在流体力学中,雷诺数(Reynolds number)是流体的惯性力与黏性力的比值,它是一个無量纲量。
雷諾數較小時,黏滯力對流場的影響大於慣性力,流場中流速的擾動會因黏滯力而衰減,流體流動穩定,為層流;反之,若雷諾數較大時,慣性力對流場的影響大於黏滯力,流體流動較不穩定,流速的微小變化容易發展、增強,形成紊亂、不規則的紊流流場。
定义
雷諾數一般表示如下:
其中
- 是特徵速度(国际单位:m/s)
- 是特徵長度(m)
- 是流體动力黏度(Pa·s或N·s/m²)
- 是流體运动黏度(ρ)(m²/s)
- 是流體密度(kg/m³)
对于不同的流场,雷诺数可以有很多表达方式。这些表达方式一般都包括流体性质(密度、黏度)再加上流体速度和一个特征长度或者特征尺寸。特徵長度取決於觀察的流場情況,以及約定俗成的使用习惯。當觀察在水管中流動內流場,或是放在流场中的球体外流場時,前者可能會選擇水管直徑或是管長,而後者通常使用直径作为特征長度。而半径和直径对于球型、圆形來說其實是同一件事,但是計算上就差了一倍,因此习惯上常用直徑來代表。
管内流场
对于在管内的流动,雷诺数定义为:
式中:
- 特徵速度選擇平均流速(国际单位:m/s)
- 特徵長度選擇管径或管長(m)
- 体积流量(m³/s)
- 横截面积(m²)
假如雷諾數的體積流速固定,則雷諾數與密度(ρ)、速度的开方()成正比;與管徑(D)和黏度(u)成反比
假如雷諾數的質量流速(即是可以穩定流動)固定,則雷諾數與管徑(D)、黏度(u)成反比;與√速度()成正比;與密度(ρ)無關 要计算雷诺数,您可以使用此雷诺数计算器来简化流程。
平板流
对于在两个宽板(板宽远大于两板之间距离)之间的流动,特征长度为两倍的两板之间距离
流体中的物体
对于流体中的物体的雷诺数,经常用Rep表示。用雷诺数可以研究物体周围的流动情况,是否有,还可以研究沉降速度。
流体中的球
对于在流体中的球,特征长度就是这个球的直径,特征速度是这个球相对于远处流体的速度,密度和黏度都是流体的性质。在这种情况下,层流只存在于Re=10或者以下。 在小雷诺数情况下,力和运动速度的关系遵从斯托克斯定律。
球在流体中的雷诺数可以用下式计算,其中为流体速度,为球速度,为球直径,为流体密度,为流体粘度。
搅拌槽
对于一个圆柱形的搅拌槽,中间有一个旋转的桨或者涡轮,特征长度是这个旋转物体的直径D。速度V等于ND,其中N是转速(周/秒)。雷诺数表达为:
当Re>10,000时,这个系统为完全湍流状态。
过渡流雷诺数
在外流場中由於有边界层的影響,實驗中發現当流體流过一定长度后,會由层流過渡到完全為湍流。对于不同的尺度和不同的流体,只要雷諾數達到某個特定值,这种不稳定性都会发生。外流場通常以雷諾數代表層流結束, 这里特徵長度 x 是从物體前缘起算的距离,特徵速度是边界层以外的自由流场速度。
內流場雷诺数为层流状态,为湍流状态,介於2100~4000为过渡流状态。
- 層流(又可稱作黏滯流動、線流):流體沿著管軸以平行方向流動,因為流體很平穩,所以可看作層層相疊,各層間不互相干擾。流體在管內速度分佈為拋物體的形狀,面向切面的則是拋物線分佈。因為是個別有其方向和速率流動,所以流動摩擦損失較小。
- 湍流(又可稱作紊流、擾流):此則是管內流體流動狀態為各分子互相激烈碰撞,非直線流動而是漩渦狀,流動摩擦損失較大。
管道中的摩擦阻力
在管道中完全成形(fully developed)流體的壓降可以用穆迪圖來說明,穆迪圖繪製出在不同相對粗糙度下,達西摩擦因子f和雷诺数及相對粗糙度的關係,圖中隨著雷诺数的增加,管流由層流變為过渡流及湍流,管流的特性和流體為层流、过渡流或湍流有明顯關係。
流动相似性
两个流动如果相似的话,他们必须有相同的几何形状和相同的雷诺数和欧拉数。当在模型和真实的流动之间比较两个流体中相应的一点,如下关系式成立:
带m下标的表示模型里的量,其他的表示实际流动里的量。 这样工程师们就可以用缩小尺寸的水槽或者风洞来进行试验,与数值模拟的模型比对数据分析,节约试验成本和时间。实际应用中也许会需要其他的无量纲量与模型一致,比如说马赫数,福祿數。
以下是一些雷诺数的例子:
- 纤毛虫~ 1×10−1
- 最小的魚 ~1
- 大脑中的血液流 ~1×102
- 主动脉中的血流~ 1×103
湍流临界值~ 2.3×103-5.0×104(对于管内流)到106(边界层)
- 棒球(美國職業棒球大聯盟投手投球)~2×105
- 游泳(人)~4×106
- 最快的魚 ~1×108
- 蓝鲸~ 3×108
- 大型邮轮()~ 5×109
雷诺数的推导
雷诺数可以从无量纲的非可压納維-斯托克斯方程推导得来:
上式中每一项的单位都是加速度乘以密度。无量纲化上式,需要把方程变成一个独立于物理单位的方程。我们可以把上式乘以系数:
这里的字母跟在雷诺数定义中使用的是一样的。我们设:
无量纲的纳维-斯托克斯方程可以写为:
这里:
最后,为了阅读方便把撇去掉:
这就是为什么在数学上所有的具有相同雷诺数的流场是相似的。
参见
- 磁雷诺数
參考文獻
- 董, 长银; 栾, 万里. 牛顿流体中的固体颗粒运动模型分析及应用 (PDF). 中国石油大学学报 (自然科学版 ). 2007, 31 (5): 55–63 [2017-10-25]. doi:10.3321/j.issn:1000-5870.2007.05.012. (原始内容 (PDF)于2017-10-25).
- R. K. Sinnott Coulson & Richardson's Chemical Engineering, Volume 6: Chemical Engineering Design, 4th ed (Butterworth-Heinemann) ISBN 0-7506-6538-6 page 473
- Patel, V. C.; Rodi, W.; Scheuerer, G. Turbulence Models for Near-Wall and Low Reynolds Number Flows—A Review. AIAA Journal. 1985, 23 (9): 1308–1319. Bibcode:1985AIAAJ..23.1308P. doi:10.2514/3.9086.
- Dusenbery, David B. Living at Micro Scale. Cambridge, Massachusetts: Harvard University Press. 2009: 136. ISBN 9780674031166.
維基百科,wiki,書籍,書籍,圖書館,文章,文章,閱讀,下載,免費下載,免費下載,MP3,視頻,MP4,3GP,JPG,JPG,JPEG,JPEG,GIF,PNG,PNG,圖片,音樂,音樂,音樂,歌曲,電影,電影,書籍,書籍,遊戲,遊戲,遊戲,遊戲,手機,電話,Android,iOS,Apple,手機,三星,iPhone,Xiomi,xiaomi, 小米,Redmi,Honor,Oppo,Nokia,Sonya,MI,個人電腦,網絡,電腦