織 英语 Mineralized tissues 各類群生物均能進行生物礦化 目前已知超過60種礦物可經由生物礦化生成 包括矽藻的矽酸鹽 軟體動物與甲殼動物的碳酸鈣 以及脊椎動物的磷酸钙等 9 10 11 這些礦化組織具結構支持 12 捕食 13 防禦 14 15 與調節胞內環境等多種功能 16 17 18 各類群真核生物生物礦化形成的礦物種類 1 演化樹為基於Adl et al 2012 繪製 2 類群旁的字母表示該類群可形成此礦物 圓圈中的字母表示該礦物在該類群生物中被廣泛 大量合成 S 矽酸鹽 C 碳酸鈣 P 磷酸鈣 I 鐵礦物 X 草酸鈣 SO4 硫酸鹽 3 4 5 6 7 8 最常見的生物礦化產物為磷酸鈣與碳酸鈣 可與膠原蛋白和幾丁質等有機聚合物一起組成堅硬的殼 骨骼及牙齒等礦化組織 其結構受多層次的精密調控而有複雜功能 19 在生物學領域外 生物礦化也是材料工程等領域感興趣的議題 20 21 目录 1 功能 1 1 動物 1 1 1 軟體動物 1 2 真菌 1 3 細菌 2 成分 2 1 矽酸鹽 2 2 碳酸鹽 2 3 磷酸鹽 2 4 其他礦物 3 演化 4 應用 4 1 移除污染物 4 2 天體生物學 5 參見 6 參考文獻功能 编辑動物 编辑 動物的生物礦化產物有碳酸鈣 磷酸鈣與二氧化矽 海綿動物的骨針 22 等 有包括支撐組織 防禦與捕食等多種功能 23 軟體動物 编辑 多種軟體動物的殼 軟體動物經生物礦化形成的殼 英语 Mollusc shell 有95 至99 成分為碳酸鈣 霰石與方解石等 剩下的1 至5 為有機物 其斷裂韌性為純碳酸鈣的3000倍 因而為材料科學界所關注 24 殼形成的過程中有些蛋白為促進結晶的結晶核 其他蛋白則負責導引殼的成長 珍珠母即為著名的軟體動物殼 其結構複雜 各層結構與組成的晶體 有機物種類均不同 並可能因物種而異 11 真菌 编辑 真菌也會進行生物礦化 在多種地質作用中扮演重要角色 地質真菌學 geomycology 即為研究真菌生物礦化 生物降解以及與金屬作用等過程的學門 25 許多真菌可分泌蛋白質至胞外 作為結晶核以合成碳酸鹽等無機礦物 在金屬離子存在時可形成金屬碳酸鹽 例如粉色麵包黴菌與一些擬盤多毛孢屬和漆斑菌属的真菌可礦化產生鹼式碳酸銅與碳酸銨的混合物 26 除碳酸鹽外 有些真菌可將基質中的鈾礦化形成鈾的磷酸鹽 累積於其菌絲體中 放射性的鈾雖對生物體有害 但這些真菌一般耐受一定含量 27 許多真菌也可分解礦物 特別是可分泌草酸的真菌 包括黑麴黴 扇索状干腐菌 英语 Serpula himantioides 與雲芝等可分解尿素的真菌 可分解磷灰石與方鉛礦等礦物 28 細菌 编辑 有些細菌可進行生物礦化 但許多功能尚不明 有假說認為其作用可能是避免代謝產生的副產物抑制自身生長 也有學者認為其形成氧化鐵等礦物可能有助於促進自身代謝反應 29 趨磁細菌可礦化生成磁鐵礦 組成名為磁小体的膜狀結構 可感應地磁而影響其排列 分布形式 30 鈣板金藻 定鞭藻門 具礦化的外殼 颗石粒 其成分為碳酸鈣 31 有孔蟲的外殼一般為碳酸鈣 許多無脊椎動物經生物礦化產生堅硬的碳酸鈣外骨骼 脊椎動物內骨骼的成分為磷酸鈣結合產生的羥磷灰石 32 趨磁細菌與其胞內排列的磁小體成分 编辑大多數生物礦化的產物可分為矽酸鹽 碳酸鹽與磷酸鹽三大類 5 矽酸鹽 编辑 具矽殼的有壳变形虫 英语 testate amoeba 矽酸鹽為許多海洋生物礦化的產物 如矽藻與放射蟲的矽殼 33 以及海綿動物的骨針 22 陸地上可合成矽酸鹽的主要生物則為陸生植物 1 矽酸鹽為三種生物礦物中在生物分類上分布最廣的 各大類群的真核生物都可合成 6 不同生物組織矽化 英语 Silicification 的程度也有區別 從僅與其他礦物共同組成結構 如笠螺 英语 limpet 的牙齒 34 自行組成微小的結構 35 至組成個體的主要結構者皆有 36 碳酸鹽 编辑 生物礦化產生最常見的碳酸鹽為碳酸鈣 其中又以方解石 有孔蟲的殼與鈣板金藻的颗石粒等 與霰石 珊瑚礁 的形態為大宗 也有少數為六方方解石或非晶質碳酸鈣 英语 Amorphous calcium carbonate 可能有結構功能 37 38 或作為生物礦化的中間產物 39 40 有些生物礦化的產物為上述數種礦物以有組織分層的方式混合而成 如雙殼貝 英语 Bivalve shell 碳酸鹽在海生動物的生物礦化中相當常見 但也見於陸生動物與淡水動物 41 磷酸鹽 编辑 蟬形齒指蝦蛄以堅硬的掠肢攻擊獵物 42 生物礦化產生最常見的磷酸鹽為羥磷灰石 HA 為一種天然的磷灰石 是脊椎動物骨骼 牙齒與魚鱗的主要成分 43 骨骼有65 至70 為羥磷灰石組成 其餘則為膠原蛋白交織而成的網絡 牙齒的象牙質與琺瑯質也有70 至80 為羥磷灰石 其中後者的蛋白網絡為釉原蛋白 英语 amelogenin 與釉蛋白 英语 Enamelin 組成 而非膠原蛋白 44 牙齒再礦化 英语 Remineralisation 即為新的鈣與磷酸離子沈積形成羥磷灰石的過程 可修補酸化造成的牙齒損傷 45 蟬形齒指蝦蛄可形成非常堅硬的掠肢 dactyl club 其結構極為緻密 抗衝擊能力極高 46 可分為衝擊層 表層 週期層與橫紋層等三層 其中衝擊層等主要成分為羥磷灰石 其餘兩層為磷酸鈣與碳酸鈣的混合物 其鈣離子與磷酸離子的含量從外至內遞減 大大降低其模量 可抑制裂痕的延伸 迫使新形成的裂痕轉換方向 且內外兩層的模量差異巨大也有助於減少跨層的能量傳導 46 多毛綱纓鰓蟲科的Glomerula piloseta所形成的柱狀霰石結構 成分 生物碳酸鈣 方解石或霰石 有孔蟲門 鈣板金藻 钙质海绵纲 海綿骨針 珊瑚 古杯动物门 外肛动物门 腕足动物门與軟體動物門的殼 棘皮动物 龍介蟲科二氧化硅 矽酸鹽 放射蟲 矽藻 多數海綿的骨針磷灰石 磷酸鹽礦物 牙釉質 脊椎动物的牙齒 脊椎动物的骨骼 牙形石 舌形貝型亞門的殼其他礦物 编辑 石鱉的牙齒具磁鐵礦 帽貝的牙齒具針鐵礦 等辐骨亚纲的放射蟲外殼成分為天青石 除上述三大類礦物外 還有若干種礦物能經生物礦化形成 其中許多為生存在特殊環境的生物產生 用以形成具特定物理性質的結構 有些動物因取食堅硬的基質而加強牙齒的結構 如石鱉的牙齒覆有磁鐵礦 47 笠螺 英语 Limpet 的牙齒具針鐵礦 48 居於海底熱泉周邊的腹足綱動物外殼除碳酸鈣外還有黃鐵礦與硫複鐵礦 英语 Greigite 以加固結構 49 天青石為硫酸鍶組成的礦物 50 等辐骨亚纲的放射蟲外殼成分即為天青石 質地緻密 因其密度較大 可使放射蟲快速沈澱至半深海帶 而有礦物壓載 mineral ballast 的功能 50 51 52 演化 编辑 一些鈣質海綿 最早的生物礦化可能為距今20億年前生成磁鐵礦的趨磁細菌 兩側動物的共祖應已有此途徑 在寒武紀時因基因擴增而產生另一套平行的礦化系統 用以合成含鈣的礦物 53 真核生物的生物礦化痕跡可追溯至距今7億5000萬年前 54 55 類似海綿的生物可能在距今6億3000萬年前即出現方解石的外骨骼 56 