fbpx
维基百科

癌症免疫疗法

癌症免疫疗法(英語:cancer immunotherapyimmuno-oncology)是一类通过激活免疫系统来治疗癌症的方法。此类疗法采用了癌症免疫学英语Cancer immunology研究的成果,这是肿瘤学中一个快速发展的研究方向。癌細胞表面有能被免疫系统识别的肿瘤抗原,而这正是癌症免疫的基础。这些抗原一般为蛋白质或高分子(如碳水化合物)。免疫疗法可分为主动免疫、被动免疫与联合免疫。主动免疫疗法直接诱导自體免疫系统,使其能够识别肿瘤抗原,进而攻击癌細胞。而被动免疫疗法则是借助外源物质发挥抗肿瘤作用,其中会用到单克隆抗体(简称单抗)、淋巴细胞细胞因子等。

癌症免疫疗法
CD20的抗原表位利妥昔单抗的抗原结合段(Fab)相结合
專科immuno-oncology

在这些疗法中,已有一些抗体疗法被批准用于治疗多种类型的癌症。[1]抗体是一类由免疫系统产生的蛋白质,用于与细胞表面的靶抗原结合。免疫系统通常用其来攻击病原体。每种抗体对一种或数种蛋白质有特异性,那些能与肿瘤抗原结合的抗体可用于治疗癌症。细胞表面受体是抗体疗法的主要目标,如CD20英语CD20CD274CD279英语Programmed cell death protein 1等。一旦与肿瘤抗原相结合,抗体可以引发抗体依赖细胞介导的细胞毒作用(ADCC)、激活补体系统或阻断受体与其配体的相互作用,最终导致细胞死亡。目前已被批准的抗体包括阿仑单抗英语Alemtuzumab伊匹单抗英语Ipilimumab纳武单抗英语Nivolumab奥法木单抗英语Ofatumumab利妥昔单抗等。

主动细胞疗法一般则会从血液或肿瘤中分离出免疫细胞,在将这些细胞体外培养后再输回患者体内去攻击肿瘤。此外,也可以经由基因工程改造后使免疫细胞表达肿瘤特异性受体,再经培养后输回患者体内。能运用于此种疗法的细胞包括自然杀伤细胞(简称NK细胞)、淋巴因子活化杀伤细胞(简称LAK细胞)、细胞毒性T细胞(简称CTL细胞)、树突状细胞(简称DC细胞)等。

细胞免疫疗法 编辑

树突状细胞疗法 编辑

 
将血细胞从人体中取出后在体外培养,用肿瘤抗原对其刺激,最后将成熟的DC细胞输回患者体内以引发免疫应答。

树突状细胞(DC细胞)能获取肿瘤抗原的特征信息后呈递给淋巴细胞,这些细胞在被激活后会攻击癌細胞、引发抗肿瘤免疫应答。DC细胞是哺乳动物免疫系统中的一种抗原提呈细胞(APC)[2],在癌症治疗中用于识别肿瘤抗原。[3]Sipuleucel-T英语Sipuleucel-T是首个经批准的基于DC细胞的癌症疗法。

一种促使DC细胞提呈肿瘤抗原信息的方法是使用自体癌細胞溶解物或短肽致敏。[4]这些抗原肽常与具有强免疫原性的佐剂英语Adjuvant一同使用,用于增强抗肿瘤免疫应答。其他佐剂还包括能吸引、激活DC细胞的蛋白质或其他化学物质,比如粒细胞-巨噬细胞集落刺激因子(GM-CSF)。

让癌細胞表达GM-CSF可以在体内激活DC细胞,如运用基因工程手段改造癌細胞使其产生GM-CSF,或用能表达GM-CSF的溶瘤病毒英语Oncolytic virus感染癌細胞。

此外,亦可从患者血液中分离DC细胞后在体外将其激化。单个肿瘤特异性肽/蛋白质或者癌細胞溶解物可用来活化DC细胞。之后再将这些细胞(或加上佐剂)输回患者体内,以期引发免疫应答。

DC细胞疗法还包括使用能与DC细胞表面受体结合的抗体。将抗原加到抗体上能够诱导DC细胞成熟,进而诱发肿瘤免疫应答。TLR3英语TLR3TLR7英语TLR7TLR8英语TLR8CD40等DC细胞受体都被用作抗体目标。[3]

批准药物 编辑

2010年,Sipuleucel-T(商品名Provenge,普列威)被批准用于治疗无症状或仅有轻微症状的转移性去势抵抗性前列腺癌。该疗法首先采用白细胞分离术英语Leukapheresis将患者血液中的APC分离出来,再同由GM-CSF和前列腺酸性磷酸酶英语Prostatic acid phosphatase(PAP)制成的融合蛋白PA2024共同培养后输回患者体内。如此重复三次为一个完整疗程。[5][6][7][8]

CAR-T细胞疗法 编辑

嵌合抗原受体T细胞(CAR-T)免疫疗法通过改造T细胞以使其能更有效地识别并杀伤癌細胞。从患者体内采集T细胞后,在其中加上能够识别癌細胞的嵌合抗原受体英语Chimeric antigen receptor(CAR),再将融合后的CAR-T细胞输回患者体内以攻击肿瘤。

批准药物 编辑

2017年,美国食品药品监督管理局(FDA)批准了用于治疗急性淋巴性白血病(ALL)的CAR-T疗法Tisagenlecleucel英语Tisagenlecleucel(商品名Kymriah)。[9]该疗法能够杀死体内的CD19英语CD19阳性细胞(B细胞),不过除了癌细胞外,也会杀死正常的抗体生成细胞。

Axicabtagene ciloleucel英语Axicabtagene ciloleucel(商品名Yescarta)则是另一种CAR-T免疫疗法,于2017年被批准用于治疗弥漫大B细胞淋巴瘤[10]

抗体疗法 编辑

 
多种重组单抗

抗体获得性免疫应答的关键,在识别外源抗原与激发免疫应答的过程中至关重要。抗体是一些由B细胞分泌的Y形蛋白质,由两个片段组成:一是用于结合抗原的抗原结合段英语Fragment antigen-binding(Fab段),二是能够与巨噬细胞中性粒细胞、NK细胞等免疫细胞表面的Fc受体相互作用的可结晶段英语Fragment crystallizable region(Fc段)。许多免疫治疗方案中都会用到抗体。应用单抗技术能够制造出针对特定肿瘤抗原的抗体。

