fbpx
维基百科

二端口网络

二端口网络(英語:two-port network)又称双端口网络双口网络,是四端子网络四端网络)的一种,是具有2个端口的电路或装置,端口与电路内部网络相连接。一个端口由2个端子组成,当这2个端子满足端口条件,即一个端子流入的电流等于另一个端子流出的电流时,则这2个端子就构成了一个端口,换句话说,也就是相同的电流从同一端口流入并流出。[1][2]二端口网络的实例包括電晶體的小信号模型(如混合π模型)、电子滤波器以及阻抗匹配网络。被动二端口网络的分析是互易定理的副产物,最初由洛伦兹提出[3]

图1:一个定义了符号的二端口网络。请注意端口条件:相同的电流从同一端口流入并流出。

二端口网络能将电路的整体或一部分用它们相应的外特性参数来表示,而不用考虑其内部的具体情况,这样被表示的电路就成为具有一组特殊性质的“黑箱”,从而就能抽象化电路的物理组成,简化分析。任意具有4个端子的线性电路都可以变换成二端口网络,且满足不含独立源的条件和端口条件。

描述二端口网络的参数不只有一组,常用的几组参数是分别为阻抗参数Z、导纳参数Y、混合参数h、g和传输参数,每组参数都在下文中有描述。这几组参数只能用於线性网络,因为它们导出的条件是假定任何给定的电路情况都是各种短路和开路情况的线性叠加。这几组参数通常用矩阵表示法表示,通过以下变量建立关系:

输入电压
输出电压
输入电流
输出电流

如图1所示。这些电流电压变量在低频到中频情况下是非常有用的。在高频情况下(如微波频率),使用功率能量变量会更合适,这时二端口电流-电压法就应该由基於散射参数英语Scattering parametersS的方法代替。

请注意,四端子网络(four-terminal network)等同於四端网络(quadripole,注意与四极子(quadrupole)区分),但不等同於二端口网络,因为只有2个端子满足流入一个端子的电流等於流出另一个端子的电流时,即满足端口条件时,才能称这2个端子为一个端口,而四端子网络的端子可能无法满足端口条件。因此对於一个四端子网络,只有当连接到其内部电路的2对端子满足端口条件时,这个四端子网络才是一个二端口网络。[1][2]

一般性质 编辑

二端口网络具有若干常用於实际网络中的特定性质,能大大简化分析。这些性质包括:

  • 互易网络:在端口1上加一个电流,在端口2上产生相应的电压;在端口2上加与前者相同的电流,在端口1上产生相应的电压。若两个端口产生的电压相等,则称二端口网络是互易的。将上述的电流和电压交换,所描述的定义与上述定义是等价的。另一种表述方式与上述定义等价,内容为:端口1的电压除以端口2的短路电流之商等於端口2的电压除以端口1的短路电流之商,则称二端口网络是互易的。通常,若组成网络的元件都是线性无源元件(电阻、电容和电感),则这个网络是互易的;若网络包含有源元件(如晶体管、集成运放、发生器、数字电路器件等),则网络不是互易的。另外,含有受控源的二端口网络一般不具有互易性。[4]互易二端口网络的各组参数满足:
    •   
    •   
    •  
    •  
    •   
    •   
  • 对称网络:若一个网络的输入阻抗等於输出阻抗,则这个网络是电气对称的。对称网络一定是互易网络,但互易网络不一定是对称网络。大多数情况下,对称网络也是物理对称的,不过这不是必要条件。这类网络的输入和输出阻抗是互逆的。有时,反对称网络也是可以利用的性质。[5]对称二端口网络的各组参数满足:
    •  
    •  
    •  
    •  
    •   
    •  
  • 无耗网络:无耗网络是不包含电阻或其他耗能元件的网络。[6]互易网络反映网络的电磁对称性,而无耗网络反映网络的能量对称性。无耗二端口网络的各组参数满足:[7][8]
    • 非互易无耗网络满足 ,其中Re(Z)为电阻矩阵,Im(Z)为电抗矩阵;互易无耗网络满足 
    • 非互易无耗网络满足 ,其中Re(Y)为电导矩阵,Im(Y)为电纳矩阵;互易无耗网络满足 
    • 非互易无耗网络满足  (似互易性,推广到2n端口非互易无耗网络仍存在此性质);互易无耗网络满足 
    • 无论网络互易与否, ,其中S*为S的共轭转置,I为单位矩阵,此关系表明无耗网络的S矩阵是酉矩阵。若网络有耗,则  正定矩阵

阻抗参数(Z参数) 编辑

 
图2:Z参数等效的T形等效电路,其中I1I2为独立变量。图中的电阻表示一般的阻抗。

阻抗参数又称开路阻抗参数,因为计算这一参数时电路满足开路条件Ix=0(其中x = 1, 2,分别表示流过2个端口的输入和输出电流)。

一般形式的开路阻抗矩阵(Z参数矩阵)中,所有的输出电压都用Z参数矩阵和输入电流表示,满足如下矩阵方程:

 

其中  分别是 方阵  。一般来说,开路阻抗矩阵中的元素都是複數和频率函数。对於一端口网络,Z参数矩阵缩减为单元素矩阵,变成了2个端子间的普通阻抗

二端口网络的Z参数矩阵方程的具体形式如下,其中 为二端口网络的开路阻抗矩阵(Z参数矩阵):

 

其中

 
 

对於n端口网络,以上表达式可归纳为

 

Z参数矩阵中每一元素的单位均是欧姆

对於互易网络, 。对於对称网络, 。对於互易无耗网络,所有的 都是纯虚数。[9]


发射极退化的双极型电流镜 编辑

 
图3:双极型电流镜,RE是射极负反馈。i1 是基准电流,i2是输出电流,小写字母符号表明这些电流是包含直流分量的总电流。
 
图4:小信号双极型电流镜,RE是射极负反馈。I1是小信号基准电流的幅值,I2是小信号输出电流的幅值。

图3展示了一个双极型电流镜,发射极接入电阻是为了增加电流镜的输出电阻。[注 1]晶体管Q1是二极管接法,也就是说其集电极-基极电压为零。图4展示了一个与图3电路等效的小信号电路。晶体管Q1由其发射极电阻rEVT / IEVT = 热电压IE = Q点发射极电流)表示,这是因为Q1的混合π模型中的独立电流源消耗的电流与rπ上跨接的电阻1 / gm消耗的电流相同,所以这样简化电路是可行的。第二个晶体管Q2用其混合π模型表示。表1列出的Z参数表达式使图2中的Z参数等效电路与图4中的小信号电路成为电学等效电路。

表1 表达式 近似
     
   
             
         

电阻RE引入的负反馈在参数中有所体现。例如,当电流镜在差分放大器中用作有源负载时,I1 ≈ -I2,这使得电流镜的输出阻抗近似为R22 -R21 ≈ 2 β rORE /( rπ+2RE ),但是如果未接入负反馈(即RE = 0 Ω),输出阻抗仅为rO。同时,电流镜基准测的阻抗近似为R11 − R12   ,仅是一个不大的值,但仍比无负反馈时的阻抗rE大。在差分放大器应用中,较大的输出电阻可以增大差模电压放大倍数,这是一个优点,而较小的电流镜输入电阻可以避免密勒效应,因此这也是一个优点。

导纳参数(Y参数) 编辑

 
图5:Y参数等效的Π形等效电路,其中V1V2为独立变量。图中的电阻表示一般的导纳。

导纳参数又称短路导纳参数,因为计算这一参数时电路满足短路条件Vx=0(其中x=1,2,分别表示2个端口上的输入和输出电压)。

一般形式的短路导纳参数(Y参数矩阵)中,所有的输出电流都用Y参数矩阵和输入电压表示,满足如下矩阵方程:

 

其中  分别是 方阵  。一般来说,短路导纳参数中的元素都是複數和频率函数。对於一端口网络,Y参数矩阵缩减为单元素矩阵,变成了2个端子间的普通导纳

二端口网络的Y参数矩阵方程的具体形式如下,其中 为二端口网络的短路导纳矩阵(Y参数矩阵):

 

其中

 
 

对於n端口网络,以上表达式可归纳为

 

Y参数矩阵中每一元素的单位均是西门子

对於互易网络, 。对於对称网络, 。对於互易无耗网络,所有的 都是纯虚数。[9]

