fbpx
维基百科

调和矩阵

图论中,调和矩阵harmonic matrix),也称拉普拉斯矩阵拉氏矩阵Laplacian matrix)、离散拉普拉斯discrete Laplacian),是矩阵表示。[1]

调和矩阵也是拉普拉斯算子离散化。换句话说,调和矩阵的缩放极限拉普拉斯算子。它在机器学习物理学中有很多应用。

定义

若G是简单,G有n个顶点,A是邻接矩阵,D是度数矩阵,则调和矩阵[1]

 

 

动机

这跟拉普拉斯算子有什么关系?若f 是加权图G的顶点函数,则[2]

 

w是边的权重函数。u、v是顶点。f = (f(1), ..., f(n)) 是n维的矢量。上面泛函也称为Dirichlet泛函。[3]

接续矩阵

而且若K是接续矩阵(incidence matrix),则[2]

 

 

Kf 是f 的图梯度。另外,特征值满足

 

举例

度数矩阵 邻接矩阵 调和矩阵
       

其他形式

对称正規化调和矩阵

 

 

注意[4]

 

随机漫步

 

 

动力学微分方程

例如,离散的冷却定律使用调和矩阵[5]

 

使用矩阵矢量

 

 

解是

 

 

 

平衡举动

 的时候,

 

 

 

 

MATLAB代码

N = 20;%The number of pixels along a dimension of the image A = zeros(N, N);%The image Adj = zeros(N*N, N*N);%The adjacency matrix %Use 8 neighbors, and fill in the adjacency matrix dx = [-1, 0, 1, -1, 1, -1, 0, 1]; dy = [-1, -1, -1, 0, 0, 1, 1, 1]; for x = 1:N  for y = 1:N  index = (x-1)*N + y;  for ne = 1:length(dx)  newx = x + dx(ne);  newy = y + dy(ne);  if newx > 0 && newx <= N && newy > 0 && newy <= N  index2 = (newx-1)*N + newy;  Adj(index, index2) = 1;  end  end  end end %%%BELOW IS THE KEY CODE THAT COMPUTES THE SOLUTION TO THE DIFFERENTIAL %%%EQUATION Deg = diag(sum(Adj, 2));%Compute the degree matrix L = Deg - Adj;%Compute the laplacian matrix in terms of the degree and adjacency matrices [V, D] = eig(L);%Compute the eigenvalues/vectors of the laplacian matrix D = diag(D); %Initial condition (place a few large positive values around and %make everything else zero) C0 = zeros(N, N); C0(2:5, 2:5) = 5; C0(10:15, 10:15) = 10; C0(2:5, 8:13) = 7; C0 = C0(:); C0V = V'*C0;%Transform the initial condition into the coordinate system  %of the eigenvectors for t = 0:0.05:5  %Loop through times and decay each initial component  Phi = C0V.*exp(-D*t);%Exponential decay for each component  Phi = V*Phi;%Transform from eigenvector coordinate system to original coordinate system  Phi = reshape(Phi, N, N);  %Display the results and write to GIF file  imagesc(Phi);  caxis([0, 10]);  title(sprintf('Diffusion t = %3f', t));  frame = getframe(1);  im = frame2im(frame);  [imind, cm] = rgb2ind(im, 256);  if t == 0  imwrite(imind, cm, 'out.gif', 'gif', 'Loopcount', inf, 'DelayTime', 0.1);   else  imwrite(imind, cm, 'out.gif', 'gif', 'WriteMode', 'append', 'DelayTime', 0.1);  end end 
 
GIF:离散拉普拉斯过程,使用拉普拉斯矩阵

应用

参考文献

  1. ^ 1.0 1.1 Weisstein, Eric W. (编). Laplacian Matrix. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-02-14]. (原始内容于2019-12-23) (英语). 
  2. ^ 2.0 2.1 Muni Sreenivas Pydi (ముని శ్రీనివాస్ పైడి)'s answer to What's the intuition behind a Laplacian matrix? I'm not so much interested in mathematical details or technical applications. I'm trying to grasp what a laplacian matrix actually represents, and what aspects of a graph it makes accessible. - Quora. www.quora.com. [2020-02-14]. 
  3. ^ 3.0 3.1 Shuman, David I.; Narang, Sunil K.; Frossard, Pascal; Ortega, Antonio; Vandergheynst, Pierre. The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal Processing Magazine. 2013-05, 30 (3): 83–98 [2020-02-14]. ISSN 1053-5888. doi:10.1109/MSP.2012.2235192. (原始内容于2020-01-11). 
  4. ^ Chung, Fan. Spectral Graph Theory. American Mathematical Society. 1997 [1992] [2020-02-14]. ISBN 978-0821803158. (原始内容于2020-02-14). 
  5. ^ Newman, Mark. Networks: An Introduction. Oxford University Press. 2010. ISBN 978-0199206650. 

