fbpx
维基百科

DNA測序

DNA测序(英語:DNA sequencing)又稱DNA定序,是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)與鳥嘌呤(G)的排列方式。快速的DNA测序方法的出现极大地推动了生物学和医学的研究和发现。

在基础生物学研究中,和在众多的应用领域,如诊断,生物技术,法医生物学,生物系统学中,DNA序列知识已成为不可缺少的知识。具有现代的DNA测序技术的快速测序速度已经有助于达到测序完整的DNA序列,或多种类型的基因组测序和生命物种,包括人类基因组和其他许多动物,植物和微生物物种的完整DNA序列。

RNA測序則通常将RNA提取后,反转录为DNA后使用DNA测序的方法进行测序。目前应用最广泛的是由弗雷德里克·桑格发明的桑格測序[1]。新的测序方法,例如454生物科学的方法和焦磷酸测序法

自动化chain-termination DNA测序结果的一个例子。

应用 编辑

DNA测序可用于确定任何生物的单个基因的序列,较大的遗传区域(即基因簇或操纵子的簇),完整的染色体或整个基因组。 DNA测序也是对RNA蛋白质进行测序的最有效方法(通过对开放阅读框测序)。目前,DNA测序已成为生物学和其他科学领域(如医学,法医学或人类学等)的关键技术。

分子生物学 编辑

分子生物学中,DNA测序可被用于研究基因组及其编码的蛋白质。利用测序获得的信息,科研人员能够识别基因的变化,基因与疾病和表型的关联,并确定潜在的药物靶点。

演化生物学 编辑

由于DNA是携带有遗传信息的大分子,在演化生物学中,DNA测序被用于研究不同生物体之间的相关性以及它们是如何演化的。

宏基因组学(或元基因组学) 编辑

宏基因组学是一门直接取得环境中所有遗传物质的研究。环境包括但不限于水体,污水,污垢,从空气中过滤出的碎片或者从生物体采集的样本。了解在特定环境中存在哪些生物体对于生态学流行病学微生物学和其他领域的研究至关重要。DNA测序使研究人员能够确定微生物群中可能存在哪些类型的微生物

医学 编辑

医疗人员可通过对患者基因(基因组)的测序结果确定该患者是否有携带遗传性疾病的风险。需要注意的是,该方法属于基因检测,有些基因检测不会用到DNA测序技术。

法医学 编辑

DNA测序可以与DNA图谱鉴定(基因指纹分析,英語:DNA profiling)一起用于法医鉴定和亲子鉴定。 DNA测试在过去的几十年中发展迅猛,目前已能够做到将DNA鉴定结果与被调查对象联系起来。指纹,唾液,毛囊等中的DNA特征可以将不同的生物体进行区分。测试DNA是一种可以检测DNA链中特定基因组并生成唯一的个性化DNA模型的技术。每一种有机体都有其DNA特征,并可以通过DNA测试来确定。两个人具有完全相同的DNA特征是非常罕见的,因此保证了DNA测试的成功。

历史 编辑

DNA结构与功能的发现 编辑

 
弗雷德里克·桑格,DNA测序的先驱者。桑格是少数获得两项诺贝尔奖的科学家之一,其中一项为蛋白质测序,另一项为DNA测序。

脱氧核糖核酸(DNA)最早在1869年由Friedrich Miescher发现并分离出来,但由于当时普遍认为遗传信息保存于蛋白质而不是DNA中,因此在过去几十年中DNA一直没有得到充分研究。1944年,由于Oswald Avery,Colin MacLeod和Maclyn McCarty的一些实验表明,纯化的DNA可以将一种细菌变成另一种细菌,这种情况才发生了变化。这也是首次DNA显示出改变细胞特性的能力。

1953年,James Watson和Francis Crick根据Rosalind Franklin研究的结晶X射线结构提出了他们的双螺旋DNA模型。根据该模型,DNA由彼此缠绕的两条核苷酸链组成,通过氢键连接在一起并以相反方向运行。每条链由四个互补的核苷酸组成:腺嘌呤(A),胞嘧啶(C),鸟嘌呤(G)和胸腺嘧啶(T),其中A与T配对,C与G配对。他们提出的这种结构,使得每条单链都可被用于重建另一条链,并且让遗传信息代代相传。

对蛋白质进行测序的基础首先由弗雷德里克·桑格(Frederick Sanger)的工作奠定,他于1955年完成了胰岛素(胰腺分泌的一种蛋白质)中所有氨基酸序列的测序工作。这是首个确凿的证据证明蛋白质是具有特定分子模式的化学实体,而不是悬浮在流体中的随机混合物。桑格在胰岛素测序方面的成功使得X射线晶体学家大为振奋,包括沃森和克里克,他们现在正试图理解DNA如何指导细胞内蛋白质的形成。在1954年10月弗雷德里克·桑格出席一系列讲座后不久,克里克开始发展一种理论,认为DNA中核苷酸的排列决定了蛋白质中氨基酸的序列,从而帮助确定蛋白质的功能。他于1958年发表了这一理论。

RNA测序 编辑

RNA测序是最早的核苷酸测序形式之一。 RNA测序的主要标志是1972年和1976年Walter Fiers及其同事在根特大学(根特,比利时)确定并发表的第一个完整基因序列和噬菌体MS2的完整基因组。传统的RNA测序方法需要创建一个用于测序的互补cDNA(Complementary DNA)分子。

早期的DNA测序方法 编辑

确定 DNA 序列的第一种方法涉及由康奈尔大学吴瑞于1970年建立的位置特异性引物延伸策略[2]。 DNA聚合酶催化和特定核苷酸标记,这两者在当前的测序方案中都很重要,用于对λ噬菌体DNA的粘性末端进行测序[3][4][5]。在1970年至1973年间,吴瑞、R Padmanabhan及其同事证明,该方法可用于使用合成的位置特异性引物确定任何DNA序列[6][7][8]。随后弗雷德里克·桑格(Frederick Sanger)采用这种引物延伸策略在英国剑桥英國醫學研究委員會(MRC)中心开发了更快速的DNA测序方法,并于1977年发表了“使用链终止抑制剂进行DNA测序”的方法。