但多數動物類群的生物礦化應是起源自寒武紀或奧陶紀 57 動物礦化的碳酸鈣結晶形式可能取決該類群祖先在礦化演化出現當下的環境因子 其衍生的類群隨後即沿用該形式的礦物 58 59 60 水層中鈣與鎂離子的比例與大氣中的二氧化碳 英语 Carbon dioxide in Earth s atmosphere 濃度皆會影響礦化演化出現時各類礦物的穩定度 58 生物礦化在各類群生物中多次演化出現 61 許多演化上無關的生物類群都使用類似的礦化途徑 訊息傳遞因子 抑制物與轉錄因子等 62 如碳酸酐酶在各類群動物的礦化中均有類似功能 可能在動物的共祖中即已出現 63 顯示這些同源的反應途徑與蛋白可能在生物礦化出現前 前寒武紀 即存在生物中 並具礦化以外的功能 5 在生物礦化出現後它們多負責調控礦化中較根本的步驟 如決定哪些細胞將被用來合成礦物 而後續微調礦化反應的步驟 如結晶的具體形狀與排列方式 在演化上則一般較晚出現 為在各類群生物中各自獨立演化產生 23 64 有假說認為前者由非礦化功能演化出礦化反應的動力是避免在離子近飽和的海水中發生不受控制的自發礦化 62 許多參與礦化反應的黏液可能最初即有此類抑制自發礦化的功能 65 此外各類群動物中 控制細胞內鈣離子濃度的蛋白高度同源 在各類群分化後各自演化產生礦化功能 66 如石珊瑚的galaxin蛋白原本具其他功能 在三疊紀左右演化出礦化的新功能 67 有研究將軟體動物殼的珠母層移植到人類牙齒上 發現此移植並未觸發免疫排斥反應 移植的礦物可被人類牙齒吸收 也有研究發現腕足動物門與軟體動物門動物生物礦化的反應途徑高度類似 皆使用若干演化上保守的基因 顯示生物礦化可能是冠輪動物的祖徵 英语 Primitive phylogenetics 68 與生物礦化有關的基因演化迅速 至今仍有許多基因座具有很大的變異 64 一般來說若產生礦化組織所需的能量小於產生等量有機組織所需的能量 進行生物礦化便是演化上有利的 69 70 71 例如產生矽酸鹽所需的能量僅為製造等量木質素的約5 即製造等量多醣 如纖維素 的10 72 應用 编辑工程上許多製造奈米材料的傳統方法相當耗能 需高溫高壓等嚴苛條件 並可能生成有毒的副產物 產量有限且經常難以重複 73 74 相較之下許多生物礦化所形成的材料物理性質超越人工的材料 且在溫和環境條件下即可在溶液中使用大分子與離子合成 可重複可靠地生成材料 無機礦物與有機物 蛋白質等 相結合而成的生物組織結構經常比純礦物更為堅固 例如矽藻的矽殼是已知每單位密度強度最強的生物材料 75 76 海綿的骨針彈性也比純矽酸鹽高得多 77 78 有仿生學研究即以模仿生物礦化作用合成所需材料為宗旨 73 74 有研究利用可生成碳酸鈣的細菌 巨大芽孢杆菌 英语 Bacillus megaterium 來製造可 自我癒合 的混凝土 即在混凝土中加入細菌的內孢子與有機分子等材料 當建築出現裂縫時 滲水可將有機分子溶解 使孢子萌發 細菌即可礦化生成新的碳酸鈣以修補裂縫 79 80 除被動修補外 未來生物礦化可能在建築中扮演更多角色 如隨環境變化而精密控制材料生成的時間 位點或物理性質 使建築得以隨時感測環境因子並作出反應 81 82 83 移除污染物 编辑 鈣鈾雲母結晶 生物礦化可被用於移除被鈾污染的水層 有些細菌與真菌細胞表面配體上帶負電的磷酸離子可與水中帶正電的UO22 離子結合 當濃度夠高時可作為結晶核 和UO22 礦化生成鈣鈾雲母 Ca UO2 2 PO4 2 10 12H2O 等含鈾的結晶礦物 將鈾自水中礦化移除 與直接往水中加入磷酸根以生成沈澱相較 生物礦化移除鈾的特異性較高 較不易與水中其他金屬離子結合 因而移除鈾的效率較高 84 85 天體生物學 编辑 生物礦化產生的礦物以及與其關聯的生命印跡是搜索地外生命時可以使用的線索 86 參見 编辑生物結晶 英语 Biocrystallization 生物薄膜 生物介面 英语 Biointerface 生物礦化多毛蟲 英语 Biomineralising polychaete 能行生物礦化產生碳酸鈣的多毛綱動物 微生物誘導碳酸鈣沉澱 英语 Microbiologically induced calcite precipitation MICP 骨礦物質 英语 Bone mineral 礦化組織 英语 Mineralized tissues 參考文獻 编辑 1 0 1 1 Hendry KR Marron AO Vincent F Conley DJ Gehlen M Ibarbalz FM Queguiner B Bowler C Competition between Silicifiers and Non silicifiers in the Past and Present Ocean and Its Evolutionary Impacts Frontiers in Marine Science 2018 5 S2CID 12447257 doi 10 3389 fmars 2018 00022 Material was copied from this source which is available under a Creative Commons Attribution 4 0 International License 页面存档备份 存于互联网档案馆 Adl SM Simpson AG Lane CE Lukes J Bass D Bowser SS et al The revised classification of eukaryotes The Journal of Eukaryotic Microbiology September 2012 59 5 429 493 PMC 3483872 PMID 23020233 doi 10 1111 j 1550 7408 2012 00644 x Ensikat HJ Geisler T Weigend M A first report of hydroxylated apatite as structural biomineral in Loasaceae plants teeth against herbivores Scientific Reports May 2016 6 1 26073 Bibcode 2016NatSR 626073E PMC 4872142 PMID 27194462 doi 10 1038 srep26073 Gal A Hirsch A Siegel S Li C Aichmayer B Politi Y et al Plant cystoliths a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases Chemistry August 2012 18 33 10262 10270 PMID 22696477 doi 10 1002 chem 201201111 5 0 5 1 5 2 Knoll A