抗体类型 编辑

偶联 编辑

运用于癌症治疗的抗体可分为两类:[11]

  • 裸单克隆抗体是指没有附加药物的抗体,大多数抗体疗法中采用的即是此类抗体。
  • 偶联单克隆抗体则是将抗体与其他具有细胞毒性或放射性的分子连接在一起。用来连接的化学物质一般为化疗药物,不过有时亦会采用其他毒素。抗体与癌細胞表面的特定抗原结合,从而将药物投递至肿瘤。与放射性化合物相结合的抗体称为放射性标记(radiolabelled)抗体。而同化疗药物与毒素连接的则分别被称为化疗标记(chemolabelled)抗体与免疫毒素(immunotoxin)。[12]

Fc段 编辑

Fc段能与Fc受体结合的特征对于抗体激发免疫系统而言十分重要。Fc段有不同的亚类,并且可以经由糖基化等过程进行修饰改造。Fc段的变化会影响抗体与Fc受体结合的能力,并决定抗体所引发的免疫应答类型。[13]包括细胞程序性死亡受体1英语Programmed cell death protein 1(PD-1)抑制剂与细胞程序性死亡配体1(PD-L1)抑制剂在内的许多癌症免疫治疗药物都是抗体。比如抗PD-1的免疫检查点英语Immune checkpoint阻断药可以与T细胞上表达的PD-1结合,从而激活T细胞以清除肿瘤。[14]除了与PD-1结合的Fab段外,抗PD-1药物也有Fc段。实验表明免疫药物的Fc段能够影响疗效。例如,抗PD-1药物的Fc段如果与抑制性Fc受体结合会对疗效有负面影响。[15]影像研究进一步表明抗PD-1药物的Fc段可能与肿瘤相关巨噬细胞表达的Fc受体结合,导致药物从其目标的T细胞上被夺去,限制了治疗效果。[16]此外,以共刺激蛋白CD40为靶点的抗体需要与特定的Fc受体作用以达到最佳效果。[17]这些研究说明了基于抗体的免疫检查点阻断疗法中Fc段的重要性。

非人源/人源抗体 编辑

抗体还可分为鼠源抗体、人鼠嵌合抗体、人源化抗体与人源抗体。鼠源抗体并非来自人类,因而有产生免疫反应的风险。人鼠嵌合抗体用人类抗体中的恒定区(constant region)替换鼠源抗体的对应区域,试图减轻鼠源抗体的免疫原性。人源化坑体的绝大部分都来自人类,仅有可变区(variable region)中的互补性决定区为鼠源。人源坑体则完全由人类DNA制成。[12]

 
ADCC作用:NK细胞的Fc受体与(覆盖在癌細胞上的)抗体的Fc段相互作用,NK细胞释放穿孔素与颗粒酶,最终导致癌細胞凋亡。

细胞死亡机制 编辑

抗体依赖细胞介导的细胞毒性(ADCC) 编辑

抗体依赖细胞介导的细胞毒性(ADCC)作用需要抗体与靶细胞的表面结合。抗体由Fab段与Fc段构成,而免疫细胞可以通过其Fc受体识别抗体的Fc段。在NK细胞等许多免疫细胞中都有Fc受体。当NK细胞与被抗体覆盖的靶细胞相遇时,前者的Fc受体与后者的Fc段相互作用,进而释放穿孔素颗粒酶B英语Granzyme B以杀伤癌細胞。利妥昔单抗奥法木单抗英语Ofatumumab阿仑单抗英语Alemtuzumab皆采用ADCC机制。有研究试图改造抗体的Fc段,此举能提高其与一种名为FcγRIIIA的特定Fc受体的亲和力,以期显著提升疗效。[18][19]

补体 编辑

当抗体与细胞表面结合、补体途径被激活后,补体系统中的血液蛋白可致使细胞死亡。这套系统平时用于清除外来病菌,但也可以被癌症治疗中的抗体所激活。无论是人鼠嵌合抗体、人源化抗体还是人源抗体都能激活该系统,只要其中包含IgG1的Fc段。补体激活杀死细胞的机制包括补体依赖的细胞毒性(形成膜攻击复合物)、增强ADCC作用以及CR3依赖细胞介导的细胞毒性。其中补体依赖的细胞毒性(complement-dependent cytotoxicity,CDC)在抗体与癌細胞表面结合时发生,C1复合物与抗体结合后被激活,最终在肿瘤细胞膜上形成穿膜孔道。[20]

FDA批准的抗体 编辑

癌症免疫疗法:单克隆抗体[11][21]
抗体 英文名 商品名 类型 靶点 批准日期 批准疾病治疗
阿仑单抗 Alemtuzumab Campath 人源化 CD52 2001年 B细胞慢性淋巴细胞白血病[22]
阿特珠单抗 Atezolizumab Tecentriq 人源化 PD-L1 2016年 膀胱癌[23]
阿维单抗 Avelumab Bavencio 人源 PD-L1 2017年 转移性梅克尔细胞瘤英语Merkel-cell carcinoma[24]
伊匹单抗 Ipilimumab Yervoy 人源 CTLA-4 2011年 转移性黑色素瘤[25]
奥法木单抗 Ofatumumab Arzerra 人源 CD20 2009年 顽固性慢性淋巴细胞白血病[26]
纳武单抗 Nivolumab Opdivo 人源 PD-1 2014年 不可切除或转移性黑色素瘤、鳞状非小细胞肺癌英语Non-small cell lung cancer肾细胞癌英语Renal cell carcinoma大肠癌肝细胞癌典型霍奇金氏淋巴瘤[27][28]
帕姆单抗 Pembrolizumab Keytruda 人源化 PD-1 2014年 转移性黑色素瘤[27]
利妥昔单抗 Rituximab Rituxan、Mabthera 人鼠嵌合 CD20 1997年 非霍奇金氏淋巴瘤[29]
度伐鲁单抗 Durvalumab Imfinzi 人源 PD-L1 2017年 膀胱癌[30]、非小细胞肺癌[31]

阿仑单抗 编辑

阿仑单抗(alemtuzuma,商品名Campath-1H)是一种抗CD52英语CD52的人源化IgG1单抗,用于医治氟达拉滨英语Fludarabine治疗无效的慢性淋巴细胞白血病皮肤T细胞淋巴瘤英语Cutaneous T cell lymphoma外周T细胞淋巴瘤英语Peripheral T-cell lymphomaT细胞幼淋巴细胞白血病英语T-cell prolymphocytic leukemia。超过95%的外周血淋巴细胞(包括T细胞和B细胞)与单核细胞表面存在CD52,但其在淋巴细胞中的作用未知。阿仑单抗能与CD52结合,经补体结合与ADCC机制引发细胞毒性作用。由于靶细胞为免疫细胞,在使用阿仑单抗治疗时可能会有感染、中毒、骨髓抑制等副作用。[32][33][34]