混合参数(h参数) 编辑

 
图6:h参数等效的二端口网络,其中I1V2为独立变量;h22取倒数以表示一个电阻。图中的电阻表示一般的阻抗。

混合参数(h参数)又称第一类混合参数。下式中的 为二端口网络的混合矩阵(h参数矩阵,第一类混合矩阵)。

 

其中

 
 

对於互易网络, 。对於对称网络, 

当输出端需要电流放大电路时,这种等效电路常被选用。请注意,混合参数矩阵的非对角线元素均为无量纲量,而对角线元素的量纲互为倒数。

三极管的h参数微变等效电路 编辑

 
图7:一般化的NPN型三极管的h参数微变等效电路x替换為ebc分別表示共射極、共基極或共集電極拓撲。
  • hix = hie:三极管的輸入阻抗(對應基极-射極动态電阻 rbe)。
  • hrx = hre: 代表VCE對應的三极管IBVBE曲綫。此值通常非常小,而且常被忽略(假定為零)。
  • hfx = hfe:三极管的電流增益。此參數通常指數據手冊中的hFE或者直流電流增益(βDC)。
  • hox = hoe:三极管的輸出阻抗。這個量实际上是導納,通常需要將其转换成阻抗

hixhrxhfxhox分别对应h11h12h21和1/h22

共基极放大器 编辑

 
图8:共基极放大器,交流电流源I1作为信号输入,V2是非特定负载支撑电压,I2是受控电流。

表2中列出的公式使图6中的晶体管与图8中其相应的小信号低频混合π模型成为h参数等效电路。

图8中:

  • rπ = 晶体管基极电阻
  • rO = 输出电阻
  • gm = 跨导
表2 表达式 近似
     
     
     
     

如上所示,h21为负,这是因为一般规定电流I1I2流入二端口的方向为正方向。h12为非零值表明输出电压对输入电压有影响,也就是说放大电路为双向放大电路;若h12 = 0,则放大电路为单向放大电路。

第二类混合参数(g参数) 编辑

 
图9:g参数等效的二端口网络,其中V1I2为独立变量;g11取倒数以表示一个电阻。图中的电阻表示一般的阻抗。

下式中的 为二端口网络的第二类混合矩阵(g参数矩阵)。

 

其中

 
 

对於互易网络, 。对於对称网络, 

当输出端需要电压放大电路时,这种等效电路常被选用。请注意,g参数矩阵的非对角线元素均为无量纲量,而对角线元素的量纲互为倒数。

共基极放大器 编辑

 
图10:共基极放大器,交流电压源V1作为信号输入,I2是受控电压V2上的非特定负载传输电流。

表3中列出的公式使图9中的晶体管与图10中其相应的小信号低频混合π模型成为h参数等效电路。

图10中:

  • rπ = 晶体管基极电阻
  • rO = 输出电阻
  • gm = 跨导
表3 表达式 近似
         
     
     
     

如上所示,g12为负,这是因为一般规定二端口电流I1I2流入的方向为正方向。g12为非零值表明输出电流对输入电流有影响,也就是说放大电路为双向放大电路;若g12 = 0,则放大电路为单向放大电路。

传输参数 编辑

传输参数又称ABCD参数、级联参数、传输线参数、F参数、T参数(注意不要与散射传输参数混淆),其定义有多种不同的形式,下面列出两种最常见的等价定义形式。

定义一(ABCD参数) 编辑

最常见的一种定义形式如下,下式中的 为二端口网络的传输矩阵(ABCD参数矩阵、A参数矩阵、T参数矩阵):[10][11]

 

其中

 
 

对於互易网络, 。对於对称网络, 。对於互易无耗网络,AD为纯实数,而BC为纯虚数。[6]

这种表示法是首选方法,因为当参数用於表示二端口的级联时,书写矩阵的顺序与绘制电路图相同,都是从左到右。

下面给出的定义形式是上述定义的变体,下式中的 为二端口网络的反向传输矩阵(反向ABCD参数矩阵、B参数矩阵、T'参数矩阵):

 

其中

 

以上公式中的  为负,因为 被定义为 的相反数,即 。采用这一约定的原因是若满足上述关系,一个二端口网络的输出电流与下一个与其级联的二端口网络的输入电流相等。因此,输入电压/电流矩阵向量可以被直接替换为前一个二端口网络的矩阵方程以构造组合 矩阵。

电话四线传输系统(Telephony four-wire Transmission Systems)的ABCD矩阵是於1977年由P·K·韦伯(P. K. Webb)在British Post Office Research Department Report 630中定义。

定义二(A参数、B参数) 编辑

部分学者将 参数矩阵的元素符号指定为aij (i, j = 1, 2)[12],将逆 参数矩阵的元素符号指定为bij (i, j = 1, 2),二者都很简洁,且不会与电路元件的符号混淆。下列公式中的 为二端口网络的A参数矩阵(传输矩阵、传输参数矩阵、T参数矩阵), 为二端口网络的B参数矩阵(反向传输矩阵、反向传输参数矩阵、T'参数矩阵)。

 
 

两种形式满足的关系非常简单,互为逆矩阵,即

 

请注意,A矩阵、B矩阵分别代表ABCD矩阵、反向ABCD矩阵,不要与定义一中的参数A、B混淆。

基本电路元件的传输参数 编辑

下表列出了一些简单的基本电路元件的反向传输参数矩阵(B参数矩阵)。

元件 B矩阵 备注
串联电阻   R = 电阻
并联电阻   R = 电阻
串联电导   G = 电导
并联电导   G = 电导
串联电感   L = 电感
s = 複频率
并联电容   C = 电容
s = 複频率

二端口网络的组合联接 编辑

当联接2个或2个以上的二端口网络时,组合网络的二端口参数可以通过对组合网络的每一组成部分的参数矩阵进行矩阵代数运算求取。若恰当的选取与二端口联接方式相匹配的二端口参数,矩阵运算将会极为简单,例如串联联接最好用Z参数来描述。

二端口网络的联接中要注意端口的组合规则,因为当连接电势相异的部分时,有一些连接会导致组合网络不满足端口条件,且违反组合规则。要解决这一难题,可以在出现问题的二端口网络输出端接入匝数比为1:1的理想变压器。这一举动并不会改变二端口网络的参数,而且还能保证二端口网络互相联接时满足端口条件。图12和图13中分别展示了串联联接中有关这一问题的一个实例和解决方案。[13]

简表:

联接方式 图示 参数 联接方式 图示 参数
串联     并联    
串-并联     并-串联    

 
级联    

 
级联    

 

串联 编辑

 
图11:两个输入端口串联,输出端口也为串联的二端口网络。

若两个二端口网络以串联方式联接(图11),最好选择Z参数来描述二端口网络。组合网络的Z参数矩阵是由两个独立网络分别的Z参数矩阵相加得到:[14][15]

 

两个独立网络的Z参数矩阵方程如下:

 
 

此时,    分别满足关系    ,故如下关系成立:

 

因此,串联二端口网络的Z参数矩阵为

 
 
图12:不当的二端口网络串联,因为下方二端口网络中的电阻R1被所加旁路短接。
 
图13:利用理想变压器使内部电路满足端口条件。

如前文所述,有些组合网络不能通过分析结果直接串联得到。[13]一个简单的实例是由电阻R1R2组成的L形网络。这一网络的Z参数为:

 

图12展示了2个串联的相同网络。理论上,由矩阵相加得到的整体Z参数为

 

但是,如果直接分析这一组合网络会得到

 

二者的分歧在於下方二端口网络中的R1被加在输出端口的2个端子间的电阻短接,这就导致2个独立网络中每一网络的输入端口中分别有一个端子无电流流过,但另一个端子仍有电流流入。因此,2个原始网络的输入端口都无法满足端口条件。解决方案是在2个二端口网络中至少一个网络的输出端接入一个理想变压器(图13)。虽然这种方法是教科书上常见的介绍二端口网络原理的方法,在每个独立二端口网络的设计中都使用变压器是否实用是需要考虑的问题。

并联 编辑

 
图14:两个输入端口并联,输出端口也为并联的二端口网络。

若两个二端口网络以并联方式联接(图14),最好选择Y参数来描述二端口网络。组合网络的Y参数矩阵是由两个独立网络分别的Y参数矩阵相加得到:[16]

 

两个独立网络的Y参数矩阵方程如下:

 
 

此时,    分别满足关系    ,故如下关系成立:

 

因此,并联二端口网络的Y参数矩阵为

 

串-并联 编辑

 
图15:两个输入端口串联,输出端口并联的二端口网络。

若两个二端口网络以串-并联方式联接(图15),最好选择h参数来描述二端口网络。组合网络的h参数矩阵是由两个独立网络分别的h参数矩阵相加得到:[17]

 

两个独立网络的h参数矩阵方程如下:

 
 

此时,    分别满足关系    ,故如下关系成立:

 

因此,并联二端口网络的h参数矩阵为

 

并-串联 编辑

 
图16:两个输入端口并联,输出端口串联的二端口网络。

若两个二端口网络以并-串联方式联接(图16),最好选择g参数来描述二端口网络。组合网络的g参数矩阵是由两个独立网络分别的h参数矩阵相加得到:

 

两个独立网络的g参数矩阵方程如下:

 
 

此时,    分别满足关系    ,故如下关系成立:

 

因此,并联二端口网络的g参数矩阵为

 

级联 编辑

 
图17:两个级联的二端口网络。

级联又称链联,是将二端口网络输出端口的2个端子分别连接到下一个二端口网络输入端口的2个端子的联接方式。若两个二端口网络以级联方式联接(图17),最好选择ABCD参数来描述二端口网络。组合网络的ABCD参数矩阵是由两个独立网络分别的ABCD参数矩阵进行矩阵相乘得到:[18]

 

n个二端口网络组成的级联网络的参数可以通过对n个矩阵进行矩阵相乘得到。若利用b参数矩阵计算级联网络的参数,也是通过对n个矩阵进行矩阵相乘实现,不过矩阵相乘的顺序必须颠倒:

 

两个独立网络的ABCD参数矩阵方程如下:

 
 

此时,    满足如下关系:

 

因此,级联二端口网络的ABCD参数矩阵为

 

下面给出一个实例:

假设一个二端口网络由串联电阻R後接并联电容C组成,这一网络整体上可以被视为2个结构更为简单的网络的级联:

 
 