阅读

  • T. Sunada. Chapter 1. Analysis on combinatorial graphs. Discrete geometric analysis. P. Exner, J. P. Keating, P. Kuchment, T. Sunada, A. Teplyaev (编). 'Proceedings of Symposia in Pure Mathematics 77. 2008: 51–86. ISBN 978-0-8218-4471-7. 
  • B. Bollobás, Modern Graph Theory, Springer-Verlag (1998, corrected ed. 2013), ISBN 0-387-98488-7, Chapters II.3 (Vector Spaces and Matrices Associated with Graphs), VIII.2 (The Adjacency Matrix and the Laplacian), IX.2 (Electrical Networks and Random Walks).

调和矩阵, 此條目翻譯品質不佳, 2020年2月17日, 翻譯者可能不熟悉中文或原文語言, 也可能使用了機器翻譯, 請協助翻譯本條目或重新編寫, 并注意避免翻译腔的问题, 明顯拙劣的翻譯請改掛, href, template, html, class, redirect, title, template, href, wikipedia, html, class, redirect, title, wikipedia, 提交刪除, 在图论中, harmonic, matrix, 也称拉普拉斯矩阵或拉氏矩阵, lap. 此條目翻譯品質不佳 2020年2月17日 翻譯者可能不熟悉中文或原文語言 也可能使用了機器翻譯 請協助翻譯本條目或重新編寫 并注意避免翻译腔的问题 明顯拙劣的翻譯請改掛 a href Template D html class mw redirect title Template D d a a href Wikipedia CSD html G13 class mw redirect title Wikipedia CSD G13 a 提交刪除 在图论中 调和矩阵 harmonic matrix 也称拉普拉斯矩阵或拉氏矩阵 Laplacian matrix 离散拉普拉斯 discrete Laplacian 是图的矩阵表示 1 调和矩阵也是拉普拉斯算子的离散化 换句话说 调和矩阵的缩放极限是拉普拉斯算子 它在机器学习和物理学中有很多应用 目录 1 定义 1 1 动机 1 2 接续矩阵 2 举例 3 其他形式 3 1 对称正規化调和矩阵 3 2 随机漫步 4 动力学和微分方程 4 1 平衡举动 4 2 MATLAB代码 5 应用 6 参考文献 7 阅读定义 编辑若G是简单图 G有n个顶点 A是邻接矩阵 D是度数矩阵 则调和矩阵是 1 L D A displaystyle L D A L i j deg v i if i j 1 if i j and v i is adjacent to v j 0 otherwise displaystyle L i j begin cases deg v i amp mbox if i j 1 amp mbox if i neq j mbox and v i mbox is adjacent to v j 0 amp mbox otherwise end cases 动机 编辑 这跟拉普拉斯算子有什么关系 若f 是加权图G的顶点函数 则 2 E f w u v f u f v 2 2 f t L f displaystyle E f sum w uv f u f v 2 2 f t Lf w是边的权重函数 u v是顶点 f f 1 f n 是n维的矢量 上面泛函也称为Dirichlet泛函 3 接续矩阵 编辑 而且若K是接续矩阵 incidence matrix 则 2 K e v 1 if v i 1 if v j 0 otherwise displaystyle K ev left begin array rl 1 amp text if v i 1 amp text if v j 0 amp text otherwise end array right L K t K displaystyle L K t K Kf 是f 的图梯度 另外 特征值满足l i v i T L v i v i T M T M v i M v i T M v i displaystyle begin aligned lambda i amp mathbf v i textsf T L mathbf v i amp mathbf v i textsf T M textsf T M mathbf v i amp left M mathbf v i right textsf T left M mathbf v i right end aligned 举例 编辑图 度数矩阵 邻接矩阵 调和矩阵 2 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 1 textstyle left begin array rrrrrr 2 amp 0 amp 0 amp 0 amp 0 amp 0 0 amp 3 amp 0 amp 0 amp 0 amp 0 0 amp 0 amp 2 amp 0 amp 0 amp 0 0 amp 0 amp 0 amp 3 amp 0 amp 0 0 amp 0 amp 0 amp 0 amp 3 amp 0 0 amp 0 amp 0 amp 0 amp 0 amp 1 end array right 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 textstyle left begin array rrrrrr 0 amp 1 amp 0 amp 0 amp 1 amp 0 1 amp 0 amp 1 amp 0 amp 1 amp 0 0 amp 1 amp 0 amp 1 amp 0 amp 0 0 amp 0 amp 1 amp 0 amp 1 amp 1 1 amp 1 amp 0 amp 1 amp 0 amp 0 0 amp 0 amp 0 amp 1 amp 0 amp 0 end array right 2 1 0 0 1 0 1 3 1 0 1 0 0 1 2 1 0 0 0 0 1 3 1 1 1 1 0 1 3 0 0 0 0 1 0 1 textstyle left begin array rrrrrr 2 amp 1 amp 0 amp 0 amp 1 amp 0 1 amp 3 amp 1 amp 0 amp 1 amp 0 0 amp 1 amp 2 amp 1 amp 0 amp 0 0 amp 0 amp 1 amp 3 amp 