全基因组测序 编辑

 
Φ-X174噬菌體英语Phi X 174的5,386 bp基因組。每個彩色塊代表一個基因。

第一个完整的DNA基因组测序是在1977年Φ-X174噬菌體英语Phi X 174(Phage Φ-X174)的测序工作。医学研究委员会的科学家在1984年破译了Epstein-Barr病毒的完整DNA序列,发现它含有172,282个核苷酸。 该序列的完成标志着DNA测序的一个重要转折点,它在没有病毒基因谱知识的情况下实现了DNA测序。

20世纪80年代初,Pohl及其同事开发了一种在电泳时将测序反应混合物的DNA分子转移到固定基质上的非放射性方法。随后GATC Biotech公司的DNA测序仪“Direct-Blotting-Electrophoresis-System GATC 1500”商业化,该测序仪在EU基因组测序程序的框架以及酵母酿酒酵母染色体II的完整DNA序列中广泛使用。加利福尼亚理工学院的Leroy E. Hood实验室于1986年宣布了第一台半自动DNA测序机。随后,Applied Biosystems在1987年推出了第一台全自动测序仪ABI 370。以及Dupont公司的Genesis 2000,该仪器使用了一种新的荧光标记技术,可在单一泳道中识别所有四个双脱氧核苷酸。到1990年,美国国立卫生研究院(NIH)已开始对支原体,大肠杆菌,秀丽隐杆线虫和酿酒酵母进行大规模测序实验,费用为每个碱基0.75美元。同时,人类cDNA序列的测序始于Craig Venter的实验室,试图获取人类基因组的编码部分。 1995年,Venter,Hamilton Smith及其基因组研究所(TIGR)的同事发表了第一个完整的自由生物体细菌流感嗜血杆菌(Haemophilus influenzae)的基因组。该环形染色体中含有1,830,137个碱基,其在《科学》杂志中的发表标志着全基因组鸟枪法测序的首次公开使用,摆脱了初始绘制工作的需要。

高通量測序(HTS)方法 编辑

 
測序技術的歷史[9]

1990年代中後期開發了幾種新的DNA測序方法,並於 2000年在商業DNA測序儀中實施。這些方法統稱為“下一代”或“第二代”測序 (NGS) 方法,以便將它們與包括桑格测序在內的早期方法區分開來。 與第一代測序相比,NGS 技術的典型特徵是高度可擴展,允許一次對整個基因組進行測序。通常,這是通過將基因組片段化成小塊、隨機採樣片段並使用多種技術之一對其進行測序來實現的,例如下面描述的那些。 整個基因組測序是可能的,因為在一個自動化過程中同時對多個片段進行測序(命名為“大規模並行”測序)。

1990年10月26日,钱永健、Pepi Ross、Margaret Fahnestock 和 Allan J Johnston 提交了一項專利,描述了在 DNA 陣列(印跡和單個 DNA 分子)上使用可移除的 3' 阻斷劑進行逐步(“鹼基對鹼基”)測序[10]。 1996 年,斯德哥爾摩皇家理工學院波尔·尼伦英语Pål Nyrén(Pål Nyrén) 和他的學生穆斯塔法·罗纳吉英语Mostafa Ronaghi(Mostafa Ronaghi)發表了他們的焦磷酸測序方法[11]

1997年4月1日,Pascal Mayer​(法语)和Laurent Farinelli 向世界知識產權組織提交了描述DNA菌落測序的專利[12]。 本專利中描述的DNA樣品製備和隨機表面聚合酶链式反应 (PCR) 陣列方法,與钱永健等人的“鹼基對鹼基”測序方法相結合,現已在Illumina公司的Hi-Seq基因組測序儀中實施。

基本方法 编辑

Maxam-Gilbert测序法 编辑

马克萨姆-吉尔伯特测序(英语:Maxam-Gilbert sequencing)是一项由阿伦·马克萨姆英语Allan Maxam沃尔特·吉尔伯特于1976~1977年间开发的DNA测序方法。此项方法基于:对核鹼基特异性地进行局部化学改性,接下来在改性核苷酸毗邻的位点处DNA骨架发生断裂[13]

Sanger测序法 编辑

Sanger(桑格)双脱氧链终止法弗雷德里克·桑格(Frederick Sanger)于1975年发明的。测序过程需要先做一个聚合酶连锁反应(PCR)。PCR过程中,双脱氧核苷酸可能随机地被加入到正在合成中的DNA片段里。由于双脱氧核糖核苷酸又少了一个原子,一旦它被加入到DNA链上,这个DNA链就不能继续增加长度。最终的结果是获得所有可能获得的、不同长度的DNA片段。目前最普遍最先进的方法,是将双脱氧核糖核苷酸进行不同荧光标记。将PCR反应获得的总DNA通过毛细管电泳分离,跑到最末端的DNA就可以在激光的作用下发出荧光。由于ddATP, ddGTP, ddCTP, ddTTP(4种双脱氧核糖核苷酸)荧光标记不同,计算机可以自动根据颜色判断该位置上碱基究竟是A,T,G,C中的哪一个[14]

高级方法和de novo测序法 编辑

霰彈槍定序法 编辑

霰彈槍定序法(Shotgun sequencing,又称鸟枪法)是一种广泛使用的为较长DNA测序的方法。它比傳統的定序法快速,但精確度較差。霰彈槍定序法曾經使用於塞雷拉基因組(Celera Genomics)公司所主持的人類基因組计划

Bridge PCR 编辑

新一代测序 编辑

随着人们对低成本测序的需求与日俱增,推动了高通量测序(high-throughput sequencing)的发展,此技术又称为二代测序新一代测序次世代测序;这些技术对测序过程采多路复用,同时产生上千或上百万条序列[15][16]。高通量测序技术的目的是降低DNA测序的成本,这个成本比同样可实现测序的染料终止法来得低得多[17]。超高通量测序过程中可同时运行高达500,000次的边合成边测序[18][19][20]