整个网络的传输矩阵

二端口网络, 本條目有隱藏内容, 可能會损害讀者的閱覽体验, 請協助改善條目, 以符合维基百科标准, 2015年9月12日, 一般應該僅由特定標準化模板提供摺疊資料表格, 勿因故事劇情或項目混雜而隱藏, 內容應該考慮其他方式呈現, 重複記載, 過度細節與無助了解主題的堆砌內容等需要考慮除去, 英語, port, network, 又称双端口网络, 双口网络, 是四端子网络, 四端网络, 的一种, 是具有2个端口的电路或装置, 端口与电路内部网络相连接, 一个端口由2个端子组成, 当这2个端子满足端口条件, 即一个端. 本條目有隱藏内容 可能會损害讀者的閱覽体验 請協助改善條目 以符合维基百科标准 2015年9月12日 一般應該僅由特定標準化模板提供摺疊資料表格 勿因故事劇情或項目混雜而隱藏 內容應該考慮其他方式呈現 重複記載 過度細節與無助了解主題的堆砌內容等需要考慮除去 二端口网络 英語 two port network 又称双端口网络 双口网络 是四端子网络 四端网络 的一种 是具有2个端口的电路或装置 端口与电路内部网络相连接 一个端口由2个端子组成 当这2个端子满足端口条件 即一个端子流入的电流等于另一个端子流出的电流时 则这2个端子就构成了一个端口 换句话说 也就是相同的电流从同一端口流入并流出 1 2 二端口网络的实例包括電晶體的小信号模型 如混合p模型 电子滤波器以及阻抗匹配网络 被动二端口网络的分析是互易定理的副产物 最初由洛伦兹提出 3 图1 一个定义了符号的二端口网络 请注意端口条件 相同的电流从同一端口流入并流出 二端口网络能将电路的整体或一部分用它们相应的外特性参数来表示 而不用考虑其内部的具体情况 这样被表示的电路就成为具有一组特殊性质的 黑箱 从而就能抽象化电路的物理组成 简化分析 任意具有4个端子的线性电路都可以变换成二端口网络 且满足不含独立源的条件和端口条件 描述二端口网络的参数不只有一组 常用的几组参数是分别为阻抗参数Z 导纳参数Y 混合参数h g和传输参数 每组参数都在下文中有描述 这几组参数只能用於线性网络 因为它们导出的条件是假定任何给定的电路情况都是各种短路和开路情况的线性叠加 这几组参数通常用矩阵表示法表示 通过以下变量建立关系 V 1 displaystyle V 1 输入电压 V 2 displaystyle V 2 输出电压 I 1 displaystyle I 1 输入电流 I 2 displaystyle I 2 输出电流如图1所示 这些电流和电压变量在低频到中频情况下是非常有用的 在高频情况下 如微波频率 使用功率和能量变量会更合适 这时二端口电流 电压法就应该由基於散射参数 英语 Scattering parameters S的方法代替 请注意 四端子网络 four terminal network 等同於四端网络 quadripole 注意与四极子 quadrupole 区分 但不等同於二端口网络 因为只有2个端子满足流入一个端子的电流等於流出另一个端子的电流时 即满足端口条件时 才能称这2个端子为一个端口 而四端子网络的端子可能无法满足端口条件 因此对於一个四端子网络 只有当连接到其内部电路的2对端子满足端口条件时 这个四端子网络才是一个二端口网络 1 2 目录 1 一般性质 2 阻抗参数 Z参数 2 1 发射极退化的双极型电流镜 3 导纳参数 Y参数 4 混合参数 h参数 4 1 三极管的h参数微变等效电路 4 2 共基极放大器 5 第二类混合参数 g参数 5 1 共基极放大器 6 传输参数 6 1 定义一 ABCD参数 6 2 定义二 A参数 B参数 6 3 基本电路元件的传输参数 7 二端口网络的组合联接 7 1 串联 7 2 并联 7 3 串 并联 7 4 并 串联 7 5 级联 8 散射参数 S参数 8 1 特性参数 9 散射传输参数 T参数 10 参数转换 10 1 电路变换 10 1 1 等效电路 10 1 2 输入 输出阻抗和电流 电压增益 11 多於2个端口的网络 12 参见 13 注释 14 参考文献 14 1 注脚 14 2 参考书目一般性质 编辑二端口网络具有若干常用於实际网络中的特定性质 能大大简化分析 这些性质包括 互易网络 在端口1上加一个电流 在端口2上产生相应的电压 在端口2上加与前者相同的电流 在端口1上产生相应的电压 若两个端口产生的电压相等 则称二端口网络是互易的 将上述的电流和电压交换 所描述的定义与上述定义是等价的 另一种表述方式与上述定义等价 内容为 端口1的电压除以端口2的短路电流之商等於端口2的电压除以端口1的短路电流之商 则称二端口网络是互易的 通常 若组成网络的元件都是线性无源元件 电阻 电容和电感 则这个网络是互易的 若网络包含有源元件 如晶体管 集成运放 发生器 数字电路器件等 则网络不是互易的 另外 含有受控源的二端口网络一般不具有互易性 4 互易二端口网络的各组参数满足 Z T Z displaystyle textstyle mathbf Z mathrm T mathbf Z nbsp Z 12 Z 21 displaystyle textstyle Z 12 Z 21 nbsp Y T Y displaystyle textstyle mathbf Y mathrm T mathbf Y nbsp Y 12 Y 21 displaystyle textstyle Y 12 Y 21 nbsp h 12 h 21 displaystyle textstyle h 12 h 21 nbsp g 12 g 21 displaystyle textstyle g 12 g 21 nbsp det A 1 displaystyle textstyle det mathbf A 1 nbsp A D B C 1 displaystyle textstyle AD BC 1 nbsp S S T displaystyle textstyle mathbf S mathbf S mathrm T nbsp S 12 S 21 displaystyle quad S 12 S 21 nbsp 对称网络 若一个网络的输入阻抗等於输出阻抗 则这个网络是电气对称的 对称网络一定是互易网络 但互易网络不一定是对称网络 大多数情况下 对称网络也是物理对称的 不过这不是必要条件 这类网络的输入和输出阻抗是互逆的 有时 反对称网络也是可以利用的性质 5 对称二端口网络的各组参数满足 Z 12 Z 21 Z 11 Z 22 displaystyle textstyle Z 12 Z 21 quad Z 11 Z 22 nbsp Y 12 Y 21 Y 11 Y 22 displaystyle textstyle Y 12 Y 21 quad Y 11 Y 22 nbsp h 12 h 21 det H 1 displaystyle textstyle h 12 h 21 quad det mathbf H 1 nbsp g 12 g 21 det G 1 displaystyle textstyle g 12 g 21 quad det mathbf G 1 nbsp det A 1 a 11 a 22 displaystyle textstyle det mathbf A 1 quad a 11 a 22 nbsp A D B C 1 A D displaystyle textstyle AD BC 1 quad A D nbsp S 12 S 21 S 11 S 22 displaystyle textstyle S 12 S 21 quad S 11 S 22 nbsp 无耗网络 无耗网络是不包含电阻或其他耗能元件的网络 6 互易网络反映网络的电磁对称性 而无耗网络反映网络的能量对称性 无耗二端口网络的各组参数满足 7 8 非互易无耗网络满足Re Z T Re Z Im Z T Im Z displaystyle textstyle operatorname Re mathbf Z mathrm T operatorname Re mathbf Z quad operatorname Im mathbf Z mathrm T operatorname Im mathbf Z nbsp 其中Re Z 为电阻矩阵 Im Z 为电抗矩阵 互易无耗网络满足Re Z i j 0 i j 1 2 displaystyle textstyle operatorname Re Z ij 0 quad i j 1 2 nbsp 非互易无耗网络满足Re Y T Re Y Im Y T Im Y displaystyle textstyle operatorname Re mathbf Y mathrm T operatorname Re mathbf Y quad operatorname Im mathbf Y mathrm T operatorname Im mathbf Y nbsp 其中Re Y 为电导矩阵 Im Y 为电纳矩阵 互易无耗网络满足Re Y i j 0 i j 1 2 displaystyle textstyle operatorname Re Y ij 0 quad i j 1 2 nbsp 非互易无耗网络满足 det A 1 displaystyle textstyle det mathbf A 1 nbsp 似互易性 推广到2n端口非互易无耗网络仍存在此性质 互易无耗网络满足Re a i j 0 i j 1 2 i j Im a i j 0 i j 1 2 i j displaystyle textstyle operatorname Re a ij 0 quad i j 1 2 i neq j quad operatorname Im a ij 0 quad i j 1 2 i j nbsp 无论网络互易与否 S S I displaystyle textstyle mathbf S S I nbsp 其中S 为S的共轭转置 I为单位矩阵 此关系表明无耗网络的S矩阵是酉矩阵 若网络有耗 则S a n 2 gt S b n 2 displaystyle Sigma left a n right 2 gt Sigma left b n right 2 nbsp 且I S S displaystyle mathbf I S S nbsp 是正定矩阵 阻抗参数 Z参数 编辑 nbsp 图2 Z参数等效的T形等效电路 其中I1和I2为独立变量 图中的电阻表示一般的阻抗 阻抗参数又称开路阻抗参数 因为计算这一参数时电路满足开路条件Ix 0 其中x 1 2 分别表示流过2个端口的输入和输出电流 一般形式的开路阻抗矩阵 Z参数矩阵 中 所有的输出电压都用Z参数矩阵和输入电流表示 满足如下矩阵方程 V Z I displaystyle mathbf V ZI nbsp 其中V displaystyle mathbf V nbsp 和I displaystyle mathbf I nbsp 分别是n displaystyle n nbsp 阶方阵V n displaystyle mathbf V n nbsp 和I n displaystyle mathbf I n nbsp 一般来说 开路阻抗矩阵中的元素都是複數和频率函数 对於一端口网络 Z参数矩阵缩减为单元素矩阵 变成了2个端子间的普通阻抗 二端口网络的Z参数矩阵方程的具体形式如下 其中 Z 11 Z 12 Z 21 Z 22 displaystyle begin bmatrix Z 11 amp Z 12 Z 21 amp Z 22 end bmatrix nbsp 为二端口网络的开路阻抗矩阵 