fbpx
维基百科

赫尔德不等式

赫爾德不等式數學分析的一條不等式,取名自德國數學家奧托·赫爾德。這是一條揭示Lp空間的相互關係的基本不等式:

為測度空間,,及,設內,內。則內,且有

等号当且仅当幾乎處處)线性相关时取得,即有常數使得對幾乎所有成立。

取作附計數測度,便得赫爾德不等式的特殊情形:對所有實數(或複數,有

我们称pq互为赫尔德共轭

若取自然數集附計數測度,便得與上類似的無窮級數不等式。

,便得到柯西-施瓦茨不等式

赫爾德不等式可以證明空間上一般化的三角不等式閔可夫斯基不等式,和證明空間是空間的對偶

备注

  • 在赫尔德共轭的定义中,1/∞意味着零。
  • 如果1 ≤ pq < ∞,那么||f ||p和||g||q表示(可能无穷的)表达式:
    以及    
  • 如果p = ∞,那么||f ||表示|f |的本性上确界,||g||也类似。
  • 在赫尔德不等式的右端,0乘以∞以及∞乘以0意味着 0。把a > 0乘以∞,则得出 ∞。

证明

赫尔德不等式有许多证明,主要的想法是杨氏不等式

如果||f ||p = 0,那么f μ-几乎处处为零,且乘积fg μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q = 0也是这样。因此,我们可以假设||f ||p > 0且||g||q > 0。

如果||f ||p = ∞或||g||q = ∞,那么不等式的右端为无穷大。因此,我们可以假设||f ||p和||g||q位于(0,∞)内。

如果p = ∞且q = 1,那么几乎处处有|fg| ≤ ||f || |g|,不等式就可以从勒贝格积分的单调性推出。对于p = 1和q = ∞,情况也类似。因此,我们还可以假设p, q ∈ (1,∞)。

分别用fg除||f ||p||g||q,我们可以假设:

 

我们现在使用杨氏不等式:

 

对于所有非负的ab,当且仅当ap = bq时等式成立。因此:

 

两边积分,得:

 

这便证明了赫尔德不等式。

p ∈ (1,∞)和||f ||p = ||g||q = 1的假设下,等式成立当且仅当几乎处处有|f |p = |g|q。更一般地,如果||f ||p和||g||q位于(0,∞)内,那么赫尔德不等式变为等式,当且仅当存在αβ > 0(即α = ||g||qβ = ||f ||p),使得:

    μ-几乎处处   (*)

||f ||p = 0的情况对应于(*)中的β = 0。||g||q =0 的情况对应于(*)中的α = 0。

参考文献

  • Hardy, G.H.; Littlewood, J.E.; Pólya, G., Inequalities, Cambridge Univ. Press, 1934, ISBN 0521358809 
  • Hölder, O., Ueber einen Mittelwerthsatz, Nachr. Ges. Wiss. Göttingen, 1889: 38–47 
  • Kuptsov, L.P., Hölder inequality, Hazewinkel, Michiel (编), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4 
  • Rogers, L J., An extension of a certain theorem in inequalities, Messenger of math, 1888, 17: 145–150 
  • Kuttler, Kenneth, An introduction to linear algebra (PDF), Online e-book in PDF format, Brigham Young University, 2007 [2009-02-02], (原始内容 (PDF)于2008-08-07) 
  • 邢家省. Young不等式在Lp空间中的应用. 聊城大学学报(自然科学版). 2007年 第3期, 第20卷. ISSN 1672-6634. 
  • 张愿章. Young不等式的证明及应用. 河南科学. 2004年 第01期, 第22卷. ISSN 1004-3918. 