H Biomineralization and evolutionary history PDF Dove PM DeYoreo JJ Weiner S 编 Reviews in Mineralogy and Geochemistry 2004 原始内容 PDF 存档于2010 06 20 6 0 6 1 Marron AO Ratcliffe S Wheeler GL Goldstein RE King N Not F et al The Evolution of Silicon Transport in Eukaryotes Molecular Biology and Evolution December 2016 33 12 3226 3248 PMC 5100055 PMID 27729397 doi 10 1093 molbev msw209 Raven JA Knoll AH Non Skeletal Biomineralization by Eukaryotes Matters of Moment and Gravity Geomicrobiology Journal 2010 27 6 7 572 584 2022 11 05 S2CID 37809270 doi 10 1080 01490451003702990 原始内容存档于2021 03 25 Weich RG Lundberg P Vogel HJ Jensen P Phosphorus 31 NMR Studies of Cell Wall Associated Calcium Phosphates in Ulva lactuca Plant Physiology May 1989 90 1 230 236 PMC 1061703 PMID 16666741 doi 10 1104 pp 90 1 230 Sigel A Sigel H Sigel RK 编 Biomineralization From Nature to Application Metal Ions in Life Sciences 4 Wiley 2008 ISBN 978 0 470 03525 2 Weiner S Lowenstam HA On biomineralization Oxford Oxfordshire Oxford University Press 1989 ISBN 978 0 19 504977 0 11 0 11 1 Cuif JP Dauphin Y Sorauf JE Biominerals and fossils through time Cambridge 2011 ISBN 978 0 521 87473 1 Weaver JC Aizenberg J Fantner GE Kisailus D Woesz A Allen P et al Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum Journal of Structural Biology April 2007 158 1 93 106 PMID 17175169 doi 10 1016 j jsb 2006 10 027 Nesbit KT Roer RD Silicification of the medial tooth in the blue crab Callinectes sapidus Journal of Morphology December 2016 277 12 1648 1660 PMID 27650814 S2CID 46840652 doi 10 1002 jmor 20614 Pondaven P Gallinari M Chollet S Bucciarelli E Sarthou G Schultes S Jean F Grazing induced changes in cell wall silicification in a marine diatom Protist January 2007 158 1 21 28 PMID 17081802 doi 10 1016 j protis 2006 09 002 Friedrichs L Hornig M Schulze L Bertram A Jansen S Hamm C Size and biomechanic properties of diatom frustules influence food uptake by copepods Marine Ecology Progress Series 2013 481 41 51 2022 11 05 Bibcode 2013MEPS 481 41F doi 10 3354 meps10227 原始内容存档于2022 10 15 Desouky M Jugdaohsingh R McCrohan CR White KN Powell JJ Aluminum dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis Proceedings of the National Academy of Sciences of the United States of America March 2002 99 6 3394 3399 Bibcode 2002PNAS 99 3394D PMC 122534 PMID 11891333 doi 10 1073 pnas 062478699 Neumann D zur Nieden U Silicon and heavy metal tolerance of higher plants Phytochemistry April 2001 56 7 685 692 PMID 11314953 doi 10 1016 S0031 9422 00 00472 6 Milligan AJ Morel FM A proton buffering role for silica in diatoms Science September 2002 297 5588 1848 1850 Bibcode 2002Sci 297 1848M PMID 12228711 S2CID 206507070 doi 10 1126 science 1074958 Vinn O Occurrence formation and function of organic sheets in the mineral tube structures of Serpulidae polychaeta Annelida PLOS ONE 2013 8 10 e75330 Bibcode 2013PLoSO 875330V PMC 3792063 PMID 24116035 doi 10 1371 journal pone 0075330 Boskey AL