Z参数矩阵 V 1 V 2 Z 11 Z 12 Z 21 Z 22 I 1 I 2 displaystyle begin bmatrix V 1 V 2 end bmatrix begin bmatrix Z 11 amp Z 12 Z 21 amp Z 22 end bmatrix begin bmatrix I 1 I 2 end bmatrix nbsp 其中 Z 11 V 1 I 1 I 2 0 Z 12 V 1 I 2 I 1 0 displaystyle Z 11 V 1 over I 1 bigg I 2 0 qquad Z 12 V 1 over I 2 bigg I 1 0 nbsp Z 21 V 2 I 1 I 2 0 Z 22 V 2 I 2 I 1 0 displaystyle Z 21 V 2 over I 1 bigg I 2 0 qquad Z 22 V 2 over I 2 bigg I 1 0 nbsp 对於n端口网络 以上表达式可归纳为 Z i j V i I j I k j 0 i j k 1 2 3 n displaystyle Z ij V i over I j bigg I k neq j 0 quad i j k 1 2 3 cdots n nbsp Z参数矩阵中每一元素的单位均是欧姆 对於互易网络 Z 12 Z 21 displaystyle textstyle Z 12 Z 21 nbsp 对於对称网络 Z 11 Z 22 displaystyle textstyle Z 11 Z 22 nbsp 对於互易无耗网络 所有的Z i j displaystyle textstyle Z ij nbsp 都是纯虚数 9 发射极退化的双极型电流镜 编辑 nbsp 图3 双极型电流镜 RE是射极负反馈 i1 是基准电流 i2是输出电流 小写字母符号表明这些电流是包含直流分量的总电流 nbsp 图4 小信号双极型电流镜 RE是射极负反馈 I1是小信号基准电流的幅值 I2是小信号输出电流的幅值 图3展示了一个双极型电流镜 发射极接入电阻是为了增加电流镜的输出电阻 注 1 晶体管Q1是二极管接法 也就是说其集电极 基极电压为零 图4展示了一个与图3电路等效的小信号电路 晶体管Q1由其发射极电阻rE VT IE VT 热电压 IE Q点发射极电流 表示 这是因为Q1的混合p模型中的独立电流源消耗的电流与rp上跨接的电阻1 gm消耗的电流相同 所以这样简化电路是可行的 第二个晶体管Q2用其混合p模型表示 表1列出的Z参数表达式使图2中的Z参数等效电路与图4中的小信号电路成为电学等效电路 表1 表达式 近似R 21 V 2 I 1 I 2 0 displaystyle R 21 left frac V 2 I 1 right I 2 0 nbsp b r O R E r E R E r p r E 2 R E displaystyle beta r O R E frac r E R E r pi r E 2R E nbsp b r o r E R E r p 2 R E displaystyle beta r o frac r E R E r pi 2R E nbsp R 11 V 1 I 1 I 2 0 displaystyle R 11 left frac V 1 I 1 right I 2 0 nbsp r E R E r p R E displaystyle r E R E r pi R E nbsp displaystyle R 22 V 2 I 2 I 1 0 displaystyle R 22 left frac V 2 I 2 right I 1 0 nbsp 1 b R E r p r E 2 R E r O r p r E R E r p r E 2 R E R E displaystyle 1 beta frac R E r pi r E 2R E r O frac r pi r E R E r pi r E 2R E R E nbsp 1 b R E r p 2 R E r O displaystyle 1 beta frac R E r pi 2R E r O nbsp R 12 V 1 I 2 I 1 0 displaystyle R 12 left frac V 1 I 2 right I 1 0 nbsp R E displaystyle R E nbsp r E R E r p r E 2 R E displaystyle frac r E R E r pi r E 2R E nbsp R E displaystyle R E nbsp r E R E r p 2 R E displaystyle frac r E R E r pi 2R E nbsp 电阻RE引入的负反馈在参数中有所体现 例如 当电流镜在差分放大器中用作有源负载时 I1 I2 这使得电流镜的输出阻抗近似为R22 R21 2 b rORE rp 2RE 但是如果未接入负反馈 即RE 0 W 输出阻抗仅为rO 同时 电流镜基准测的阻抗近似为R11 R12 r p r p 2 R E displaystyle frac r pi r pi 2R E nbsp r E R E displaystyle r E R E nbsp 仅是一个不大的值 但仍比无负反馈时的阻抗rE大 在差分放大器应用中 较大的输出电阻可以增大差模电压放大倍数 这是一个优点 而较小的电流镜输入电阻可以避免密勒效应 因此这也是一个优点 导纳参数 Y参数 编辑 nbsp 图5 Y参数等效的P形等效电路 其中V1和V2为独立变量 图中的电阻表示一般的导纳 导纳参数又称短路导纳参数 因为计算这一参数时电路满足短路条件Vx 0 其中x 1 2 分别表示2个端口上的输入和输出电压 一般形式的短路导纳参数 Y参数矩阵 中 所有的输出电流都用Y参数矩阵和输入电压表示 满足如下矩阵方程 I Y V displaystyle mathbf I YV nbsp 其中I displaystyle mathbf I nbsp 和V displaystyle mathbf V nbsp 分别是n displaystyle n nbsp 阶方阵I n displaystyle mathbf I n nbsp 和V n displaystyle mathbf V n nbsp 一般来说 短路导纳参数中的元素都是複數和频率函数 对於一端口网络 Y参数矩阵缩减为单元素矩阵 变成了2个端子间的普通导纳 二端口网络的Y参数矩阵方程的具体形式如下 其中 Y 11 Y 12 Y 21 Y 22 displaystyle begin bmatrix Y 11 amp Y 12 Y 21 amp Y 22 end bmatrix nbsp 为二端口网络的短路导纳矩阵 Y参数矩阵 I 1 I 2 Y 11 Y 12 Y 21 Y 22 V 1 V 2 displaystyle begin bmatrix I 1 I 2 end bmatrix begin bmatrix Y 11 amp Y 12 Y 21 amp Y 22 end bmatrix begin bmatrix V 1 V 2 end bmatrix nbsp 其中 Y 11 I 1 V 1 V 2 0 Y 12 I 1 V 2 V 1 0 displaystyle Y 11 I 1 over V 1 bigg V 2 0 qquad Y 12 I 1 over V 2 bigg V 1 0 nbsp Y 21 I 2 V 1 V 2 0 Y 22 I 2 V 2 V 1 0 displaystyle Y 21 I 2 over V 1 bigg V 2 0 qquad Y 22 I 2 over V 2 bigg V 1 0 nbsp 对於n端口网络 以上表达式可归纳为 Y i j I i V j V k j 0 i j k 1 2 3 n displaystyle Y ij I i over V j bigg V k neq j 0 quad i j k 1 2 3 cdots n nbsp Y参数矩阵中每一元素的单位均是西门子 对於互易网络 Y 12 Y 21 displaystyle textstyle Y 12 Y 21 nbsp 对於对称网络 Y 11 Y 22 displaystyle textstyle Y 11 Y 22 nbsp 对於互易无耗网络 所有的Y i j displaystyle textstyle Y ij nbsp 都是纯虚数 9 混合参数 h参数 编辑 nbsp 图6 h参数等效的二端口网络 其中I1和V2为独立变量 h22取倒数以表示一个电阻 图中的电阻表示一般的阻抗 混合参数 h参数 又称第一类混合参数 下式中的 h 11 h 12 h 21 h 22 displaystyle begin bmatrix h 11 amp h 12 h 21 amp h 22 end bmatrix nbsp 为二端口网络的混合矩阵 h参数矩阵 第一类混合矩阵 V 1 I 2 h 11 h 12 h 21 h 22 I 1 V 2 displaystyle begin bmatrix V 1 I 2 end bmatrix begin bmatrix h 11 amp h 12 h 21 amp h 22 end bmatrix begin bmatrix I 1 V 2 end bmatrix nbsp 其中 h 11 V 1 I 1 V 2 0 h 12 V 1 V 2 I 1 0 displaystyle h 11 left frac V 1 I 1 right V 2 0 qquad h 12 left frac V 1 V 2 right I 1 0 nbsp h 21 I 2 I 1 V 2 0 h 22 I 2 V 2 I 1 0 displaystyle h 21 left frac I 2 I 1 right V 2 0 qquad h 22 left frac I 2 V 2 right I 1 0 nbsp 对於互易网络 h 12 h 21 displaystyle textstyle h 12 h 21 nbsp 对於对称网络 det H 1 displaystyle textstyle det mathbf H 1 nbsp 当输出端需要电流放大电路时 这种等效电路常被选用 请注意 混合参数矩阵的非对角线元素均为无量纲量 而对角线元素的量纲互为倒数 三极管的h参数微变等效电路 编辑 nbsp 图7 一般化的NPN型三极管的h参数微变等效电路 x替换為e b或c分別表示共射極 共基極或共集電極拓撲 更多信息 双极性晶体管 h参数模型 hix hie 三极管的輸入阻抗 對應基极 射極动态電阻 rbe hrx hre 代表VCE對應的三极管IB VBE曲綫 此值通常非常小 而且常被忽略 假定為零 hfx hfe 三极管的電流增益 此參數通常指數據手冊中的hFE或者直流電流增益 bDC hox hoe 三极管的輸出阻抗 這個量实际上是導納 通常需要將其转换成阻抗 hix hrx hfx和hox分别对应h11 h12 h21和1 h22 共基极放大器 编辑 nbsp 图8 共基极放大器 交流电流源I1作为信号输入 V2是非特定负载支撑电压 I2是受控电流 表2中列出的公式使图6中的晶体管与图8中其相应的小信号低频混合p模型成为h参数等效电路 图8中 rp 晶体管基极电阻 rO 输出电阻 gm 跨导表2 表达式 近似h 21 I 2 I 1 V 2 0 displaystyle h 21 left frac I 2 I 1 