 
新世代技術利用電腦科技,需要根据多个片段序列所重叠的区域,将它们全部组装起来。
新一代测序方法的比较 [21][22]
方法 单分子实时测序(Pacific Bio) 离子半导体(Ion Torrent sequencing) 焦磷酸测序(454) 边合成边测序(Illumina) 边连接边测序(SOLiD sequencing) 链终止法(Sanger sequencing)
读长 5,500 bp to 8,500 bp avg (10,000 bp N50); maximum read length >30,000 bases[23][24][25] up to 400 bp 700 bp 50 to 300 bp 50+35 or 50+50 bp 400 to 900 bp
精确度 99.999% consensus accuracy; 87% single-read accuracy[26] 98% 99.9% 98% 99.9% 99.9%
每次运行可获取读段数 50,000 per SMRT cell, or ~400 megabases[27][28] up to 80 million 1 million up to 3 billion 1.2 to 1.4 billion N/A
每次运行耗时 30 minutes to 2 hours [29] 2 hours 24 hours 1 to 10 days, depending upon sequencer and specified read length[30] 1 to 2 weeks 20 minutes to 3 hours
每百万碱基所耗成本(美元) $0.33-$1.00 $1 $10 $0.05 to $0.15 $0.13 $2400
优势 Longest read length. Fast. Detects 4mC, 5mC, 6mA.[31] Less expensive equipment. Fast. Long read size. Fast. Potential for high sequence yield, depending upon sequencer model and desired application. Low cost per base. Long individual reads. Useful for many applications.
劣势 Moderate throughput. Equipment can be very expensive. Homopolymer errors. Runs are expensive. Homopolymer errors. Equipment can be very expensive. Requires high concentrations of DNA. Slower than other methods. Have issue sequencing palindromic sequence.[32] More expensive and impractical for larger sequencing projects.

454生物科学和焦磷酸测序法 编辑

454测序法由454生物科学发明,是一个类似焦磷酸测序法的新方法。2003年向GenBank提交了一个腺病毒全序列[33],使得他们的技术成为Sanger测序法后第一个被用来测生物基因组全序列的新方法。454使用类似于焦磷酸测序的方法,有着相当高的读取速度,大约为5小时可以测两千万碱基对[33]