Biomineralization conflicts challenges and opportunities Journal of Cellular Biochemistry 1998 30 31 S30 31 83 91 PMID 9893259 S2CID 46004807 doi 10 1002 SICI 1097 4644 1998 72 30 31 lt 83 AID JCB12 gt 3 0 CO 2 F Sarikaya M Biomimetics materials fabrication through biology Proceedings of the National Academy of Sciences of the United States of America December 1999 96 25 14183 14185 Bibcode 1999PNAS 9614183S PMC 33939 PMID 10588672 doi 10 1073 pnas 96 25 14183 22 0 22 1 Hooper John Structure of Sponges Queensland Museum 2018 27 September 2019 原始内容存档于26 September 2019 23 0 23 1 Livingston BT Killian CE Wilt F Cameron A Landrum MJ Ermolaeva O et al A genome wide analysis of biomineralization related proteins in the sea urchin Strongylocentrotus purpuratus Developmental Biology December 2006 300 1 335 348 PMID 16987510 doi 10 1016 j ydbio 2006 07 047 Currey JD The design of mineralised hard tissues for their mechanical functions The Journal of Experimental Biology December 1999 202 Pt 23 3285 3294 PMID 10562511 doi 10 1242 jeb 202 23 3285 Gadd GM Geomycology biogeochemical transformations of rocks minerals metals and radionuclides by fungi bioweathering and bioremediation Mycological Research January 2007 111 Pt 1 3 49 PMID 17307120 doi 10 1016 j mycres 2006 12 001 Li Q Gadd GM Biosynthesis of copper carbonate nanoparticles by ureolytic fungi Applied Microbiology and Biotechnology October 2017 101 19 7397 7407 PMC 5594056 PMID 28799032 doi 10 1007 s00253 017 8451 x Liang X Hillier S Pendlowski H Gray N Ceci A Gadd GM Uranium phosphate biomineralization by fungi Environmental Microbiology June 2015 17 6 2064 2075 PMID 25580878 S2CID 9699895 doi 10 1111 1462 2920 12771 Adeyemi AO Gadd GM Fungal degradation of calcium lead and silicon bearing minerals Biometals June 2005 18 3 269 281 PMID 15984571 S2CID 35004304 doi 10 1007 s10534 005 1539 2 Fortin D Geochemistry What biogenic minerals tell us Science March 2004 303 5664 1618 1619 PMID 15016984 S2CID 41179538 doi 10 1126 science 1095177 Komeili Arash Li Zhuo Newman Dianne K Jensen Grant J Magnetosomes Are Cell Membrane Invaginations Organized by the Actin Like Protein MamK Science American Association for the Advancement of Science AAAS 2006 01 13 311 5758 242 245 ISSN 0036 8075 S2CID 36909813 doi 10 1126 science 1123231 Sorby Henry Clifton On the organic origin of the so called Crystalloids of the chalk Annals and Magazine of Natural History Ser 3 1861 8 45 193 200 2022 11 05 doi 10 1080 00222936108697404 原始内容存档于2022 11 05 Junqueira Luiz Carlos Jose Carneiro Foltin Janet Lebowitz Harriet Boyle Peter J 编 Basic Histology Text amp Atlas 10th McGraw Hill Companies 2003 144 ISBN 978 0 07 137829 1 Inorganic matter represents about 50 of the dry weight of bone crystals show imperfections and are not identical to the hydroxyapatite found in the rock minerals 含有內容需登入查看的頁面 link Demaster DJ Marine Silica Cycle Encyclopedia of Ocean Sciences 2001 1659 1667 ISBN 9780122274305 doi 10 1006 rwos 2001 