赫尔德不等式, 赫爾德不等式是數學分析的一條不等式, 取名自德國數學家奧托, 赫爾德, 這是一條揭示lp空間的相互關係的基本不等式, 設s, displaystyle, 為測度空間, displaystyle, infty, 及1, displaystyle, over, over, 設f, displaystyle, 在l, displaystyle, displaystyle, 在l, displaystyle, 則f, displaystyle, mbox, 在l, displaystyle, 且有, dis. 赫爾德不等式是數學分析的一條不等式 取名自德國數學家奧托 赫爾德 這是一條揭示Lp空間的相互關係的基本不等式 設S displaystyle S 為測度空間 1 p q displaystyle 1 leq p q leq infty 及1 p 1 q 1 displaystyle 1 over p 1 over q 1 設f displaystyle f 在L p S displaystyle L p S 內 g displaystyle g 在L q S displaystyle L q S 內 則f g displaystyle f mbox g 在L 1 S displaystyle L 1 S 內 且有 f g 1 f p g q displaystyle fg 1 leq f p g q 等号当且仅当 f p displaystyle f p 与 g q displaystyle g q 幾乎處處 线性相关时取得 即有常數a b displaystyle alpha beta 使得a f x p b g x q displaystyle alpha f x p beta g x q 對幾乎所有x S displaystyle x in S 成立 若S displaystyle S 取作 1 n displaystyle 1 n 附計數測度 便得赫爾德不等式的特殊情形 對所有實數 或複數 x 1 x n y 1 y n displaystyle x 1 mbox mbox x n mbox y 1 mbox mbox y n 有 k 1 n x k y k k 1 n x k p 1 p k 1 n y k q 1 q displaystyle sum k 1 n x k y k leq left sum k 1 n x k p right 1 p left sum k 1 n y k q right 1 q 我们称p和q互为赫尔德共轭 若取S displaystyle S 為自然數集附計數測度 便得與上類似的無窮級數不等式 當p q 2 displaystyle p q 2 便得到柯西 施瓦茨不等式 赫爾德不等式可以證明L p displaystyle L p 空間上一般化的三角不等式 閔可夫斯基不等式 和證明L p displaystyle L p 空間是L q displaystyle L q 空間的對偶 备注 编辑在赫尔德共轭的定义中 1 意味着零 如果1 p q lt 那么 f p和 g q表示 可能无穷的 表达式 S f p d m 1 p displaystyle biggl int S f p mathrm d mu biggr 1 p 以及 S g q d m 1 q displaystyle biggl int S g q mathrm d mu biggr 1 q 如果p 那么 f 表示 f 的本性上确界 g 也类似 在赫尔德不等式的右端 0乘以 以及 乘以0意味着 0 把a gt 0乘以 则得出 证明 编辑赫尔德不等式有许多证明 主要的想法是杨氏不等式 如果 f p 0 那么f m 几乎处处为零 且乘积fg m 几乎处处为零 因此赫尔德不等式的左端为零 如果 g q 0也是这样 因此 我们可以假设 f p gt 0且 g q gt 0 如果 f p 或 g q 那么不等式的右端为无穷大 因此 我们可以假设 f p和 g q位于 0 内 如果p 且q 1 那么几乎处处有 fg f g 不等式就可以从勒贝格积分的单调性推出 对于p 1和q 情况也类似 因此 我们还可以假设p q 1 分别用f和g除 f p g q 我们可以假设 f p g q 1 displaystyle f p g q 1 我们现在使用杨氏不等式 a b a p p b q q displaystyle ab leq frac a p p frac b q q 对于所有非负的a和b 当且仅当ap bq时等式成立 因此 f s g s f s p p g s q q s S displaystyle f s g s leq frac f s p p frac g s q q qquad s in S 两边积分 得 f g 1 1 displaystyle fg 1 leq 1 这便证明了赫尔德不等式 在p 1 和 f p g q 1的假设下 等式成立当且仅当几乎处处有 f p g q 更一般地 如果 f p和 g q位于 0 内 那么赫尔德不等式变为等式 当且仅当存在a b gt 0 即a g q且b f p 使得 a f p b g q displaystyle alpha f p beta g q m 几乎处处 f p 0的情况对应于 中的b 0 g q 0 的情况对应于 中的a 0 参考文献 编辑Hardy G H Littlewood J E Polya G Inequalities Cambridge Univ Press 1934 ISBN 0521358809 Holder O Ueber einen Mittelwerthsatz Nachr Ges Wiss Gottingen 1889 38 47 Kuptsov L P Holder inequality Hazewinkel Michiel 编 数学百科全书 Springer 2001 ISBN 978 1 55608 010 4 Rogers L J An extension of a certain theorem in inequalities Messenger of math 1888 17 145 150 Kuttler Kenneth An introduction to linear algebra PDF Online e book in PDF format Brigham Young University 2007 2009 02 02 原始内容存档 PDF 于2008 08 07 邢家省 Young不等式在Lp空间中的应用 聊城大学学报 自然科学版 2007年 第3期 第20卷 ISSN 1672 6634 请检查 date 中的日期值 帮助 使用 accessdate 需要含有 url 帮助 张愿章 Young不等式的证明及应用 河南科学 2004年 第01期 第22卷 ISSN 1004 3918 请检查 date 中的日期值 帮助 使用 accessdate 需要含有 url 帮助 取自 https zh wikipedia org w index php title 赫尔德不等式 amp oldid 74289922, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。