正在开发的测序法 编辑

纳米孔DNA测序法 编辑

高通量测序 编辑

高通量测序能一次对几十到几百万DNA分子进行序列测定。

參見 编辑

参考文献 编辑

  1. ^ . [2006-11-17]. (原始内容存档于2006-11-11). 
  2. ^ . Cornell University. (原始内容存档于2009-03-04). 
  3. ^ Padmanabhan R, Jay E, Wu R. Chemical synthesis of a primer and its use in the sequence analysis of the lysozyme gene of bacteriophage T4. Proceedings of the National Academy of Sciences of the United States of America. June 1974, 71 (6): 2510–4. Bibcode:1974PNAS...71.2510P. PMC 388489 . PMID 4526223. doi:10.1073/pnas.71.6.2510 . 
  4. ^ Onaga LA. Ray Wu as Fifth Business: Demonstrating Collective Memory in the History of DNA Sequencing. Studies in the History and Philosophy of Science. Part C. June 2014, 46: 1–14. PMID 24565976. doi:10.1016/j.shpsc.2013.12.006. 
  5. ^ Wu R. Nucleotide sequence analysis of DNA. Nature New Biology. 1972, 236 (68): 198–200. PMID 4553110. doi:10.1038/newbio236198a0. 
  6. ^ Padmanabhan R, Wu R. Nucleotide sequence analysis of DNA. IX. Use of oligonucleotides of defined sequence as primers in DNA sequence analysis. Biochem. Biophys. Res. Commun. 1972, 48 (5): 1295–302. PMID 4560009. doi:10.1016/0006-291X(72)90852-2. 
  7. ^ Wu R, Tu CD, Padmanabhan R. Nucleotide sequence analysis of DNA. XII. The chemical synthesis and sequence analysis of a dodecadeoxynucleotide which binds to the endolysin gene of bacteriophage lambda. Biochem. Biophys. Res. Commun. 1973, 55 (4): 1092–99. PMID 4358929. doi:10.1016/S0006-291X(73)80007-5. 
  8. ^ Jay E, Bambara R, Padmanabhan R, Wu R. DNA sequence analysis: a general, simple and rapid method for sequencing large oligodeoxyribonucleotide fragments by mapping. Nucleic Acids Research. March 1974, 1 (3): 331–53. PMC 344020 . PMID 10793670. doi:10.1093/nar/1.3.331. 
  9. ^ Yang, Aimin; Zhang, Wei; Wang, Jiahao; Yang, Ke; Han, Yang; Zhang, Limin. Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA. Frontiers in Bioengineering and Biotechnology. 2020, 8: 1032. PMC 7498545 . PMID 33015010. doi:10.3389/fbioe.2020.01032 . 
  10. ^ Espacenet – Bibliographic data. worldwide.espacenet.com. [2021-12-04]. (原始内容于2022-01-10). 
  11. ^ Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Analytical Biochemistry. 1996, 242 (1): 84–89. PMID 8923969. doi:10.1006/abio.1996.0432. 
  12. ^ Kawashima, Eric H.; Laurent Farinelli; Pascal Mayer​(法语). Patent: Method of nucleic acid amplification. 2005-05-12 [2012-12-22]. (原始内容存档于22 February 2013). 
  13. ^ Maxam AM, Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. February 1977, 74 (2): 560–4. Bibcode:1977PNAS...74..560M. PMC 392330 . PMID 265521. doi:10.1073/pnas.74.2.560. 
  14. ^ Sanger sequencing. 2020年3月20日 [2020年3月27日]. (原始内容于2020年3月29日) –通过Wikipedia. 
  15. ^ Hall, Nell. Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. May 2007, 209 (Pt 9): 1518–1525. PMID 17449817. doi:10.1242/jeb.001370.  
  16. ^ Church, George M. Genomes for all. Sci. Am. January 2006, 294 (1): 46–54. PMID 16468433. doi:10.1038/scientificamerican0106-46.  
  17. ^ Schuster SC. Next-generation sequencing transforms today's biology. Nat. Methods. January 2008, 5 (1): 16–18. PMID 18165802. S2CID 1465786. doi:10.1038/nmeth1156. 
  18. ^ Kalb, Gilbert; Moxley, Robert. Massively Parallel, Optical, and Neural Computing in the United States. IOS Press. 1992. ISBN 90-5199-097-9. [页码请求]
  19. ^ John R. ten Bosch, Wayne W. Grody. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. The Journal of molecular diagnostics: JMD. 2008-11, 10 (6): 484–492 [2019-02-12]. ISSN 1525-1578. PMC 2570630 . PMID 18832462. doi:10.2353/jmoldx.2008.080027. (原始内容于2019-06-12).  
  20. ^ Tracy Tucker, Marco Marra, Jan M. Friedman. Massively parallel sequencing: the next big thing in genetic medicine. American Journal of Human Genetics. 2009-8, 85 (2): 142–154 [2019-02-12]. ISSN 1537-6605. PMC 2725244 . PMID 19679224. doi:10.1016/j.ajhg.2009.06.022. (原始内容于2019-06-06).   
  21. ^ Quail, Michael; Smith, Miriam E; Coupland, Paul; et al. A tale of three next generation sequencing platforms: comparison of Ion torrent, pacific biosciences and illumina MiSeq sequencers. BMC Genomics. 1 January 2012, 13 (1): 341. PMC 3431227 . PMID 22827831. doi:10.1186/1471-2164-13-341.  
  22. ^ Liu, Lin; Li, Yinhu; Li, Siliang; et al. Comparison of Next-Generation Sequencing Systems. Journal of Biomedicine and Biotechnology (Hindawi Publishing Corporation). 1 January 2012, 2012: 1–11. doi:10.1155/2012/251364.  
  23. ^ New Products: PacBio's RS II; Cufflinks. GenomeWeb. [2020-03-27]. (原始内容于2020-03-27). 
  24. ^ After a Year of Testing, Two Early PacBio Customers Expect More Routine Use of RS Sequencer in 2012. GenomeWeb. 10 January 2012 [2014-02-08]. (原始内容于2013-12-12).  
  25. ^ Inc, Pacific Biosciences of California. Pacific Biosciences Introduces New Chemistry With Longer Read Lengths to Detect Novel Features in DNA Sequence and Advance Genome Studies of Large Organisms. GlobeNewswire News Room. 2013年10月3日 [2020年3月27日]. (原始内容于2020年3月27日). 
  26. ^ Chin, Chen-Shan; Alexander, David H.; Marks, Patrick; Klammer, Aaron A.; Drake, James; Heiner, Cheryl; Clum, Alicia; Copeland, Alex; Huddleston, John; Eichler, Evan E.; Turner, Stephen W.; Korlach, Jonas. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods. 2013年6月27日, 10 (6): 563–569 [2020年3月27日]. doi:10.1038/nmeth.2474. (原始内容于2020年3月29日) –通过www.nature.com. 
  27. ^ De novo bacterial genome assembly: a solved problem?. 2013年7月5日 [2020年3月27日]. (原始内容于2020年3月27日). 
  28. ^ Rasko, David A.; Webster, Dale R.; Sahl, Jason W.; et al. Origins of the Strain Causing an Outbreak of Hemolytic–Uremic Syndrome in Germany. N Engl J Med. 25 August 2011, 365 (8): 709–717. doi:10.1056/NEJMoa1106920.  
  29. ^ Tran, Ben; Brown, Andrew M.K.; Bedard, Philippe L.; Winquist, Eric; Goss, Glenwood D.; Hotte, Sebastien J.; Welch, Stephen A.; Hirte, Hal W.; Zhang, Tong; Stein, Lincoln D.; Ferretti, Vincent; Watt, Stuart; Jiao, Wei; Ng, Karen; Ghai, Sangeet; Shaw, Patricia; Petrocelli, Teresa; Hudson, Thomas J.; Neel, Benjamin G.; et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: Results from a clinical trial. Int. J. Cancer. 1 January 2012: 1547–1555. doi:10.1002/ijc.27817.  
  30. ^ van Vliet, Arnoud H.M. Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiology Letters. 1 January 2010, 302 (1): 1–7. doi:10.1111/j.1574-6968.2009.01767.x.  
  31. ^ Murray, I. A.; Clark, T. A.; Morgan, R. D.; Boitano, M.; Anton, B. P.; Luong, K.; Fomenkov, A.; Turner, S. W.; Korlach, J.; Roberts, R. J. The methylomes of six bacteria. Nucleic Acids Research. 2 October 2012, 40 (22): 11450–62. PMC 3526280 . PMID 23034806. doi:10.1093/nar/gks891. 
  32. ^ Yu-Feng Huang, Sheng-Chung Chen, Yih-Shien Chiang, Tzu-Han Chen & Kuo-Ping Chiu. Palindromic sequence impedes sequencing-by-ligation mechanism. BMC systems biology. 2012,. 6 Suppl 2: S10. PMID 23281822. doi:10.1186/1752-0509-6-S2-S10. 
  33. ^ 33.0 33.1 . [2006-11-17]. (原始内容存档于2006-10-29). 