right V 2 0 nbsp b b 1 r O r E r O r E displaystyle frac frac beta beta 1 r O r E r O r E nbsp b b 1 displaystyle frac beta beta 1 nbsp h 11 V 1 I 1 V 2 0 displaystyle h 11 left frac V 1 I 1 right V 2 0 nbsp r E r O displaystyle r E r O nbsp r E displaystyle r E nbsp h 22 I 2 V 2 I 1 0 displaystyle h 22 left frac I 2 V 2 right I 1 0 nbsp 1 b 1 r O r E displaystyle frac 1 beta 1 r O r E nbsp 1 b 1 r O displaystyle frac 1 beta 1 r O nbsp h 12 V 1 V 2 I 1 0 displaystyle h 12 left frac V 1 V 2 right I 1 0 nbsp r E r E r O displaystyle frac r E r E r O nbsp r E r O 1 displaystyle frac r E r O ll 1 nbsp 如上所示 h21为负 这是因为一般规定电流I1 I2流入二端口的方向为正方向 h12为非零值表明输出电压对输入电压有影响 也就是说放大电路为双向放大电路 若h12 0 则放大电路为单向放大电路 第二类混合参数 g参数 编辑 nbsp 图9 g参数等效的二端口网络 其中V1和I2为独立变量 g11取倒数以表示一个电阻 图中的电阻表示一般的阻抗 下式中的 g 11 g 12 g 21 g 22 displaystyle begin bmatrix g 11 amp g 12 g 21 amp g 22 end bmatrix nbsp 为二端口网络的第二类混合矩阵 g参数矩阵 I 1 V 2 g 11 g 12 g 21 g 22 V 1 I 2 displaystyle begin bmatrix I 1 V 2 end bmatrix begin bmatrix g 11 amp g 12 g 21 amp g 22 end bmatrix begin bmatrix V 1 I 2 end bmatrix nbsp 其中 g 11 I 1 V 1 I 2 0 g 12 I 1 I 2 V 1 0 displaystyle g 11 left frac I 1 V 1 right I 2 0 qquad g 12 left frac I 1 I 2 right V 1 0 nbsp g 21 V 2 V 1 I 2 0 g 22 V 2 I 2 V 1 0 displaystyle g 21 left frac V 2 V 1 right I 2 0 qquad g 22 left frac V 2 I 2 right V 1 0 nbsp 对於互易网络 g 12 g 21 displaystyle textstyle g 12 g 21 nbsp 对於对称网络 det G 1 displaystyle textstyle det mathbf G 1 nbsp 当输出端需要电压放大电路时 这种等效电路常被选用 请注意 g参数矩阵的非对角线元素均为无量纲量 而对角线元素的量纲互为倒数 共基极放大器 编辑 nbsp 图10 共基极放大器 交流电压源V1作为信号输入 I2是受控电压V2上的非特定负载传输电流 表3中列出的公式使图9中的晶体管与图10中其相应的小信号低频混合p模型成为h参数等效电路 图10中 rp 晶体管基极电阻 rO 输出电阻 gm 跨导表3 表达式 近似g 21 V 2 V 1 I 2 0 displaystyle g 21 left frac V 2 V 1 right I 2 0 nbsp r o r p g m r O 1 displaystyle frac r o r pi g m r O 1 nbsp g m r O displaystyle g m r O nbsp g 11 I 1 V 1 I 2 0 displaystyle g 11 left frac I 1 V 1 right I 2 0 nbsp 1 r p displaystyle frac 1 r pi nbsp 1 r p displaystyle frac 1 r pi nbsp g 22 V 2 I 2 V 1 0 displaystyle g 22 left frac V 2 I 2 right V 1 0 nbsp r O displaystyle r O nbsp r O displaystyle r O nbsp g 12 I 1 I 2 V 1 0 displaystyle g 12 left frac I 1 I 2 right V 1 0 nbsp b 1 b displaystyle frac beta 1 beta nbsp 1 displaystyle 1 nbsp 如上所示 g12为负 这是因为一般规定二端口电流I1 I2流入的方向为正方向 g12为非零值表明输出电流对输入电流有影响 也就是说放大电路为双向放大电路 若g12 0 则放大电路为单向放大电路 传输参数 编辑传输参数又称ABCD参数 级联参数 传输线参数 F参数 T参数 注意不要与散射传输参数混淆 其定义有多种不同的形式 下面列出两种最常见的等价定义形式 定义一 ABCD参数 编辑 最常见的一种定义形式如下 下式中的 A B C D displaystyle begin bmatrix A amp B C amp D end bmatrix nbsp 为二端口网络的传输矩阵 ABCD参数矩阵 A参数矩阵 T参数矩阵 10 11 V 1 I 1 A B C D V 2 I 2 displaystyle begin bmatrix V 1 I 1 end bmatrix begin bmatrix A amp B C amp D end bmatrix begin bmatrix V 2 I 2 end bmatrix nbsp 其中 A V 1 V 2 I 2 0 B V 1 I 2 V 2 0 displaystyle A V 1 over V 2 bigg I 2 0 qquad B V 1 over I 2 bigg V 2 0 nbsp C I 1 V 2 I 2 0 D I 1 I 2 V 2 0 displaystyle C I 1 over V 2 bigg I 2 0 qquad D I 1 over I 2 bigg V 2 0 nbsp 对於互易网络 A D B C 1 displaystyle textstyle AD BC 1 nbsp 对於对称网络 A D displaystyle textstyle A D nbsp 对於互易无耗网络 A与D为纯实数 而B与C为纯虚数 6 这种表示法是首选方法 因为当参数用於表示二端口的级联时 书写矩阵的顺序与绘制电路图相同 都是从左到右 下面给出的定义形式是上述定义的变体 下式中的 A B C D displaystyle begin bmatrix A amp B C amp D end bmatrix nbsp 为二端口网络的反向传输矩阵 反向ABCD参数矩阵 B参数矩阵 T 参数矩阵 V 2 I 2 A B C D V 1 I 1 displaystyle begin bmatrix V 2 I 2 end bmatrix begin bmatrix A amp B C amp D end bmatrix begin bmatrix V 1 I 1 end bmatrix nbsp 其中 A V 2 V 1 I 1 0 B V 2 I 1 V 1 0 C I 2 V 1 I 1 0 D I 2 I 1 V 1 0 displaystyle begin aligned A amp left frac V 2 V 1 right I 1 0 amp qquad B amp left frac V 2 I 1 right V 1 0 C amp left frac I 2 V 1 right I 1 0 amp qquad D amp left frac I 2 I 1 right V 1 0 end aligned nbsp 以上公式中的C displaystyle textstyle C nbsp 和D displaystyle textstyle D nbsp 为负 因为I 2 displaystyle textstyle I 2 nbsp 被定义为I 2 displaystyle textstyle I 2 nbsp 的相反数 即I 2 I 2 displaystyle textstyle I 2 I 2 nbsp 采用这一约定的原因是若满足上述关系 一个二端口网络的输出电流与下一个与其级联的二端口网络的输入电流相等 因此 输入电压 电流矩阵向量可以被直接替换为前一个二端口网络的矩阵方程以构造组合A B C D displaystyle textstyle A B C D nbsp 矩阵 电话四线传输系统 Telephony four wire Transmission Systems 的ABCD矩阵是於1977年由P K 韦伯 P K Webb 在British Post Office Research Department Report 630中定义 定义二 A参数 B参数 编辑 部分学者将A B C D displaystyle textstyle ABCD nbsp 参数矩阵的元素符号指定为aij i j 1 2 12 将逆A B C D displaystyle textstyle A B C D nbsp 参数矩阵的元素符号指定为bij i j 1 2 二者都很简洁 且不会与电路元件的符号混淆 下列公式中的 a 11 a 12 a 21 a 22 displaystyle begin bmatrix a 11 amp a 12 a 21 amp a 22 end bmatrix nbsp 为二端口网络的A参数矩阵 传输矩阵 传输参数矩阵 T参数矩阵 b 11 b 12 b 21 b 22 displaystyle begin bmatrix b 11 amp b 12 b 21 amp b 22 end bmatrix nbsp 为二端口网络的B参数矩阵 反向传输矩阵 反向传输参数矩阵 T 参数矩阵 A a i j 2 2 a 11 a 12 a 21 a 22 A B C D displaystyle mathbf A begin bmatrix mathbf a ij end bmatrix 2 times 2 begin bmatrix a 11 amp a 12 a 21 amp a 22 end bmatrix begin bmatrix A amp B C amp D end bmatrix nbsp B b i j 2 2 b 11 b 12 b 21 b 22 A B C D displaystyle mathbf B begin bmatrix mathbf b ij end bmatrix 2 times 2 begin bmatrix b 11 amp b 12 b 21 amp b 22 end bmatrix begin bmatrix A amp B C amp D end bmatrix nbsp 