阿特珠单抗 编辑

阿特珠单抗(atezolizumab,商品名Tecentriq)是一种抗PD-L1的全人源化IgG1单抗,用于治疗非小细胞肺癌、尿路上皮癌等。

度伐鲁单抗 编辑

度伐鲁单抗(durvalumab,商品名Imfinzi)是一种人源IgG1κ单抗,可阻断PD-L1和PD-1、CD80(B7.1)之间的相互作用。度伐鲁单抗被批准可用于治疗满足以下条件的局部晚期或转移性尿路上皮癌:

  • 在含铂化疗期间或之后疾病有进展;
  • 在含铂化疗的新辅助治疗或辅助治疗的十二个月内疾病有进展。

伊匹单抗 编辑

伊匹单抗(ipilimumab,商品名Yervoy)是一种抗细胞毒性T淋巴细胞相关抗原4(CTLA-4)的人源IgG1单抗。通常情况下,T细胞的激活依赖于两个信号:与主要组织相容性复合物(MHC)抗原结合的T细胞受体,以及与蛋白CD80英语CD80CD86英语CD86结合的T细胞表面受体CD28。CTLA-4能与CD80或CD86结合,阻断它们与CD28的结合,进而抑制T细胞的活化。[35][36][37][38]

免疫系统需要活化的细胞毒性T细胞去攻击黑色素瘤细胞。正常情形下被抑制的黑色素瘤特异性的活化细胞毒性T细胞可引发抗肿瘤免疫应答。伊匹单抗能够改变调节T细胞与细胞毒性T细胞的比例,以强化免疫应答。调节T细胞会抑制其他T细胞,因而更多的调节T细胞不利于清除肿瘤。[35][36][37][38]

纳武单抗 编辑

纳武单抗(nivolumab,商品名Opdivo)是一种抗PD-1的人源IgG4单抗,可用于治疗黑色素瘤非小细胞肺癌英语Non-small-cell lung carcinoma肾细胞癌英语Renal cell carcinoma等。

奥法木单抗 编辑

奥法木单抗(ofatumumab,商品名Arzerra)是第二代抗CD20英语CD20的人源IgG1单抗。其可以与在B细胞中高表达的CD20结合,从而治疗慢性淋巴细胞白血病。奥法木单抗与CD20蛋白上的小环结合,而同样以CD20为靶点的利妥昔单抗则与CD20的大环结合。这或许可以解释两者的不同特性。与利妥昔单抗相比,奥法木单抗降低了免疫原性,在更低剂量下便能够激活CDC作用。[39][40]

帕姆单抗 编辑

帕姆单抗(pembrolizumab,商品名Keytruda)是抗PD-1的人源化IgG4单抗,可用于治疗转移性非小细胞肺癌、不可切除或转移性黑色素瘤,并可在使用铂基类抗肿瘤药物英语Platinum-based antineoplastic后作为头颈部鳞状细胞癌英语Head and neck squamous-cell carcinoma的二线治疗方案,同时亦能用于治疗成人与儿童的顽固性典型霍奇金氏淋巴瘤[41][42]

利妥昔单抗 编辑

利妥昔单抗(rituximab,商品名Rituxan)是一种抗CD20的人鼠嵌合IgG1单抗,由同样以CD20为靶点的替伊莫单抗英语Ibritumomab进一步研发而来,能有效治疗特定类型的B细胞恶性肿瘤,其中包括侵袭性或惰性淋巴瘤(如弥漫大B细胞淋巴瘤、滤泡淋巴瘤)以及白血病(如B细胞慢性淋巴细胞白血病)。尽管CD20的功能尚不明确,但可能与钙离子通道有关。该单抗的作用机制为补体介导的细胞毒性(complement-mediated cytotoxicity,CMC)。其他机制还包括细胞凋亡与细胞生长阻滞。此外,利妥昔单抗还能与化疗联用,可提高肿瘤B细胞对化疗的敏感性。[43][44][44][45][46][47]

细胞因子疗法 编辑

细胞因子是肿瘤内多种细胞产生的蛋白质,可用于调节免疫应答。而肿瘤则会设法利用细胞因子以促进自身生长,降低免疫应答。细胞因子所具有免疫调节功能使它们可以作为药物被用于激发免疫应答。干扰素白细胞介素是两类最常用的细胞因子。[48]

白细胞介素-2(IL-2)与干扰素-α(IFNα)是能够调整、控制免疫系统行为的细胞因子。它们能增强抗肿瘤反应,因而被用于被动癌症治疗。干扰素-α被用于治疗毛细胞白血病英语Hairy cell leukemia、与艾滋病有关的卡波西氏肉瘤滤泡淋巴瘤英语Follicular lymphoma慢性粒细胞性白血病与黑色素瘤。白细胞介素-2则被用于治疗黑色素瘤与肾细胞癌。

干扰素 编辑

干扰素(IFN)由免疫系统合成,一般与抗病毒应答有关,但亦可用于癌症。干扰素可分为I型(IFNα与IFNβ)、II型(IFNγ)与III型(IFNλ)三大家族。IFNα被批准用于治疗毛细胞白血病、与艾滋病有关的卡波西氏肉瘤、滤泡淋巴瘤、慢性粒细胞性白血病与黑色素瘤。I型与II型干扰素家族已被广泛研究,尽管有研究表明两者都能够提升免疫系统的抗肿瘤效果,但其中只有I型干扰素的效果经临床试验证实。IFNλ则在动物实验中表现出了抗肿瘤效应。[49][50]

与I型干扰素不同,IFNγ尚未被批准用于癌症治疗。不过,已有实验表明使用了IFNγ的膀胱癌与黑色素瘤患者的生存率得到了提升。而在二期与三期卵巢癌患者中,IFNγ的效果最为明显。癌細胞中IFNγ的体外实验研究则更为充分,结果表明IFNγ能有效抑制癌細胞的增殖,引发细胞凋亡或自噬机制最终杀死癌細胞。[51]