0278 Sone ED Weiner S Addadi L Biomineralization of limpet teeth a cryo TEM study of the organic matrix and the onset of mineral deposition Journal of Structural Biology June 2007 158 3 428 444 PMID 17306563 doi 10 1016 j jsb 2007 01 001 Foissner W Weissenbacher B Krautgartner WD Lutz Meindl U A cover of glass first report of biomineralized silicon in a ciliate Maryna umbrellata Ciliophora Colpodea The Journal of Eukaryotic Microbiology 2009 56 6 519 530 PMC 2917745 PMID 19883440 doi 10 1111 j 1550 7408 2009 00431 x Preisig HR Siliceous structures and silicification in flagellated protists Protoplasma 1994 181 1 4 29 42 S2CID 27698051 doi 10 1007 BF01666387 Pokroy B Kabalah Amitai L Polishchuk I DeVol RT Blonsky AZ Sun CY Marcus MA Scholl A Gilbert PU Narrowly Distributed Crystal Orientation in Biomineral Vaterite Chemistry of Materials 2015 10 13 27 19 6516 6523 ISSN 0897 4756 S2CID 118355403 arXiv 1609 05449 doi 10 1021 acs chemmater 5b01542 Neues F Hild S Epple M Marti O Ziegler A Amorphous and crystalline calcium carbonate distribution in the tergite cuticle of moulting Porcellio scaber Isopoda Crustacea PDF Journal of Structural Biology July 2011 175 1 10 20 2022 11 05 PMID 21458575 doi 10 1016 j jsb 2011 03 019 原始内容存档 PDF 于2022 10 17 Jacob DE Wirth R Agbaje OB Branson O Eggins SM Planktic foraminifera form their shells via metastable carbonate phases Nature Communications November 2017 8 1 1265 Bibcode 2017NatCo 8 1265J PMC 5668319 PMID 29097678 doi 10 1038 s41467 017 00955 0 Mass T Giuffre AJ Sun CY Stifler CA Frazier MJ Neder M et al Amorphous calcium carbonate particles form coral skeletons Proceedings of the National Academy of Sciences of the United States of America September 2017 114 37 E7670 E7678 Bibcode 2017PNAS 114E7670M PMC 5604026 PMID 28847944 doi 10 1073 pnas 1707890114 Raven JA Giordano M Biomineralization by photosynthetic organisms evidence of coevolution of the organisms and their environment Geobiology March 2009 7 2 140 154 PMID 19207569 S2CID 42962176 doi 10 1111 j 1472 4669 2008 00181 x Patek SN Caldwell RL Extreme impact and cavitation forces of a biological hammer strike forces of the peacock mantis shrimp Odontodactylus scyllarus The Journal of Experimental Biology October 2005 208 Pt 19 3655 3664 PMID 16169943 S2CID 312009 doi 10 1242 jeb 01831 Onozato H Watabe N Studies on fish scale formation and resorption III Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus Cypriniformes Cyprinidae Cell and Tissue Research October 1979 201 3 409 422 PMID 574424 S2CID 2222515 doi 10 1007 BF00236999 Habibah TU Amlani DB Brizuela M Biomaterials Hydroxyapatite Stat Pearls January 2018 2018 08 12 PMID 30020686 原始内容存档于2020 03 28 Abou Neel EA Aljabo A Strange A Ibrahim S Coathup M Young AM et al Demineralization remineralization dynamics in teeth and bone International Journal of Nanomedicine 2016 11 4743 4763 PMC 5034904 PMID 27695330 doi 10 2147 IJN S107624 46 0 46 1 Weaver JC Milliron GW Miserez A Evans