两种形式满足的关系非常简单 互为逆矩阵 即 B A 1 displaystyle mathbf B mathbf A 1 nbsp 请注意 A矩阵 B矩阵分别代表ABCD矩阵 反向ABCD矩阵 不要与定义一中的参数A B混淆 基本电路元件的传输参数 编辑 下表列出了一些简单的基本电路元件的反向传输参数矩阵 B参数矩阵 元件 B矩阵 备注串联电阻 1 R 0 1 displaystyle begin bmatrix 1 amp R 0 amp 1 end bmatrix nbsp R 电阻并联电阻 1 0 1 R 1 displaystyle begin bmatrix 1 amp 0 1 R amp 1 end bmatrix nbsp R 电阻串联电导 1 1 G 0 1 displaystyle begin bmatrix 1 amp 1 G 0 amp 1 end bmatrix nbsp G 电导并联电导 1 0 G 1 displaystyle begin bmatrix 1 amp 0 G amp 1 end bmatrix nbsp G 电导串联电感 1 s L 0 1 displaystyle begin bmatrix 1 amp sL 0 amp 1 end bmatrix nbsp L 电感 s 複频率并联电容 1 0 s C 1 displaystyle begin bmatrix 1 amp 0 sC amp 1 end bmatrix nbsp C 电容s 複频率二端口网络的组合联接 编辑当联接2个或2个以上的二端口网络时 组合网络的二端口参数可以通过对组合网络的每一组成部分的参数矩阵进行矩阵代数运算求取 若恰当的选取与二端口联接方式相匹配的二端口参数 矩阵运算将会极为简单 例如串联联接最好用Z参数来描述 二端口网络的联接中要注意端口的组合规则 因为当连接电势相异的部分时 有一些连接会导致组合网络不满足端口条件 且违反组合规则 要解决这一难题 可以在出现问题的二端口网络输出端接入匝数比为1 1的理想变压器 这一举动并不会改变二端口网络的参数 而且还能保证二端口网络互相联接时满足端口条件 图12和图13中分别展示了串联联接中有关这一问题的一个实例和解决方案 13 简表 联接方式 图示 参数 联接方式 图示 参数串联 nbsp Z Z 1 Z 2 displaystyle mathbf Z mathbf Z 1 mathbf Z 2 nbsp 并联 nbsp Y Y 1 Y 2 displaystyle mathbf Y mathbf Y 1 mathbf Y 2 nbsp 串 并联 nbsp H H 1 H 2 displaystyle mathbf H mathbf H 1 mathbf H 2 nbsp 并 串联 nbsp G G 1 G 2 displaystyle mathbf G mathbf G 1 mathbf G 2 nbsp H T H 1 T H 2 T displaystyle mathbf H mathrm T mathbf H 1 mathrm T mathbf H 2 mathrm T nbsp 级联 nbsp A A 1 A 2 displaystyle mathbf A mathbf A 1 mathbf A 2 nbsp A T A 2 T A 1 T displaystyle mathbf A mathrm T mathbf A 2 mathrm T mathbf A 1 mathrm T nbsp 级联 nbsp B B 1 B 2 displaystyle mathbf B mathbf B 1 mathbf B 2 nbsp B T B 2 T B 1 T displaystyle mathbf B mathrm T mathbf B 2 mathrm T mathbf B 1 mathrm T nbsp 串联 编辑 nbsp 图11 两个输入端口串联 输出端口也为串联的二端口网络 若两个二端口网络以串联方式联接 图11 最好选择Z参数来描述二端口网络 组合网络的Z参数矩阵是由两个独立网络分别的Z参数矩阵相加得到 14 15 z z 1 z 2 displaystyle mathbf z mathbf z 1 mathbf z 2 nbsp 两个独立网络的Z参数矩阵方程如下 V 1 V 2 Z 11 Z 12 Z 21 Z 22 I 1 I 2 displaystyle begin bmatrix V 1 V 2 end bmatrix begin bmatrix Z 11 amp Z 12 Z 21 amp Z 22 end bmatrix begin bmatrix I 1 I 2 end bmatrix nbsp V 1 V 2 Z 11 Z 12 Z 21 Z 22 I 1 I 2 displaystyle begin bmatrix V 1 V 2 end bmatrix begin bmatrix Z 11 amp Z 12 Z 21 amp Z 22 end bmatrix begin bmatrix I 1 I 2 end bmatrix nbsp 此时 V 1 displaystyle textstyle V 1 nbsp V 2 displaystyle textstyle V 2 nbsp I 1 displaystyle textstyle I 1 nbsp 和I 2 displaystyle textstyle I 2 nbsp 分别满足关系V 1 V 1 V 1 displaystyle textstyle V 1 V 1 V 1 nbsp V 2 V 2 V 2 displaystyle textstyle V 2 V 2 V 2 nbsp I 1 I 1 I 1 displaystyle textstyle I 1 I 1 I 1 nbsp I 2 I 2 I 2 displaystyle textstyle I 2 I 2 I 2 nbsp 故如下关系成立 V 1 V 2 V 1 V 2 V 1 V 2 Z 11 Z 11 Z 12 Z 12 Z 21 Z 21 Z 22 Z 22 I 1 I 2 displaystyle begin bmatrix V 1 V 2 end bmatrix begin bmatrix V 1 V 2 end bmatrix begin bmatrix V 1 V 2 end bmatrix begin bmatrix Z 11 Z 11 amp Z 12 Z 12 Z 21 Z 21 amp Z 22 Z 22 end bmatrix begin bmatrix I 1 I 2 end bmatrix nbsp 因此 串联二端口网络的Z参数矩阵为 Z 11 Z 12 Z 21 Z 22 Z 11 Z 11 Z 12 Z 12 Z 21 Z 21 Z 22 Z 22 displaystyle begin bmatrix Z 11 amp Z 12 Z 21 amp Z 22 end bmatrix begin bmatrix Z 11 Z 11 amp Z 12 Z 12 Z 21 Z 21 amp Z 22 Z 22 end bmatrix nbsp nbsp 图12 不当的二端口网络串联 因为下方二端口网络中的电阻R1被所加旁路短接 nbsp 图13 利用理想变压器使内部电路满足端口条件 如前文所述 有些组合网络不能通过分析结果直接串联得到 13 一个简单的实例是由电阻R1和R2组成的L形网络 这一网络的Z参数为 z 1 R 1 R 2 R 2 R 2 R 2 displaystyle mathbf z 1 begin bmatrix R 1 R 2 amp R 2 R 2 amp R 2 end bmatrix nbsp 图12展示了2个串联的相同网络 理论上 由矩阵相加得到的整体Z参数为 z z 1 z 2 2 z 1 2 R 1 2 R 2 2 R 2 2 R 2 2 R 2 displaystyle mathbf z mathbf z 1 mathbf z 2 2 mathbf z 1 begin bmatrix 2R 1 2R 2 amp 2R 2 2R 2 amp 2R 2 end bmatrix nbsp 但是 如果直接分析这一组合网络会得到 z R 1 2 R 2 2 R 2 2 R 2 2 R 2 displaystyle mathbf z begin bmatrix R 1 2R 2 amp 2R 2 2R 2 amp 2R 2 end bmatrix nbsp 二者的分歧在於下方二端口网络中的R1被加在输出端口的2个端子间的电阻短接 这就导致2个独立网络中每一网络的输入端口中分别有一个端子无电流流过 但另一个端子仍有电流流入 因此 2个原始网络的输入端口都无法满足端口条件 解决方案是在2个二端口网络中至少一个网络的输出端接入一个理想变压器 图13 虽然这种方法是教科书上常见的介绍二端口网络原理的方法 在每个独立二端口网络的设计中都使用变压器是否实用是需要考虑的问题 并联 编辑 nbsp 图14 两个输入端口并联 输出端口也为并联的二端口网络 若两个二端口网络以并联方式联接 图14 最好选择Y参数来描述二端口网络 组合网络的Y参数矩阵是由两个独立网络分别的Y参数矩阵相加得到 16 y y 1 y 2 displaystyle mathbf y mathbf y 1 mathbf y 2 nbsp 两个独立网络的Y参数矩阵方程如下 I 1 I 2 Y 11 Y 12 Y 21 Y 22 V 1 V 2 displaystyle begin bmatrix I 1 I 2 end bmatrix begin bmatrix Y 11 amp Y 12 Y 21 amp Y 22 end bmatrix begin bmatrix V 1 V 2 end bmatrix nbsp I 1 I 2 Y 11 Y 12 Y 21 Y 22 V 1 V 2 displaystyle begin bmatrix I 1 I 2 end bmatrix begin bmatrix Y 11 amp Y 12 Y 21 amp Y 22 end bmatrix begin bmatrix V 1 V 2 end bmatrix nbsp 此时 I 1 displaystyle textstyle I 1 nbsp I 2 displaystyle textstyle I 2 nbsp V 1 displaystyle textstyle V 1 nbsp 和V 2 displaystyle textstyle V 2 nbsp 分别满足关系I 1 I 1 I 1 displaystyle textstyle I 1 I 1 I 1 nbsp I 2 I 2 I 2 displaystyle textstyle I 2 I 2 I 2 nbsp V 1 V 1 V 1 displaystyle textstyle V 1 V 1 V 1 nbsp V 2 V 2 V 2 displaystyle textstyle V 2 V 2 V 2 nbsp 故如下关系成立 I 1 I 2 I 1 I 2 I 1 I 2 Y 11 Y 11 Y 12 Y 12 Y 21 Y 21 Y 22 Y 22 V 1 V 2 displaystyle begin bmatrix I 1 I 2 end bmatrix begin bmatrix I 1 I 2 end bmatrix begin bmatrix I 1 I 2 end bmatrix