白细胞介素 编辑

白细胞介素(IL)有一系列免疫调节作用。IL-2被用于治疗黑色素瘤与肾细胞癌。一般情况下IL-2能够同时激活效应T细胞与调节T细胞,对其具体的作用机理尚待研究。[48][52]

联合免疫疗法 编辑

将多种免疫疗法合用(如同时使用PD-1与CTLA-4抑制剂)能够强化坑肿瘤应答,以达到持久应答的目的。[53][54]

冷冻消融联合免疫疗法则能够增强免疫刺激应答并产生协同效应,可用于以根治为目的转移性癌症治疗。[55]

在采用免疫检查点疗法的同时联用其他药物或许能加强免疫应答,这是目前临床研究的热点[56],如联合使用CSF-1R英语Colony stimulating factor 1 receptor抑制剂与TLR激动剂就获得了良好效果。[57][58]

云芝多糖-K 编辑

日本厚生劳动省于1980年代批准使用从云芝中提取的云芝多糖-K英语Polysaccharide-K,用于激发化疗患者的免疫系统。但在美国等其他国家,多糖K属于膳食补充剂而非药物。[59]

研究 编辑

过继性T细胞疗法 编辑

 
肿瘤特异性的T细胞可通过分离肿瘤浸润淋巴细胞或基因改造外周血细胞得到。这些T细胞在激活扩增后注入患者体内。

过继性T细胞疗法(adoptive T-cell therapy)是一种向患者输送T细胞的被动免疫疗法。T细胞存在于血液与组织内,通常在有外源病原体时会激活。当T细胞的表面受体遇到表面抗原上呈现出外源蛋白质的细胞时,T细胞会被激活。这些细胞可以是被感染细胞或者抗原提呈细胞(APC)。T细胞同时出现在正常组织与肿瘤组织中,在肿瘤组织中的T细胞被称为肿瘤浸润淋巴细胞(TIL)。DC细胞等APC将肿瘤抗原提呈给T细胞后能将T细胞激活。尽管被激活的T细胞有能力攻击肿瘤,但由于肿瘤所在的环境能够抑制免疫反应,从而防止了免疫介导的肿瘤杀伤机制。[60]

有多种方法能够生成靶向肿瘤的T细胞。肿瘤样本或者血液中能够分离出肿瘤抗原特异性的T细胞,之后再在体外培养并激活这些T细胞,激活手段包括基因治疗或者将T细胞暴露于肿瘤抗原之中。

目前,已有多项以过继性细胞输注英语Adoptive cell transfer(ACT)为基础的临床试验。[61][62][63][64][65]2018年发表的一项研究表明,此前多种免疫疗法治疗无效的转移性黑色素瘤患者在经ACT治疗后表现出了临床疗效。[66]

2017年,FDA首次批准了tisagenlecleucel英语tisagenlecleucelaxicabtagene ciloleucel英语axicabtagene ciloleucel两个过继性T细胞疗法。[10][67]

此外,另一种方法是采用健康异体供者的半相合γδ T细胞英语Gamma delta T cell或NK细胞进行过继性输注。此方法不会造成移植物对抗宿主疾病(GvHD),但被移植细胞的功能常会出现受损情形。[68]

抗CD47疗法 编辑

许多癌細胞上存在CD47过表达的现象,从而逃避宿主免疫系统的监视。CD47与其受体信号调节蛋白α英语Signal-regulatory protein alpha(SIRPα)的结合,使癌細胞得以逃避巨噬细胞对其的吞噬[69]抗CD47疗法的目的即是恢复吞噬作用。现在已有证据表明抗CD47疗法能够引发T细胞对肿瘤的特异性杀伤作用。[70][71]多项以此为基础的疗法正在研发之中,其中包括抗CD47抗体、诱骗受体英语Decoy receptors、抗SIRPα抗体、双特异性抗体等。[70]截至2017年,多项针对实体肿瘤与血液系统肿瘤的临床试验已经启动。[70][72]

抗GD2疗法 编辑

 
GD2神经节苷脂

细胞表面的糖类抗原可以作为免疫疗法的靶点。GD2英语GD2是一种神经节苷脂,存在于多种癌細胞表面,包括神经母细胞瘤视网膜母细胞瘤、黑色素瘤、小细胞肺癌脑瘤骨肉瘤横纹肌肉瘤尤文氏肉瘤脂肪肉瘤纤维肉瘤英语Fibrosarcoma平滑肌肉瘤以及其他软组织肉瘤英语Soft-tissue sarcoma。由于正常组织表面一般不会表达GD2,使其成为免疫疗法的一个潜在靶点。目前已有相关临床试验在进行中。[73]

免疫检查点 编辑

 
通过抑制免疫负调节机制(CTLA-4、PD-1)来治疗癌症

免疫检查点英语Immune checkpoint能够影响免疫系统的功能,其可以是刺激性或抑制性的。肿瘤会利用这些检查点来保护自己、逃避免疫系统的攻击。目前经批准的免疫检查点疗法皆是通过阻断抑制性检查点受体发挥作用的。当负反馈信号被阻断后能够激起机体的免疫应答以杀伤肿瘤。[74]

跨膜蛋白细胞程序性死亡受体1英语Programmed cell death protein 1(PD-1,又称CD279)与其配体细胞程序性死亡配体1(PD-L1,又称CD274)间的相互作用是一个研究热点。癌細胞表面的PD-L1能够与免疫细胞表面的PD-1相结合,以维护免疫抑制环境。PD-L1能调节T细胞功能,肿瘤通过上调PD-L1表达来抑制T细胞的活化。此外,PD-L1还能抑制依赖FAS与干扰素的细胞凋亡过程,从而保护癌細胞免受由T细胞生成的细胞毒分子的杀伤。能够与PD-1或PD-L1结合的抗体可用于阻断它们的相互作用,以使T细胞发挥功能、攻击肿瘤。[75]

CTLA-4抑制剂 编辑

2011年,FDA批准了首个免疫检查点抗体——用于治疗黑色素瘤的伊匹单抗。[76]伊匹单抗能够阻断检查点分子细胞毒性T淋巴细胞相关抗原4(CTLA-4)。而临床试验还表明抗CTLA-4疗法有利于肺癌与胰腺癌治疗,并能通过联合用药增强疗效。[77][78]目前有试验正研究多种类型的癌症治疗中联用CTLA-4抑制剂与PD-1/PD-L1抑制剂的效果。[79]