1 amp 1 1 amp 1 amp 0 amp 1 amp 3 amp 0 0 amp 0 amp 0 amp 1 amp 0 amp 1 end array right 其他形式 编辑对称正規化调和矩阵 编辑 L sym D 1 2 L D 1 2 I D 1 2 A D 1 2 displaystyle L text sym D frac 1 2 LD frac 1 2 I D frac 1 2 AD frac 1 2 L i j sym 1 if i j and deg v i 0 1 deg v i deg v j if i j and v i is adjacent to v j 0 otherwise displaystyle L i j text sym begin cases 1 amp mbox if i j mbox and deg v i neq 0 frac 1 sqrt deg v i deg v j amp mbox if i neq j mbox and v i mbox is adjacent to v j 0 amp mbox otherwise end cases 注意 4 l g L sym g g g g D 1 2 L D 1 2 g g g f L f D 1 2 f D 1 2 f u v f u f v 2 v f v 2 d v 0 displaystyle lambda frac langle g L text sym g rangle langle g g rangle frac left langle g D frac 1 2 LD frac 1 2 g right rangle langle g g rangle frac langle f Lf rangle left langle D frac 1 2 f D frac 1 2 f right rangle frac sum u sim v f u f v 2 sum v f v 2 d v geq 0 随机漫步 编辑 L rw D 1 L I D 1 A displaystyle L text rw D 1 L I D 1 A L i j rw 1 if i j and deg v i 0 1 deg v i if i j and v i is adjacent to v j 0 otherwise displaystyle L i j text rw begin cases 1 amp mbox if i j mbox and deg v i neq 0 frac 1 deg v i amp mbox if i neq j mbox and v i mbox is adjacent to v j 0 amp mbox otherwise end cases 动力学和微分方程 编辑例如 离散的冷却定律使用调和矩阵 5 d ϕ i d t k j A i j ϕ i ϕ j k ϕ i j A i j j A i j ϕ j k ϕ i deg v i j A i j ϕ j k j d i j deg v i A i j ϕ j k j ℓ i j ϕ j displaystyle begin aligned frac d phi i dt amp k sum j A ij left phi i phi j right amp k left phi i sum j A ij sum j A ij phi j right amp k left phi i deg v i sum j A ij phi j right amp k sum j left delta ij deg v i A ij right phi j amp k sum j left ell ij right phi j end aligned 使用矩阵矢量d ϕ d t k D A ϕ k L ϕ displaystyle begin aligned frac d phi dt amp k D A phi amp kL phi end aligned d ϕ d t k L ϕ 0 displaystyle frac d phi dt kL phi 0 解是d i c i v i d t k L i c i v i 0 i d c i d t v i k c i L v i i d c i d t v i k c i l i v i d c i d t k l i c i 0 displaystyle begin aligned frac d left sum i c i mathbf v i right dt kL left sum i c i mathbf v i right amp 0 sum i left frac dc i dt mathbf v i kc i L mathbf v i right amp sum i left frac dc i dt mathbf v i kc i lambda i mathbf v i right amp frac dc i dt k lambda i c i amp 0 end aligned c i t c i 0 e k l i t displaystyle c i t c i 0 e k lambda i t c i 0 ϕ 0 v i displaystyle c i 0 left langle phi 0 mathbf v i right rangle 平衡举动 编辑 当lim t ϕ t textstyle lim t to infty phi t 的时候 lim t e k l i t 0 if l i gt 0 1 if l i 0 displaystyle lim t to infty e k lambda i t left begin array rlr 0 amp text if amp lambda i gt 0 1 amp text if amp lambda i 0 end array right lim t ϕ t c 0 v 1 v 1 displaystyle lim t to infty phi t left langle c 0 mathbf v 1 right rangle mathbf v 1 v 1 1 N 1 1 1 displaystyle mathbf v 1 frac 1 sqrt N 1 1 1 lim t ϕ j t 1 N i 1 N c i 0 displaystyle lim t to infty phi j t frac 1 N sum i 1 N c i 0 MATLAB代码 编辑 N 20 The number of pixels along a dimension of the image A zeros N N The image Adj zeros N N N N The adjacency matrix Use 8 neighbors and fill in the adjacency matrix dx 1 0 1 1 1 