Lutterodt K Herrera S Gallana I et al The stomatopod dactyl club a formidable damage tolerant biological hammer Science June 2012 336 6086 1275 1280 2017 12 02 Bibcode 2012Sci 336 1275W PMID 22679090 S2CID 8509385 doi 10 1126 science 1218764 原始内容存档于2020 09 13 Joester D Brooker LR The Chiton Radula A Model System for Versatile Use of Iron Oxides Faivre D 编 Iron Oxides 1st Wiley 2016 07 05 177 206 ISBN 978 3 527 33882 5 doi 10 1002 9783527691395 ch8 Barber AH Lu D Pugno NM Extreme strength observed in limpet teeth Journal of the Royal Society Interface April 2015 12 105 20141326 PMC 4387522 PMID 25694539 doi 10 1098 rsif 2014 1326 Chen C Linse K Copley JT Rogers AD The scaly foot gastropod a new genus and species of hydrothermal vent endemic gastropod Neomphalina Peltospiridae from the Indian Ocean Journal of Molluscan Studies August 2015 81 3 322 334 ISSN 0260 1230 doi 10 1093 mollus eyv013 50 0 50 1 Le Moigne FA Pathways of Organic Carbon Downward Transport by the Oceanic Biological Carbon Pump Frontiers in Marine Science 2019 6 doi 10 3389 fmars 2019 00634 Martin P Allen JT Cooper MJ Johns DG Lampitt RS Sanders R Teagle DA Sedimentation of acantharian cysts in the Iceland Basin Strontium as a ballast for deep ocean particle flux and implications for acantharian reproductive strategies Limnology and Oceanography 2010 55 2 604 614 doi 10 4319 lo 2009 55 2 0604 Belcher A Manno C Thorpe S Tarling G Acantharian cysts High flux occurrence in the bathypelagic zone of the Scotia Sea Southern Ocean PDF Marine Biology 2018 165 7 2022 11 05 S2CID 90349921 doi 10 1007 s00227 018 3376 1 原始内容存档 PDF 于2022 08 17 Kirschvink JL Hagadorn JW 10 A Grand Unified theory of Biomineralization Bauerlein E 编 The Biomineralisation of Nano and Micro Structures Weinheim Germany Wiley VCH 2000 139 150 Porter S The rise of predators Geology 2011 39 6 607 608 Bibcode 2011Geo 39 607P doi 10 1130 focus062011 1 Cohen PA Schopf JW Butterfield NJ Kudryavtsev AB Macdonald FA Phosphate biomineralization in mid Neoproterozoic protists Geology 2011 39 6 539 542 Bibcode 2011Geo 39 539C S2CID 32229787 doi 10 1130 G31833 1 Maloof AC Rose CV Beach R Samuels BM Calmet CC Erwin DH et al Possible animal body fossils in pre Marinoan limestones from South Australia Nature Geoscience 2010 3 9 653 659 Bibcode 2010NatGe 3 653M S2CID 13171894 doi 10 1038 ngeo934 Wood RA Grotzinger JP Dickson JA Proterozoic modular biomineralized metazoan from the Nama Group Namibia Science June 2002 296 5577 2383 2386 Bibcode 2002Sci 296 2383W PMID 12089440 S2CID 9515357 doi 10 1126 science 1071599 58 0 58 1 Zhuravlev AY Wood RA Eve of biomineralization Controls on skeletal mineralogy PDF Geology 2008 36 12 923 2022 11 05 Bibcode 2008Geo 36 923Z doi 10 1130 G25094A 1 原始内容存档 PDF 于2016 03 04 Porter SM Seawater chemistry and early carbonate biomineralization Science June 2007 316 5829 1302 Bibcode 2007Sci 316 1302P PMID 17540895 S2CID 27418253 doi 10 1126 science 1137284 Maloof AC Porter SM Moore JL