不过,使用检查点抗体(尤其是CTLA-4抗体)的患者常饱受免疫介导的不良反应困扰,这些副作用主要影响皮肤、胃肠道、肝脏与内分泌系统。[80]这可能是由于注入的抗体在血液中扩散,进而在大范围内激活了T细胞。

科研人员利用小鼠膀胱癌模型研究发现,在肿瘤区域局域低剂量注入CTLA-4抗体时取得的肿瘤抑制效果与将抗体输送至全身的效果相当。[81]由于局域输入抗体能够减少其扩散,该疗法可能有助于降低治疗的副作用。[81]

PD-1抑制剂 编辑

抗PD-1的IgG4纳武单抗的试验结果于2010年首次发表[74],2014年被批准。纳武单抗可用于治疗黑色素瘤、肺癌、肾癌、膀胱癌、头颈癌、霍奇金淋巴瘤等。[82]2016年的一项针对非小细胞肺癌的纳武单抗临床试验并没能达到一线治疗的主要终点目标,但FDA批准其可用于二、三线治疗。[83]

帕姆单抗是另一种PD-1抑制剂,于2014年被FDA批准用于治疗黑色素瘤与肺癌。[82]

替雷利珠单抗英语Tislelizumab(tislelizumab,BGB-A317)则消除了与Fcγ受体的结合能力,目前处于早期临床试验阶段。[84]

PD-L1抑制剂 编辑

2016年,PD-L1抑制剂阿特珠单抗被批准用于治疗膀胱癌。[85]

目前其他正在研发中的PD-L1抗体包括阿维单抗英语Avelumab[86]、度伐鲁单抗[87]以及一种名为Affimer英语Affimer的抗体替代技术。[88]

其他 编辑

其他方法还包括以细胞内免疫检查点(如CISH英语CISH)为靶点的检查点阻断疗法。还有些癌症患者经免疫检查点阻断治疗后没有缓解。与其他癌症疗法联用或许能提高检查点阻断疗法的缓解率。对癌症动物模型的研究表明,联合放疗、血管靶向药物以及免疫原性化疗(immunogenic chemotherapy)[89]等能提升检查点阻断的疗效。

溶瘤病毒 编辑

溶瘤病毒英语Oncolytic virus是一类能感染并杀伤癌細胞的病毒。溶瘤病毒可以特异性地在癌細胞中复制、增殖,并释放出新的感染性病毒颗粒破坏其他癌細胞。这种病毒不仅能直接杀死癌細胞,还能刺激宿主的抗肿瘤免疫应答以利于长期免疫治疗。[90][91][92]

利用病毒来治疗癌症的想法早在20世纪初便已出现,不过直至1960年代后该领域的研究才开始逐渐系统化。腺病毒呼肠孤病毒麻疹病毒单纯疱疹病毒新城病病毒、牛痘病毒等都先后在临床试验中被用作溶瘤病毒。T-Vec英语Talimogene laherparepvec则是首个经FDA批准的溶瘤病毒,可用于治疗黑色素瘤。另有其他多种溶瘤病毒正经历二期、三期临床试验。

多糖 编辑

蕈类中发现的多糖等化合物可用于调节免疫系统,或有助于癌症治疗。例如,有实验研究发现β-葡聚糖(如香菇多糖)可激活巨噬细胞、NK细胞、T细胞及免疫系统细胞因子,已有临床试验研究其作为免疫佐剂的效果。[93]

新生抗原 编辑

许多癌細胞会出现基因突变,而这些突变可作为T细胞免疫治疗潜在的靶抗原,这些抗原就被称为“新生抗原”(neoantigen)。RNA测序数据表明,突变负荷(mutational burdern)越高的肿瘤中CD8+T细胞越多。NK细胞与T细胞的细胞杀伤活性与许多肿瘤的突变负荷呈正相关。在接受帕姆单抗治疗的非小细胞肺癌患者中,突变负荷与疗效显著相关。而在接受伊匹单抗治疗的黑色素瘤患者中,治疗的长期效果亦与突变负荷相关,尽管程度不及前例。有研究分析了经MHC呈递的新生抗原肽段后发现,治疗效果好的患者的肽段中有一组四肽英语Tetrapeptide序列,而在治疗无效或低效的患者中却没有。[94]不过其他一些研究中的新生抗原却没有表现出四肽特征。[95]