begin bmatrix Y 11 Y 11 amp Y 12 Y 12 Y 21 Y 21 amp Y 22 Y 22 end bmatrix begin bmatrix V 1 V 2 end bmatrix nbsp 因此 并联二端口网络的Y参数矩阵为 Y 11 Y 12 Y 21 Y 22 Y 11 Y 11 Y 12 Y 12 Y 21 Y 21 Y 22 Y 22 displaystyle begin bmatrix Y 11 amp Y 12 Y 21 amp Y 22 end bmatrix begin bmatrix Y 11 Y 11 amp Y 12 Y 12 Y 21 Y 21 amp Y 22 Y 22 end bmatrix nbsp 串 并联 编辑 nbsp 图15 两个输入端口串联 输出端口并联的二端口网络 若两个二端口网络以串 并联方式联接 图15 最好选择h参数来描述二端口网络 组合网络的h参数矩阵是由两个独立网络分别的h参数矩阵相加得到 17 h h 1 h 2 displaystyle mathbf h mathbf h 1 mathbf h 2 nbsp 两个独立网络的h参数矩阵方程如下 V 1 I 2 h 11 h 12 h 21 h 22 I 1 V 2 displaystyle begin bmatrix V 1 I 2 end bmatrix begin bmatrix h 11 amp h 12 h 21 amp h 22 end bmatrix begin bmatrix I 1 V 2 end bmatrix nbsp V 1 I 2 h 11 h 12 h 21 h 22 I 1 V 2 displaystyle begin bmatrix V 1 I 2 end bmatrix begin bmatrix h 11 amp h 12 h 21 amp h 22 end bmatrix begin bmatrix I 1 V 2 end bmatrix nbsp 此时 I 1 displaystyle textstyle I 1 nbsp I 2 displaystyle textstyle I 2 nbsp V 1 displaystyle textstyle V 1 nbsp 和V 2 displaystyle textstyle V 2 nbsp 分别满足关系I 1 I 1 I 1 displaystyle textstyle I 1 I 1 I 1 nbsp I 2 I 2 I 2 displaystyle textstyle I 2 I 2 I 2 nbsp V 1 V 1 V 1 displaystyle textstyle V 1 V 1 V 1 nbsp V 2 V 2 V 2 displaystyle textstyle V 2 V 2 V 2 nbsp 故如下关系成立 V 1 I 2 V 1 I 2 V 1 I 2 h 11 h 11 h 12 h 12 h 21 h 21 h 22 h 22 I 1 V 2 displaystyle begin bmatrix V 1 I 2 end bmatrix begin bmatrix V 1 I 2 end bmatrix begin bmatrix V 1 I 2 end bmatrix begin bmatrix h 11 h 11 amp h 12 h 12 h 21 h 21 amp h 22 h 22 end bmatrix begin bmatrix I 1 V 2 end bmatrix nbsp 因此 并联二端口网络的h参数矩阵为 h 11 h 12 h 21 h 22 h 11 h 11 h 12 h 12 h 21 h 21 h 22 h 22 displaystyle begin bmatrix h 11 amp h 12 h 21 amp h 22 end bmatrix begin bmatrix h 11 h 11 amp h 12 h 12 h 21 h 21 amp h 22 h 22 end bmatrix nbsp 并 串联 编辑 nbsp 图16 两个输入端口并联 输出端口串联的二端口网络 若两个二端口网络以并 串联方式联接 图16 最好选择g参数来描述二端口网络 组合网络的g参数矩阵是由两个独立网络分别的h参数矩阵相加得到 g g 1 g 2 displaystyle mathbf g mathbf g 1 mathbf g 2 nbsp 两个独立网络的g参数矩阵方程如下 I 1 V 2 g 11 g 12 g 21 g 22 V 1 I 2 displaystyle begin bmatrix I 1 V 2 end bmatrix begin bmatrix g 11 amp g 12 g 21 amp g 22 end bmatrix begin bmatrix V 1 I 2 end bmatrix nbsp I 1 V 2 g 11 g 12 g 21 g 22 V 1 I 2 displaystyle begin bmatrix I 1 V 2 end bmatrix begin bmatrix g 11 amp g 12 g 21 amp g 22 end bmatrix begin bmatrix V 1 I 2 end bmatrix nbsp 此时 I 1 displaystyle textstyle I 1 nbsp I 2 displaystyle textstyle I 2 nbsp V 1 displaystyle textstyle V 1 nbsp 和V 2 displaystyle textstyle V 2 nbsp 分别满足关系I 1 I 1 I 1 displaystyle textstyle I 1 I 1 I 1 nbsp I 2 I 2 I 2 displaystyle textstyle I 2 I 2 I 2 nbsp V 1 V 1 V 1 displaystyle textstyle V 1 V 1 V 1 nbsp V 2 V 2 V 2 displaystyle textstyle V 2 V 2 V 2 nbsp 故如下关系成立 I 1 V 2 I 1 V 2 I 1 V 2 g 11 g 11 g 12 g 12 g 21 g 21 g 22 g 22 V 1 I 2 displaystyle begin bmatrix I 1 V 2 end bmatrix begin bmatrix I 1 V 2 end bmatrix begin bmatrix I 1 V 2 end bmatrix begin bmatrix g 11 g 11 amp g 12 g 12 g 21 g 21 amp g 22 g 22 end bmatrix begin bmatrix V 1 I 2 end bmatrix nbsp 因此 并联二端口网络的g参数矩阵为 g 11 g 12 g 21 g 22 g 11 g 11 g 12 g 12 g 21 g 21 g 22 g 22 displaystyle begin bmatrix g 11 amp g 12 g 21 amp g 22 end bmatrix begin bmatrix g 11 g 11 amp g 12 g 12 g 21 g 21 amp g 22 g 22 end bmatrix nbsp 级联 编辑 nbsp 图17 两个级联的二端口网络 级联又称链联 是将二端口网络输出端口的2个端子分别连接到下一个二端口网络输入端口的2个端子的联接方式 若两个二端口网络以级联方式联接 图17 最好选择ABCD参数来描述二端口网络 组合网络的ABCD参数矩阵是由两个独立网络分别的ABCD参数矩阵进行矩阵相乘得到 18 a a 1 a 2 displaystyle mathbf a mathbf a 1 mathbf a 2 nbsp n个二端口网络组成的级联网络的参数可以通过对n个矩阵进行矩阵相乘得到 若利用b参数矩阵计算级联网络的参数 也是通过对n个矩阵进行矩阵相乘实现 不过矩阵相乘的顺序必须颠倒 b b 2 b 1 displaystyle mathbf b mathbf b 2 mathbf b 1 nbsp 两个独立网络的ABCD参数矩阵方程如下 V 1 I 1 A 1 B 1 C 1 D 1 V 2 I 2 displaystyle begin bmatrix V 1 I 1 end bmatrix begin bmatrix A 1 amp B 1 C 1 amp D 1 end bmatrix begin bmatrix V 2 I 2 end bmatrix nbsp V 2 I 2 A 2 B 2 C 2 D 2 V 3 I 3 displaystyle begin bmatrix V 2 I 2 end bmatrix begin bmatrix A 2 amp B 2 C 2 amp D 2 end bmatrix begin bmatrix V 3 I 3 end bmatrix nbsp 此时 V 1 displaystyle V 1 nbsp I 1 displaystyle I 1 nbsp V 3 displaystyle V 3 nbsp 和I 3 displaystyle I 3 nbsp 满足如下关系 V 1 I 1 A 1 B 1 C 1 D 1 A 2 B 2 C 2 D 2 V 3 I 3 displaystyle begin bmatrix V 1 I 1 end bmatrix begin bmatrix A 1 amp B 1 C 1 amp D 1 end bmatrix begin bmatrix A 2 amp B 2 C 2 amp D 2 end bmatrix begin bmatrix V 3 I 3 end bmatrix nbsp 因此 级联二端口网络的ABCD参数矩阵为 A B C D A 1 B 1 C 1 D 1 A 2 B 2 C 2 D 2 A 1 A 2 B 1 C 2 A 1 B 2 B 1 D 2 C 1 A 2 D 1 C 2 C 1 B 2 D 1 D 2 displaystyle begin bmatrix A amp B C amp D end bmatrix begin bmatrix A 1 amp B 1 C 1 amp D 1 end bmatrix begin bmatrix A 2 amp B 2 C 2 amp D 2 end bmatrix begin bmatrix A 1 A 2 B 1 C 2 amp A 1 B 2 B 1 D 2 C 1 A 2 D 1 C 2 amp C 1 B 2 D 1 D 2 end bmatrix nbsp 下面给出一个实例 假设一个二端口网络由串联电阻R後接并联电容C组成 这一网络整体上可以被视为2个结构更为简单的网络的级联 b 1 1 R 0 1 displaystyle mathbf b 1 begin bmatrix 1 amp R 0 amp 1 end bmatrix nbsp b 2 1 0 s C 1 displaystyle mathbf b 2 begin bmatrix 1 amp 0 sC amp 1 end bmatrix nbsp 整个网络的传输矩阵 b displaystyle textstyle mathbf b img, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。