dna測序, 此條目需要擴充, 2013年5月26日, 请協助改善这篇條目, 更進一步的信息可能會在討論頁或扩充请求中找到, 请在擴充條目後將此模板移除, dna测序, 英語, sequencing, 又稱dna定序, 是指分析特定dna片段的碱基序列, 也就是腺嘌呤, 胸腺嘧啶, 胞嘧啶, 與鳥嘌呤, 的排列方式, 快速的dna测序方法的出现极大地推动了生物学和医学的研究和发现, 在基础生物学研究中, 和在众多的应用领域, 如诊断, 生物技术, 法医生物学, 生物系统学中, dna序列知识已成为不可缺少的知识, . 此條目需要擴充 2013年5月26日 请協助改善这篇條目 更進一步的信息可能會在討論頁或扩充请求中找到 请在擴充條目後將此模板移除 DNA测序 英語 DNA sequencing 又稱DNA定序 是指分析特定DNA片段的碱基序列 也就是腺嘌呤 A 胸腺嘧啶 T 胞嘧啶 C 與鳥嘌呤 G 的排列方式 快速的DNA测序方法的出现极大地推动了生物学和医学的研究和发现 在基础生物学研究中 和在众多的应用领域 如诊断 生物技术 法医生物学 生物系统学中 DNA序列知识已成为不可缺少的知识 具有现代的DNA测序技术的快速测序速度已经有助于达到测序完整的DNA序列 或多种类型的基因组测序和生命物种 包括人类基因组和其他许多动物 植物和微生物物种的完整DNA序列 RNA測序則通常将RNA提取后 反转录为DNA后使用DNA测序的方法进行测序 目前应用最广泛的是由弗雷德里克 桑格发明的桑格測序 1 新的测序方法 例如454生物科学的方法和焦磷酸测序法 自动化chain termination DNA测序结果的一个例子 目录 1 应用 1 1 分子生物学 1 2 演化生物学 1 3 宏基因组学 或元基因组学 1 4 医学 1 5 法医学 2 历史 2 1 DNA结构与功能的发现 2 2 RNA测序 2 3 早期的DNA测序方法 2 4 全基因组测序 2 5 高通量測序 HTS 方法 3 基本方法 3 1 Maxam Gilbert测序法 3 2 Sanger测序法 4 高级方法和de novo测序法 4 1 霰彈槍定序法 4 2 Bridge PCR 5 新一代测序 5 1 454生物科学和焦磷酸测序法 6 正在开发的测序法 6 1 纳米孔DNA测序法 6 2 高通量测序 7 參見 8 参考文献应用 编辑DNA测序可用于确定任何生物的单个基因的序列 较大的遗传区域 即基因簇或操纵子的簇 完整的染色体或整个基因组 DNA测序也是对RNA或蛋白质进行测序的最有效方法 通过对开放阅读框测序 目前 DNA测序已成为生物学和其他科学领域 如医学 法医学或人类学等 的关键技术 分子生物学 编辑 在分子生物学中 DNA测序可被用于研究基因组及其编码的蛋白质 利用测序获得的信息 科研人员能够识别基因的变化 基因与疾病和表型的关联 并确定潜在的药物靶点 演化生物学 编辑 由于DNA是携带有遗传信息的大分子 在演化生物学中 DNA测序被用于研究不同生物体之间的相关性以及它们是如何演化的 宏基因组学 或元基因组学 编辑 主条目 元基因組學 宏基因组学是一门直接取得环境中所有遗传物质的研究 环境包括但不限于水体 污水 污垢 从空气中过滤出的碎片或者从生物体采集的样本 了解在特定环境中存在哪些生物体对于生态学 流行病学 微生物学和其他领域的研究至关重要 DNA测序使研究人员能够确定微生物群中可能存在哪些类型的微生物 医学 编辑 医疗人员可通过对患者基因 基因组 的测序结果确定该患者是否有携带遗传性疾病的风险 需要注意的是 该方法属于基因检测 有些基因检测不会用到DNA测序技术 法医学 编辑 DNA测序可以与DNA图谱鉴定 基因指纹分析 英語 DNA profiling 一起用于法医鉴定和亲子鉴定 DNA测试在过去的几十年中发展迅猛 目前已能够做到将DNA鉴定结果与被调查对象联系起来 指纹 唾液 毛囊等中的DNA特征可以将不同的生物体进行区分 测试DNA是一种可以检测DNA链中特定基因组并生成唯一的个性化DNA模型的技术 每一种有机体都有其DNA特征 并可以通过DNA测试来确定 两个人具有完全相同的DNA特征是非常罕见的 因此保证了DNA测试的成功 历史 编辑DNA结构与功能的发现 编辑 nbsp 弗雷德里克 桑格 DNA测序的先驱者 桑格是少数获得两项诺贝尔奖的科学家之一 其中一项为蛋白质测序 另一项为DNA测序 脱氧核糖核酸 DNA 最早在1869年由Friedrich Miescher发现并分离出来 但由于当时普遍认为遗传信息保存于蛋白质而不是DNA中 因此在过去几十年中DNA一直没有得到充分研究 1944年 由于Oswald Avery Colin MacLeod和Maclyn McCarty的一些实验表明 纯化的DNA可以将一种细菌变成另一种细菌 这种情况才发生了变化 这也是首次DNA显示出改变细胞特性的能力 1953年 James Watson和Francis Crick根据Rosalind Franklin研究的结晶X射线结构提出了他们的双螺旋DNA模型 根据该模型 DNA由彼此缠绕的两条核苷酸链组成 通过氢键连接在一起并以相反方向运行 每条链由四个互补的核苷酸组成 腺嘌呤 A 胞嘧啶 C 鸟嘌呤 G 和胸腺嘧啶 T 其中A与T配对 C与G配对 他们提出的这种结构 使得每条单链都可被用于重建另一条链 并且让遗传信息代代相传 对蛋白质进行测序的基础首先由弗雷德里克 桑格 Frederick Sanger 的工作奠定 他于1955年完成了胰岛素 胰腺分泌的一种蛋白质 中所有氨基酸序列的测序工作 这是首个确凿的证据证明蛋白质是具有特定分子模式的化学实体 而不是悬浮在流体中的随机混合物 桑格在胰岛素测序方面的成功使得X射线晶体学家大为振奋 包括沃森和克里克 他们现在正试图理解DNA如何指导细胞内蛋白质的形成 在1954年10月弗雷德里克 桑格出席一系列讲座后不久 克里克开始发展一种理论 认为DNA中核苷酸的排列决定了蛋白质中氨基酸的序列 从而帮助确定蛋白质的功能 他于1958年发表了这一理论 RNA测序 编辑 RNA测序是最早的核苷酸测序形式之一 RNA测序的主要标志是1972年和1976年Walter Fiers及其同事在根特大学 根特 比利时 确定并发表的第一个完整基因序列和噬菌体MS2的完整基因组 传统的RNA测序方法需要创建一个用于测序的互补cDNA Complementary DNA 分子 早期的DNA测序方法 编辑 确定 DNA 序列的第一种方法涉及由康奈尔大学的吴瑞于1970年建立的位置特异性引物延伸策略 2 DNA聚合酶催化和特定核苷酸标记 这两者在当前的测序方案中都很重要 用于对l噬菌体DNA的粘性末端进行测序 3 4 5 在1970年至1973年间 吴瑞 R Padmanabhan及其同事证明 该方法可用于使用合成的位置特异性引物确定任何DNA序列 6 7 8 随后弗雷德里克 桑格 Frederick Sanger 采用这种引物延伸策略在英国剑桥的英國醫學研究委員會 MRC 中心开发了更快速的DNA测序方法 并于1977年发表了 使用链终止抑制剂进行DNA测序 的方法 全基因组测序 编辑 nbsp F X174噬菌體 英语 Phi X 174 的5 386 bp基因組 每個彩色塊代表一個基因 第一个完整的DNA基因组测序是在1977年F X174噬菌體 英语 Phi X 174 Phage F X174 的测序工作 医学研究委员会的科学家在1984年破译了Epstein Barr病毒的完整DNA序列 发现它含有172 282个核苷酸 该序列的完成标志着DNA测序的一个重要转折点 它在没有病毒基因谱知识的情况下实现了DNA测序 20世纪80年代初 Pohl及其同事开发了一种在电泳时将测序反应混合物的DNA分子转移到固定基质上的非放射性方法 随后GATC Biotech公司的DNA测序仪 Direct Blotting Electrophoresis System GATC 1500 商业化 该测序仪在EU基因组测序程序的框架以及酵母酿酒酵母染色体II的完整DNA序列中广泛使用 