参见 编辑

参考文献 编辑

  1. ^ Korneev KV, Atretkhany KN, Drutskaya MS, Grivennikov SI, Kuprash DV, Nedospasov SA. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine. January 2017, 89: 127–135. PMID 26854213. doi:10.1016/j.cyto.2016.01.021. 
  2. ^ Riddell SR. Progress in cancer vaccines by enhanced self-presentation. Proceedings of the National Academy of Sciences of the United States of America. July 2001, 98 (16): 8933–5. Bibcode:2001PNAS...98.8933R. PMC 55350 . PMID 11481463. doi:10.1073/pnas.171326398. 
  3. ^ 3.0 3.1 Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. July 2013, 39 (1): 38–48. PMC 3788678 . PMID 23890062. doi:10.1016/j.immuni.2013.07.004. 
  4. ^ Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. International Immunology. July 2016, 28 (7): 319–28. PMID 27235694. doi:10.1093/intimm/dxw027. 
  5. ^ Gardner TA, Elzey BD, Hahn NM. Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Human Vaccines & Immunotherapeutics. April 2012, 8 (4): 534–9. PMID 22832254. doi:10.4161/hv.19795. 
  6. ^ Oudard S. Progress in emerging therapies for advanced prostate cancer. Cancer Treatment Reviews. May 2013, 39 (3): 275–89. PMID 23107383. doi:10.1016/j.ctrv.2012.09.005. 
  7. ^ Sims RB. Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer. Vaccine. June 2012, 30 (29): 4394–7. PMID 22122856. doi:10.1016/j.vaccine.2011.11.058. 
  8. ^ Shore ND, Mantz CA, Dosoretz DE, Fernandez E, Myslicki FA, McCoy C, Finkelstein SE, Fishman MN. Building on sipuleucel-T for immunologic treatment of castration-resistant prostate cancer. Cancer Control. January 2013, 20 (1): 7–16. PMID 23302902. doi:10.1177/107327481302000103. 
  9. ^ Commissioner, Office of the. Press Announcements - FDA approval brings first gene therapy to the United States. www.fda.gov. [2017-12-13]. (原始内容于2017-09-03) (英语). 
  10. ^ 10.0 10.1 FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma. fda.gov. 2017-10-18 [2017-11-08]. (原始内容于2017-11-08). 
  11. ^ 11.0 11.1 Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nature Reviews. Cancer. March 2012, 12 (4): 278–87. PMID 22437872. doi:10.1038/nrc3236. 
  12. ^ 12.0 12.1 Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. May–Jun 2010, 2 (3): 256–65. PMC 2881252 . PMID 20400861. doi:10.4161/mabs.2.3.11641. 
  13. ^ Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV. Type I and type II Fc receptors regulate innate and adaptive immunity. Nature Immunology. August 2014, 15 (8): 707–16. PMID 25045879. doi:10.1038/ni.2939. 
  14. ^ Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine. June 2012, 366 (26): 2443–54. PMC 3544539 . PMID 22658127. doi:10.1056/NEJMoa1200690. 
  15. ^ Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV. FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis. Cancer Cell. October 2015, 28 (4): 543. PMID 28854351. doi:10.1016/j.ccell.2015.09.011. 
  16. ^ Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM, Weissleder R, Pittet MJ. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Science Translational Medicine. May 2017, 9 (389): eaal3604. PMC 5734617 . PMID 28490665. doi:10.1126/scitranslmed.aal3604. 
  17. ^ Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement. Cancer Cell. July 2016, 29 (6): 820–831. PMC 4975533 . PMID 27265505. doi:10.1016/j.ccell.2016.05.001. 
  18. ^ Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews. Immunology. May 2010, 10 (5): 317–27. PMC 3508064 . PMID 20414205. doi:10.1038/nri2744. 
  19. ^ Seidel UJ, Schlegel P, Lang P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Frontiers in Immunology. 2013, 4: 76. PMC 3608903 . PMID 23543707. doi:10.3389/fimmu.2013.00076. 
  20. ^ Gelderman KA, Tomlinson S, Ross GD, Gorter A. Complement function in mAb-mediated cancer immunotherapy. Trends in Immunology. March 2004, 25 (3): 158–64. PMID 15036044. doi:10.1016/j.it.2004.01.008. 
  21. ^ Waldmann TA. Immunotherapy: past, present and future. Nature Medicine. March 2003, 9 (3): 269–77. PMID 12612576. doi:10.1038/nm0303-269. 
  22. ^ Demko S, Summers J, Keegan P, Pazdur R. FDA drug approval summary: alemtuzumab as single-agent treatment for B-cell chronic lymphocytic leukemia. The Oncologist. February 2008, 13 (2): 167–74. PMID 18305062. doi:10.1634/theoncologist.2007-0218. 
  23. ^ FDA approves new, targeted treatment for bladder cancer. FDA. 2016-05-18 [2016-05-20]. (原始内容于2018-04-24). 
  24. ^ US Food and Drug Administration - Avelumab Prescribing Label (PDF). (原始内容 (PDF)于2017-03-24). 
  25. ^ Pazdur R. FDA approval for Ipilimumab. [2013-11-07]. (原始内容于2015-04-06). 
  26. ^ Lemery SJ, Zhang J, Rothmann MD, Yang J, Earp J, Zhao H, McDougal A, Pilaro A, Chiang R, Gootenberg JE, Keegan P, Pazdur R. U.S. Food and Drug Administration approval: ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab. Clinical Cancer Research. September 2010, 16 (17): 4331–8. PMID 20601446. doi:10.1158/1078-0432.CCR-10-0570. 
  27. ^ 27.0 27.1 Sharma P, Allison JP. The future of immune checkpoint therapy. Science. April 2015, 348 (6230): 56–61. Bibcode:2015Sci...348...56S. PMID 25838373. doi:10.1126/science.aaa8172. 
  28. ^ Opdivo Drug Approval History. [2018-10-04]. (原始内容于2017-12-29). 
  29. ^ James JS, Dubs G. FDA approves new kind of lymphoma treatment. Food and Drug Administration. AIDS Treatment News. December 1997, (284): 2–3. PMID 11364912. 
  30. ^ Research, Center for Drug Evaluation and. Approved Drugs - Durvalumab (Imfinzi). www.fda.gov. [2017-05-06]. (原始内容于2017-05-08) (英语). 
  31. ^ FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC. (原始内容于2018-07-25). 
  32. ^ Byrd JC, Stilgenbauer S, Flinn IW. Chronic Lymphocytic Leukemia. (页面存档备份,存于互联网档案馆) Hematology (Am Soc Hematol Educ Program) 2004: 163-183. Date retrieved: 26/01/2006.
  33. ^ Domagała A, Kurpisz M. CD52 antigen--a review. Medical Science Monitor. Mar–Apr 2001, 7 (2): 325–31. PMID 11257744. 
  34. ^ Dearden C. How I treat prolymphocytic leukemia. Blood. July 2012, 120 (3): 538–51. PMID 22649104. doi:10.1182/blood-2012-01-380139. 
  35. ^ 35.0 35.1 Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P. Ipilimumab. Nature Reviews. Drug Discovery. June 2011, 10 (6): 411–2. PMID 21629286. doi:10.1038/nrd3463. 
  36. ^ 36.0 36.1 Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clinical Cancer Research. November 2011, 17 (22): 6958–62. PMC 3575079 . PMID 21900389. doi:10.1158/1078-0432.CCR-11-1595. 
  37. ^ 37.0 37.1 Thumar JR, Kluger HM. Ipilimumab: a promising immunotherapy for melanoma. Oncology. December 2010, 24 (14): 1280–8. PMID 21294471. 
  38. ^ 38.0 38.1 Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annual Review of Immunology. 2001, 19: 565–94. PMID 11244047. doi:10.1146/annurev.immunol.19.1.565. 
  39. ^ Castillo J, Perez K. The role of ofatumumab in the treatment of chronic lymphocytic leukemia resistant to previous therapies. Journal of Blood Medicine. 2010, 1: 1–8. PMC 3262337 . PMID 22282677. doi:10.2147/jbm.s7284. 
  40. ^ Zhang B. Ofatumumab. MAbs. Jul–Aug 2009, 1 (4): 326–31. PMC 2726602 . PMID 20068404. doi:10.4161/mabs.1.4.8895. 
  41. ^ Pembrolizumab label (PDF). FDA. May 2017 [2018-10-04]. (原始内容 (PDF)于2020-10-17).  linked from Index page at FDA website (页面存档备份,存于互联网档案馆) November 2016
  42. ^ Pembrolizumab label at eMC. UK Electronic Medicines Compendium. 2017-01-27 [2018-10-04]. (原始内容于2017-12-13). 
  43. ^ Keating GM. Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs. July 2010, 70 (11): 1445–76. PMID 20614951. doi:10.2165/11201110-000000000-00000. 
  44. ^ 44.0 44.1 Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs. 2003, 63 (8): 803–43. PMID 12662126. doi:10.2165/00003495-200363080-00005. 
  45. ^ Cerny T, Borisch B, Introna M, Johnson P, Rose AL. Mechanism of action of rituximab. Anti-Cancer Drugs. November 2002,. 13 Suppl 2: S3–10. PMID 12710585. doi:10.1097/00001813-200211002-00002. 
  46. ^ Janeway C, Travers P, Walport M, Shlomchik M. Immunobiology Fifth. New York and London: Garland Science. 2001 [2018-10-04]. ISBN 978-0-8153-4101-7. (原始内容于2009-06-28). [页码请求]
  47. ^ Weiner GJ. Rituximab: mechanism of action. Seminars in Hematology. April 2010, 47 (2): 115–23. PMC 2848172 . PMID 20350658. doi:10.1053/j.seminhematol.2010.01.011. 
  48. ^ 48.0 48.1 Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews. Cancer. January 2004, 4 (1): 11–22. PMID 14708024. doi:10.1038/nrc1252. 
  49. ^ Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nature Reviews. Immunology. November 2006, 6 (11): 836–48. PMID 17063185. doi:10.1038/nri1961. 