Dudas FO Bowring SA Higgins JA Fike DA Eddy MP The earliest Cambrian record of animals and ocean geochemical change Geological Society of America Bulletin 2010 122 11 12 1731 1774 Bibcode 2010GSAB 122 1731M S2CID 6694681 doi 10 1130 B30346 1 Murdock DJ Donoghue PC Evolutionary origins of animal skeletal biomineralization Cells Tissues Organs 2011 194 2 4 98 102 PMID 21625061 S2CID 45466684 doi 10 1159 000324245 62 0 62 1 Westbroek P Marin F A marriage of bone and nacre Nature April 1998 392 6679 861 862 Bibcode 1998Natur 392 861W PMID 9582064 S2CID 4348775 doi 10 1038 31798 Jackson DJ Macis L Reitner J Degnan BM Worheide G Sponge paleogenomics reveals an ancient role for carbonic anhydrase in skeletogenesis Science June 2007 316 5833 1893 1895 Bibcode 2007Sci 316 1893J PMID 17540861 S2CID 7042860 doi 10 1126 science 1141560 64 0 64 1 Jackson DJ McDougall C Woodcroft B Moase P Rose RA Kube M et al Parallel evolution of nacre building gene sets in molluscs Molecular Biology and Evolution March 2010 27 3 591 608 PMID 19915030 doi 10 1093 molbev msp278 Marin F Smith M Isa Y Muyzer G Westbroek P Skeletal matrices muci and the origin of invertebrate calcification Proceedings of the National Academy of Sciences of the United States of America February 1996 93 4 1554 1559 Bibcode 1996PNAS 93 1554M PMC 39979 PMID 11607630 doi 10 1073 pnas 93 4 1554 Lowenstam HA Margulis L Evolutionary prerequisites for early Phanerozoic calcareous skeletons Bio Systems 1980 12 1 2 27 41 PMID 6991017 doi 10 1016 0303 2647 80 90036 2 Reyes Bermudez A Lin Z Hayward DC Miller DJ Ball EE Differential expression of three galaxin related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora BMC Evolutionary Biology July 2009 9 1 178 PMC 2726143 PMID 19638240 doi 10 1186 1471 2148 9 178 Wernstrom JV Gasiorowski L Hejnol A Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid bryozoan stem lineage EvoDevo September 2022 13 1 17 PMC 9484238 PMID 36123753 doi 10 1186 s13227 022 00202 8 Mann S Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry 2001 2022 11 05 ISBN 9780198508823 原始内容存档于2022 11 12 Raven JA Waite AM The evolution of silicification in diatoms Inescapable sinking and sinking as escape New Phytologist 2004 162 1 45 61 doi 10 1111 j 1469 8137 2004 01022 x Finkel ZV Kotrc B Silica Use Through Time Macroevolutionary Change in the Morphology of the Diatom Fustule Geomicrobiology Journal 2010 27 6 7 596 608 S2CID 85218013 doi 10 1080 01490451003702941 Raven JA The Transport and Function of Silicon in Plants Biological Reviews 1983 58 2 179 207 S2CID 86067386 doi 10 1111 j 1469 185X 1983 tb00385 x 73 0 73 1 Sigel A Sigel H Sigel RK Biomineralization From Nature to Application 30 April 2008 2022 11 05 ISBN 9780470986318 原始内容存档于2022 11 12 74 0 74 1 Aparicio C Ginebra MP Biomineralization and Biomaterials Fundamentals and Applications 28 September 2015 2022 11 05 ISBN 9781782423560 原始内容存档于2022 11 12 Hamm CE Merkel R Springer O Jurkojc P Maier C Prechtel K