加利福尼亚理工学院的Leroy E Hood实验室于1986年宣布了第一台半自动DNA测序机 随后 Applied Biosystems在1987年推出了第一台全自动测序仪ABI 370 以及Dupont公司的Genesis 2000 该仪器使用了一种新的荧光标记技术 可在单一泳道中识别所有四个双脱氧核苷酸 到1990年 美国国立卫生研究院 NIH 已开始对支原体 大肠杆菌 秀丽隐杆线虫和酿酒酵母进行大规模测序实验 费用为每个碱基0 75美元 同时 人类cDNA序列的测序始于Craig Venter的实验室 试图获取人类基因组的编码部分 1995年 Venter Hamilton Smith及其基因组研究所 TIGR 的同事发表了第一个完整的自由生物体细菌流感嗜血杆菌 Haemophilus influenzae 的基因组 该环形染色体中含有1 830 137个碱基 其在 科学 杂志中的发表标志着全基因组鸟枪法测序的首次公开使用 摆脱了初始绘制工作的需要 高通量測序 HTS 方法 编辑 nbsp 測序技術的歷史 9 1990年代中後期開發了幾種新的DNA測序方法 並於 2000年在商業DNA測序儀中實施 這些方法統稱為 下一代 或 第二代 測序 NGS 方法 以便將它們與包括桑格测序在內的早期方法區分開來 與第一代測序相比 NGS 技術的典型特徵是高度可擴展 允許一次對整個基因組進行測序 通常 這是通過將基因組片段化成小塊 隨機採樣片段並使用多種技術之一對其進行測序來實現的 例如下面描述的那些 整個基因組測序是可能的 因為在一個自動化過程中同時對多個片段進行測序 命名為 大規模並行 測序 1990年10月26日 钱永健 Pepi Ross Margaret Fahnestock 和 Allan J Johnston 提交了一項專利 描述了在 DNA 陣列 印跡和單個 DNA 分子 上使用可移除的 3 阻斷劑進行逐步 鹼基對鹼基 測序 10 1996 年 斯德哥爾摩皇家理工學院的波尔 尼伦 英语 Pal Nyren Pal Nyren 和他的學生穆斯塔法 罗纳吉 英语 Mostafa Ronaghi Mostafa Ronaghi 發表了他們的焦磷酸測序方法 11 1997年4月1日 Pascal Mayer 法语 和Laurent Farinelli 向世界知識產權組織提交了描述DNA菌落測序的專利 12 本專利中描述的DNA樣品製備和隨機表面聚合酶链式反应 PCR 陣列方法 與钱永健等人的 鹼基對鹼基 測序方法相結合 現已在Illumina公司的Hi Seq基因組測序儀中實施 基本方法 编辑Maxam Gilbert测序法 编辑 主条目 马克萨姆 吉尔伯特测序 马克萨姆 吉尔伯特测序 英语 Maxam Gilbert sequencing 是一项由阿伦 马克萨姆 英语 Allan Maxam 与沃尔特 吉尔伯特于1976 1977年间开发的DNA测序方法 此项方法基于 对核鹼基特异性地进行局部化学改性 接下来在改性核苷酸毗邻的位点处DNA骨架发生断裂 13 Sanger测序法 编辑 主条目 桑格测序 Sanger 桑格 双脱氧链终止法是弗雷德里克 桑格 Frederick Sanger 于1975年发明的 测序过程需要先做一个聚合酶连锁反应 PCR PCR过程中 双脱氧核苷酸可能随机地被加入到正在合成中的DNA片段里 由于双脱氧核糖核苷酸又少了一个氧原子 一旦它被加入到DNA链上 这个DNA链就不能继续增加长度 最终的结果是获得所有可能获得的 不同长度的DNA片段 目前最普遍最先进的方法 是将双脱氧核糖核苷酸进行不同荧光标记 将PCR反应获得的总DNA通过毛细管电泳分离 跑到最末端的DNA就可以在激光的作用下发出荧光 由于ddATP ddGTP ddCTP ddTTP 4种双脱氧核糖核苷酸 荧光标记不同 计算机可以自动根据颜色判断该位置上碱基究竟是A T G C中的哪一个 14 高级方法和de novo测序法 编辑霰彈槍定序法 编辑 主条目 霰彈槍定序法 霰彈槍定序法 Shotgun sequencing 又称鸟枪法 是一种广泛使用的为较长DNA测序的方法 它比傳統的定序法快速 但精確度較差 霰彈槍定序法曾經使用於塞雷拉基因組 Celera Genomics 公司所主持的人類基因組计划 Bridge PCR 编辑 此章节尚無任何内容 需要扩充 2021年2月3日 新一代测序 编辑主条目 大規模並行測序 英语 Massive parallel sequencing 随着人们对低成本测序的需求与日俱增 推动了高通量测序 high throughput sequencing 的发展 此技术又称为二代测序 新一代测序 次世代测序 这些技术对测序过程采多路复用 同时产生上千或上百万条序列 15 16 高通量测序技术的目的是降低DNA测序的成本 这个成本比同样可实现测序的染料终止法来得低得多 17 超高通量测序过程中可同时运行高达500 000次的边合成边测序 18 19 20 nbsp 新世代技術利用電腦科技 需要根据多个片段序列所重叠的区域 将它们全部组装起来 新一代测序方法的比较 21 22 方法 单分子实时测序 Pacific Bio 离子半导体 Ion Torrent sequencing 焦磷酸测序 454 边合成边测序 Illumina 边连接边测序 SOLiD sequencing 链终止法 Sanger sequencing 读长 5 500 bp to 8 500 bp avg 10 000 bp N50 maximum read length gt 30 000 bases 23 24 25 up to 400 bp 700 bp 50 to 300 bp 50 35 or 50 50 bp 400 to 900 bp精确度 99 999 consensus accuracy 87 single read accuracy 26 98 99 9 98 99 9 99 9 每次运行可获取读段数 50 000 per SMRT cell or 400 megabases 27 28 up to 80 million 1 million up to 3 billion 1 2 to 1 4 billion N A每次运行耗时 30 minutes to 2 hours 29 2 hours 24 hours 1 to 10 days depending upon sequencer and specified read length 30 1 to 2 weeks 20 minutes to 3 hours每百万碱基所耗成本 美元 0 33 1 00 1 10 0 05 to 0 15 0 13 2400优势 Longest read length Fast Detects 4mC 5mC 6mA 31 Less expensive equipment Fast Long read size Fast Potential for high sequence yield depending upon sequencer model and desired application Low cost per base Long individual reads Useful for many applications 劣势 Moderate throughput Equipment can be very expensive Homopolymer errors Runs are expensive Homopolymer errors Equipment can be very expensive Requires high concentrations of DNA Slower than other methods Have issue sequencing palindromic sequence 32 More expensive and impractical for larger sequencing projects 