  50. ^ Lasfar A, Abushahba W, Balan M, Cohen-Solal KA. Interferon lambda: a new sword in cancer immunotherapy. Clinical & Developmental Immunology. 2011, 2011: 349575. PMC 3235441 . PMID 22190970. doi:10.1155/2011/349575. 
  51. ^ Razaghi A, Owens L, Heimann K. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation. Journal of Biotechnology. December 2016, 240: 48–60. PMID 27794496. doi:10.1016/j.jbiotec.2016.10.022. 
  52. ^ Coventry BJ, Ashdown ML. The 20th anniversary of interleukin-2 therapy: bimodal role explaining longstanding random induction of complete clinical responses. Cancer Management and Research. 2012, 4: 215–21. PMC 3421468 . PMID 22904643. doi:10.2147/cmar.s33979. 
  53. ^ Ott PA, Hodi FS, Kaufman HL, Wigginton JM, Wolchok JD. Combination immunotherapy: a road map. Journal for Immunotherapy of Cancer. 2017, 5: 16. PMC 5319100 . PMID 28239469. doi:10.1186/s40425-017-0218-5. 
  54. ^ Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nature Reviews. Drug Discovery. August 2015, 14 (8): 561–84. PMID 26228759. doi:10.1038/nrd4591. 
  55. ^ Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response?. 2015 [2018-10-04]. (原始内容于2018-06-02). 
  56. ^ Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Annals of Oncology. January 2018, 29 (1): 84–91. PMID 29228097. doi:10.1093/annonc/mdx755. 
  57. ^ Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang JX, Damsky W, Kuhlmann AL, Sher JW, Bosenberg M, Miller-Jensen K, Kaech SM. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. The Journal of Experimental Medicine. March 2018, 215 (3): 877–893. PMID 29436395. doi:10.1084/jem.20171435. 
  58. ^ Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nature Biomedical Engineering. 2018-05-21. doi:10.1038/s41551-018-0236-8. 
  59. ^ . American Cancer Society. (原始内容存档于2006-02-15). 
  60. ^ Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Reviews. Immunology. March 2012, 12 (4): 269–81. PMID 22437939. doi:10.1038/nri3191. 
  61. ^ Carroll J. Novartis/Penn's customized T cell wows ASH with stellar leukemia data. Fierce Biotech. December 2013 [2018-10-04]. (原始内容于2016-03-04). 
  62. ^ Carroll, John. Servier stages an entry into high-stakes CAR-T showdown with Novartis. FierceBiotech. February 2014 [2018-10-04]. (原始内容于2016-03-03). 
  63. ^ Regalado A. Biotech’s Coming Cancer Cure: Supercharge your immune cells to defeat cancer? Juno Therapeutics believes its treatments can do exactly that. MIT Technology Review. June 2015 [2018-10-04]. (原始内容存档于2015-06-20). 
  64. ^ CAR T-Cell Therapy: Engineering Patients’ Immune Cells to Treat Their Cancers. cancer.gov. 2013-12-06 [2014-05-09]. (原始内容于2014-05-12). 
  65. ^ NIH study demonstrates that a new cancer immunotherapy method could be effective against a wide range of cancers. nih.gov. 2014-05-08 [2014-05-09]. (原始内容于2014-05-09). 
  66. ^ Andersen R, Borch TH, Draghi A, Gokuldass A, Rana MA, Pedersen M, Nielsen M, Kongsted P, Kjeldsen JW, Westergaard MC, Radic HD, Chamberlain CA, Holmich LR, Hendel HW, Larsen MS, Met O, Svane IM, Donia M. T cells isolated from patients with checkpoint inhibitor resistant-melanoma are functional and can mediate tumor regression.. Ann. Oncol. April 2018. PMID 29688262. doi:10.1093/annonc/mdy139. 
  67. ^ FDA approval brings first gene therapy to the United States. fda.gov. 2017-08-30 [2017-11-08]. (原始内容于2017-09-03). 
  68. ^ Wilhelm M, Smetak M, Schaefer-Eckart K, Kimmel B, Birkmann J, Einsele H, Kunzmann V. Successful adoptive transfer and in vivo expansion of haploidentical γδ T cells. Journal of Translational Medicine. February 2014, 12: 45. PMC 3926263 . PMID 24528541. doi:10.1186/1479-5876-12-45. 
  69. ^ Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends in Immunology. June 2010, 31 (6): 212–9. PMC 3646798 . PMID 20452821. doi:10.1016/j.it.2010.04.001. 
  70. ^ 70.0 70.1 70.2 Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. European Journal of Cancer. May 2017, 76: 100–109. PMID 28286286. doi:10.1016/j.ejca.2017.02.013. 
  71. ^ Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunological Reviews. March 2017, 276 (1): 145–164. PMID 28258703. doi:10.1111/imr.12527. 
  72. ^ Veillette A, Chen J. SIRPα-CD47 Immune Checkpoint Blockade in Anticancer Therapy. Trends in Immunology. March 2018, 39 (3): 173–184. PMID 29336991. doi:10.1016/j.it.2017.12.005. 
  73. ^ Ahmed M, Cheung NK. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Letters. January 2014, 588 (2): 288–97. PMID 24295643. doi:10.1016/j.febslet.2013.11.030. 
  74. ^ 74.0 74.1 Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer. March 2012, 12 (4): 252–64. PMC 4856023 . PMID 22437870. doi:10.1038/nrc3239. 
  75. ^ Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017, 2 (2): e000213. PMC 5518304 . PMID 28761757. doi:10.1136/esmoopen-2017-000213. 
  76. ^ Cameron F, Whiteside G, Perry C. Ipilimumab: first global approval. Drugs. May 2011, 71 (8): 1093–104. PMID 21668044. doi:10.2165/11594010-000000000-00000. 
  77. ^ Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM, Reck M. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology. June 2012, 30 (17): 2046–54. PMID 22547592. doi:10.1200/JCO.2011.38.4032. 
  78. ^ Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA, Donehower RC, Jaffee EM, Laheru DA. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. Journal of Immunotherapy. September 2013, 36 (7): 382–9. PMC 3779664 . PMID 23924790. doi:10.1097/CJI.0b013e31829fb7a2. 
  79. ^ Clinical trial number NCT01928394 for "A Study of Nivolumab by Itself or Nivolumab Combined With Ipilimumab in Patients With Advanced or Metastatic Solid Tumors" at ClinicalTrials.gov
  80. ^ Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology. June 2015, 33 (17): 1974–82. PMC 4980573 . PMID 25605845. doi:10.1200/JCO.2014.59.4358. 
  81. ^ 81.0 81.1 van Hooren L, Sandin LC, Moskalev I, Ellmark P, Dimberg A, Black P, Tötterman TH, Mangsbo SM. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. European Journal of Immunology. February 2017, 47 (2): 385–393. PMID 27873300. doi:10.1002/eji.201646583. 
  82. ^ 82.0 82.1 Pollack A. F.D.A. Approves an Immunotherapy Drug for Bladder Cancer. The New York Times. 2016-05-18 [2016-05-21]. ISSN 0362-4331. (原始内容于2016-05-21). 
  83. ^ Steele A. Bristol Myers: Opdivo Failed to Meet Endpoint in Key Lung-Cancer Study. Wall Street Journal. 2016-08-05 [2016-08-05]. ISSN 0099-9660. (原始内容于2016-08-06). 
  84. ^ BeiGene, Ltd. BeiGene Presents Initial Clinical Data on PD-1 Antibody BGB-A317 at the 2016 American Society of Clinical Oncology Annual Meeting. Globe Newswire. [2018-10-04]. (原始内容于2017-08-24). 
  85. ^ Roche. FDA grants priority review for Roche's cancer immunotherapy atezolizumab in specific type of lung cancer. [2018-10-04]. (原始内容于2017-09-08). 
  86. ^ Merck Group. Immuno-oncology Avelumab. [2018-10-04]. (原始内容于2017-06-11). 
  87. ^ Cure today. Durvalumab continues to progress in treatment of advanced bladder cancer.. [2018-10-04]. (原始内容于2017-08-17). 
  88. ^ Avacta Life Sciences. . [2018-10-04]. (原始内容存档于2016-08-06). 
  89. ^ Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, et al. Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity. February 2016, 44 (2): 343–54. PMID 26872698. doi:10.1016/j.immuni.2015.11.024. 
  90. ^ Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Science. October 2016, 107 (10): 1373–1379. PMC 5084676 . PMID 27486853. doi:10.1111/cas.13027. 
  91. ^ Haddad D. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery. Frontiers in Oncology. 2017, 7: 96. PMC 5440573 . PMID 28589082. doi:10.3389/fonc.2017.00096. 
  92. ^ Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. Journal of Hematology & Oncology. January 2018, 11 (1): 8. PMC 5767051 . PMID 29329556. doi:10.1186/s13045-017-0552-6. 
  93. ^ Aleem E. β-Glucans and their applications in cancer therapy: focus on human studies. Anti-Cancer Agents in Medicinal Chemistry. June 2013, 13 (5): 709–19. PMID 23140353. doi:10.2174/1871520611313050007. 
  94. ^ Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade in melanoma. The New England Journal of Medicine. December 2014, 371 (23): 2189–2199. PMC 4315319 . PMID 25409260. doi:10.1056/NEJMoa1406498. 
  95. ^ Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. April 2015, 348 (6230): 69–74. Bibcode:2015Sci...348...69S. PMID 25838375. doi:10.1126/science.aaa4971. 