Smetacek V Architecture and material properties of diatom shells provide effective mechanical protection PDF Nature February 2003 421 6925 841 843 2022 11 05 Bibcode 2003Natur 421 841H PMID 12594512 S2CID 4336989 doi 10 1038 nature01416 原始内容存档 PDF 于2022 10 17 Aitken ZH Luo S Reynolds SN Thaulow C Greer JR Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp frustule Proceedings of the National Academy of Sciences of the United States of America February 2016 113 8 2017 2022 Bibcode 2016PNAS 113 2017A PMC 4776537 PMID 26858446 doi 10 1073 pnas 1519790113 Ehrlich H Janussen D Simon P Bazhenov VV Shapkin NP Erler C et al Nanostructural Organization of Naturally Occurring Composites Part I Silica Collagen Based Biocomposites Journal of Nanomaterials 2008 2008 1 8 doi 10 1155 2008 623838 Shimizu K Amano T Bari MR Weaver JC Arima J Mori N Glassin a histidine rich protein from the siliceous skeletal system of the marine sponge Euplectella directs silica polycondensation Proceedings of the National Academy of Sciences of the United States of America September 2015 112 37 11449 11454 Bibcode 2015PNAS 11211449S PMC 4577155 PMID 26261346 doi 10 1073 pnas 1506968112 Jonkers HM Self healing concrete a biological approach van der Zwaag S 编 Self Healing Materials An Alternative Approach to 20 Centuries of Materials Science Springer 2007 195 204 2022 11 05 ISBN 9781402062506 原始内容存档于2022 11 12 US 8728365 Dosier GK Methods for making construction material using enzyme producing bacteria 发行于2014 指定于Biomason Inc Rubinstein SM Kolodkin Gal I McLoon A Chai L Kolter R Losick R Weitz DA Osmotic pressure can regulate matrix gene expression in Bacillus subtilis Molecular Microbiology October 2012 86 2 426 436 PMC 3828655 PMID 22882172 doi 10 1111 j 1365 2958 2012 08201 x Chan JM Guttenplan SB Kearns DB Defects in the flagellar motor increase synthesis of poly g glutamate in Bacillus subtilis Journal of Bacteriology February 2014 196 4 740 753 PMC 3911173 PMID 24296669 doi 10 1128 JB 01217 13 Dade Robertson M Keren Paz A Zhang M Kolodkin Gal I Architects of nature growing buildings with bacterial biofilms Microbial Biotechnology September 2017 10 5 1157 1163 PMC 5609236 PMID 28815998 doi 10 1111 1751 7915 12833 Newsome L Morris K Lloyd JR The biogeochemistry and bioremediation of uranium and other priority radionuclides Chemical Geology 2014 363 164 184 Bibcode 2014ChGeo 363 164N doi 10 1016 j chemgeo 2013 10 034 Lloyd JR Macaskie LE Environmental microbe metal interactions Bioremediation of radionuclide containing wastewaters Washington DC ASM Press 2000 277 327 ISBN 978 1 55581 195 2 Steele A Beaty D 编 Final report of the MEPAG Astrobiology Field Laboratory Science Steering Group AFL SSG doc The Astrobiology Field Laboratory U S A Mars Exploration Program Analysis Group MEPAG NASA September 26 2006 72 2009 07 22 原始内容存档于2020 05 11 取自 https zh wikipedia org w index php title 生物礦化 amp oldid 75891275, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。