454生物科学和焦磷酸测序法 编辑 454测序法由454生物科学发明 是一个类似焦磷酸测序法的新方法 2003年向GenBank提交了一个腺病毒全序列 33 使得他们的技术成为Sanger测序法后第一个被用来测生物基因组全序列的新方法 454使用类似于焦磷酸测序的方法 有着相当高的读取速度 大约为5小时可以测两千万碱基对 33 正在开发的测序法 编辑纳米孔DNA测序法 编辑 主条目 纳米孔测序 高通量测序 编辑 高通量测序能一次对几十到几百万DNA分子进行序列测定 參見 编辑 nbsp 分子与细胞生物学主题 已測序的生物参考文献 编辑 存档副本 2006 11 17 原始内容存档于2006 11 11 Ray Wu Faculty Profile Cornell University 原始内容存档于2009 03 04 Padmanabhan R Jay E Wu R Chemical synthesis of a primer and its use in the sequence analysis of the lysozyme gene of bacteriophage T4 Proceedings of the National Academy of Sciences of the United States of America June 1974 71 6 2510 4 Bibcode 1974PNAS 71 2510P PMC 388489 nbsp PMID 4526223 doi 10 1073 pnas 71 6 2510 nbsp Onaga LA Ray Wu as Fifth Business Demonstrating Collective Memory in the History of DNA Sequencing Studies in the History and Philosophy of Science Part C June 2014 46 1 14 PMID 24565976 doi 10 1016 j shpsc 2013 12 006 Wu R Nucleotide sequence analysis of DNA Nature New Biology 1972 236 68 198 200 PMID 4553110 doi 10 1038 newbio236198a0 Padmanabhan R Wu R Nucleotide sequence analysis of DNA IX Use of oligonucleotides of defined sequence as primers in DNA sequence analysis Biochem Biophys Res Commun 1972 48 5 1295 302 PMID 4560009 doi 10 1016 0006 291X 72 90852 2 Wu R Tu CD Padmanabhan R Nucleotide sequence analysis of DNA XII The chemical synthesis and sequence analysis of a dodecadeoxynucleotide which binds to the endolysin gene of bacteriophage lambda Biochem Biophys Res Commun 1973 55 4 1092 99 PMID 4358929 doi 10 1016 S0006 291X 73 80007 5 Jay E Bambara R Padmanabhan R Wu R DNA sequence analysis a general simple and rapid method for sequencing large oligodeoxyribonucleotide fragments by mapping Nucleic Acids Research March 1974 1 3 331 53 PMC 344020 nbsp PMID 10793670 doi 10 1093 nar 1 3 331 Yang Aimin Zhang Wei Wang Jiahao Yang Ke Han Yang Zhang Limin Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA Frontiers in Bioengineering and Biotechnology 2020 8 1032 PMC 7498545 nbsp PMID 33015010 doi 10 3389 fbioe 2020 01032 nbsp Espacenet Bibliographic data worldwide espacenet com 2021 12 04 原始内容存档于2022 01 10 Ronaghi M Karamohamed S Pettersson B Uhlen M Nyren P Real time DNA sequencing using detection of pyrophosphate release Analytical Biochemistry 1996 242 1 84 89 PMID 8923969 doi 10 1006 abio 1996 0432 Kawashima Eric H Laurent Farinelli Pascal Mayer 法语 Patent Method of nucleic acid amplification 2005 05 12 2012 12 22 原始内容存档于22 February 2013 Maxam AM Gilbert W A new method for sequencing DNA Proc Natl Acad Sci U S A February 1977 74 2 560 4 Bibcode 1977PNAS 74 560M PMC 392330 nbsp PMID 265521 doi 10 1073 pnas 74 2 560 Sanger sequencing 2020年3月20日 2020年3月27日 原始内容存档于2020年3月29日 通过Wikipedia Hall Nell Advanced sequencing technologies and their wider impact in microbiology J Exp Biol May 2007 209 Pt 9 1518 1525 PMID 17449817 doi 10 1242 jeb 001370 nbsp Church George M Genomes for all Sci Am January 2006 294 1 46 54 PMID 16468433 doi 10 1038 scientificamerican0106 46 nbsp Schuster SC Next generation sequencing transforms today s biology Nat Methods January 2008 5 1 16 18 PMID 18165802 S2CID 1465786 doi 10 1038 nmeth1156 Kalb Gilbert Moxley Robert Massively Parallel Optical and Neural Computing in the United States IOS Press 1992 ISBN 90 5199 097 9 页码请求 John R ten Bosch Wayne W Grody Keeping up with the next generation massively parallel sequencing in clinical diagnostics The Journal of molecular diagnostics