1 0 1 dy 1 1 1 0 0 1 1 1 for x 1 N for y 1 N index x 1 N y for ne 1 length dx newx x dx ne newy y dy ne if newx gt 0 amp amp newx lt N amp amp newy gt 0 amp amp newy lt N index2 newx 1 N newy Adj index index2 1 end end end end BELOW IS THE KEY CODE THAT COMPUTES THE SOLUTION TO THE DIFFERENTIAL EQUATION Deg diag sum Adj 2 Compute the degree matrix L Deg Adj Compute the laplacian matrix in terms of the degree and adjacency matrices V D eig L Compute the eigenvalues vectors of the laplacian matrix D diag D Initial condition place a few large positive values around and make everything else zero C0 zeros N N C0 2 5 2 5 5 C0 10 15 10 15 10 C0 2 5 8 13 7 C0 C0 C0V V C0 Transform the initial condition into the coordinate system of the eigenvectors for t 0 0 05 5 Loop through times and decay each initial component Phi C0V exp D t Exponential decay for each component Phi V Phi Transform from eigenvector coordinate system to original coordinate system Phi reshape Phi N N Display the results and write to GIF file imagesc Phi caxis 0 10 title sprintf Diffusion t 3f t frame getframe 1 im frame2im frame imind cm rgb2ind im 256 if t 0 imwrite imind cm out gif gif Loopcount inf DelayTime 0 1 else imwrite imind cm out gif gif WriteMode append DelayTime 0 1 end end GIF 离散拉普拉斯过程 使用拉普拉斯矩阵应用 编辑Kirchoff定理 调和矩阵的行列式 人工智能 非线性降维 Spectral clustering 英语 Spectral clustering Cheeger不等式 调和矩阵的第二大的特征值跟最大割問題有关 图Signal processing 3 参考文献 编辑 1 0 1 1 Weisstein Eric W 编 Laplacian Matrix at MathWorld A Wolfram Web Resource Wolfram Research Inc 2020 02 14 原始内容存档于2019 12 23 英语 2 0 2 1 Muni Sreenivas Pydi మ న శ ర న వ స ప డ s answer to What s the intuition behind a Laplacian matrix I m not so much interested in mathematical details or technical applications I m trying to grasp what a laplacian matrix actually represents and what aspects of a graph it makes accessible Quora www quora com 2020 02 14 3 0 3 1 Shuman David I Narang Sunil K Frossard Pascal Ortega Antonio Vandergheynst Pierre The Emerging Field of Signal Processing on Graphs Extending High Dimensional Data Analysis to Networks and Other Irregular Domains IEEE Signal Processing Magazine 2013 05 30 3 83 98 2020 02 14 ISSN 1053 5888 doi 10 1109 MSP 2012 2235192 原始内容存档于2020 01 11 Chung Fan Spectral Graph Theory American Mathematical Society 1997 1992 2020 02 14 ISBN 978 0821803158 原始内容存档于2020 02 14 Newman Mark Networks An Introduction Oxford University Press 2010 ISBN 978 0199206650 阅读 编辑T Sunada Chapter 1 Analysis on combinatorial graphs Discrete geometric analysis P Exner J P Keating P Kuchment T Sunada A Teplyaev 编 Proceedings of Symposia in Pure Mathematics 77 2008 51 86 ISBN 978 0 8218 4471 7 B Bollobas Modern Graph Theory Springer Verlag 1998 corrected ed 2013 ISBN 0 387 98488 7 Chapters II 3 Vector Spaces and Matrices Associated with Graphs VIII 2 The Adjacency Matrix and the Laplacian IX 2 Electrical Networks and Random Walks 取自 https zh wikipedia org w index php title 调和矩阵 amp oldid 74740847, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。