JMD 2008 11 10 6 484 492 2019 02 12 ISSN 1525 1578 PMC 2570630 nbsp PMID 18832462 doi 10 2353 jmoldx 2008 080027 原始内容存档于2019 06 12 引文格式1维护 PMC格式 link nbsp Tracy Tucker Marco Marra Jan M Friedman Massively parallel sequencing the next big thing in genetic medicine American Journal of Human Genetics 2009 8 85 2 142 154 2019 02 12 ISSN 1537 6605 PMC 2725244 nbsp PMID 19679224 doi 10 1016 j ajhg 2009 06 022 原始内容存档于2019 06 06 请检查 date 中的日期值 帮助 引文格式1维护 PMC格式 link nbsp Quail Michael Smith Miriam E Coupland Paul et al A tale of three next generation sequencing platforms comparison of Ion torrent pacific biosciences and illumina MiSeq sequencers BMC Genomics 1 January 2012 13 1 341 PMC 3431227 nbsp PMID 22827831 doi 10 1186 1471 2164 13 341 nbsp Liu Lin Li Yinhu Li Siliang et al Comparison of Next Generation Sequencing Systems Journal of Biomedicine and Biotechnology Hindawi Publishing Corporation 1 January 2012 2012 1 11 doi 10 1155 2012 251364 nbsp New Products PacBio s RS II Cufflinks GenomeWeb 2020 03 27 原始内容存档于2020 03 27 After a Year of Testing Two Early PacBio Customers Expect More Routine Use of RS Sequencer in 2012 GenomeWeb 10 January 2012 2014 02 08 原始内容存档于2013 12 12 nbsp Inc Pacific Biosciences of California Pacific Biosciences Introduces New Chemistry With Longer Read Lengths to Detect Novel Features in DNA Sequence and Advance Genome Studies of Large Organisms GlobeNewswire News Room 2013年10月3日 2020年3月27日 原始内容存档于2020年3月27日 Chin Chen Shan Alexander David H Marks Patrick Klammer Aaron A Drake James Heiner Cheryl Clum Alicia Copeland Alex Huddleston John Eichler Evan E Turner Stephen W Korlach Jonas Nonhybrid finished microbial genome assemblies from long read SMRT sequencing data Nature Methods 2013年6月27日 10 6 563 569 2020年3月27日 doi 10 1038 nmeth 2474 原始内容存档于2020年3月29日 通过www nature com De novo bacterial genome assembly a solved problem 2013年7月5日 2020年3月27日 原始内容存档于2020年3月27日 Rasko David A Webster Dale R Sahl Jason W et al Origins of the Strain Causing an Outbreak of Hemolytic Uremic Syndrome in Germany N Engl J Med 25 August 2011 365 8 709 717 doi 10 1056 NEJMoa1106920 nbsp Tran Ben Brown Andrew M K Bedard Philippe L Winquist Eric Goss Glenwood D Hotte Sebastien J Welch Stephen A Hirte Hal W Zhang Tong Stein Lincoln D Ferretti Vincent Watt Stuart Jiao Wei Ng Karen Ghai Sangeet Shaw Patricia Petrocelli Teresa Hudson Thomas J Neel Benjamin G et al Feasibility of real time next generation sequencing of cancer genes linked to drug response Results from a clinical trial Int J Cancer 1 January 2012 1547 1555 doi 10 1002 ijc 27817 nbsp van Vliet Arnoud H M Next generation sequencing of microbial transcriptomes challenges and opportunities FEMS Microbiology Letters 1 January 2010 302 1 1 7 doi 10 1111 j 1574 6968 2009 01767 x nbsp Murray I A Clark T A Morgan R D Boitano M Anton B P Luong K Fomenkov A Turner S W Korlach J Roberts R J The methylomes of six bacteria Nucleic Acids Research 2 October 2012 40 22 11450 62 PMC 3526280 nbsp PMID 23034806 doi 10 1093 nar gks891 引文使用过时参数coauthors 帮助 Yu Feng Huang Sheng Chung Chen Yih Shien Chiang Tzu Han Chen amp Kuo Ping Chiu Palindromic sequence impedes sequencing by ligation mechanism BMC systems biology 2012 6 Suppl 2 S10 PMID 23281822 doi 10 1186 1752 0509 6 S2 S10 33 0 33 1 About 454 Overview 2006 11 17 原始内容存档于2006 10 29 取自 https zh wikipedia org w index php title DNA測序 amp oldid 74989476, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。