癌症免疫疗法, 维基百科中的醫學内容仅供参考, 並不能視作專業意見, 如需獲取醫療幫助或意見, 请咨询专业人士, 詳見醫學聲明, 英語, cancer, immunotherapy, 或immuno, oncology, 是一类通过激活免疫系统来治疗癌症的方法, 此类疗法采用了癌症免疫学, 英语, cancer, immunology, 研究的成果, 这是肿瘤学中一个快速发展的研究方向, 癌細胞表面有能被免疫系统识别的肿瘤抗原, 而这正是癌症免疫的基础, 这些抗原一般为蛋白质或高分子, 如碳水化合物, 免疫疗法可分. 维基百科中的醫學内容仅供参考 並不能視作專業意見 如需獲取醫療幫助或意見 请咨询专业人士 詳見醫學聲明 癌症免疫疗法 英語 cancer immunotherapy 或immuno oncology 是一类通过激活免疫系统来治疗癌症的方法 此类疗法采用了癌症免疫学 英语 Cancer immunology 研究的成果 这是肿瘤学中一个快速发展的研究方向 癌細胞表面有能被免疫系统识别的肿瘤抗原 而这正是癌症免疫的基础 这些抗原一般为蛋白质或高分子 如碳水化合物 免疫疗法可分为主动免疫 被动免疫与联合免疫 主动免疫疗法直接诱导自體免疫系统 使其能够识别肿瘤抗原 进而攻击癌細胞 而被动免疫疗法则是借助外源物质发挥抗肿瘤作用 其中会用到单克隆抗体 简称单抗 淋巴细胞 细胞因子等 癌症免疫疗法CD20的肽抗原表位与利妥昔单抗的抗原结合段 Fab 相结合專科immuno oncology在这些疗法中 已有一些抗体疗法被批准用于治疗多种类型的癌症 1 抗体是一类由免疫系统产生的蛋白质 用于与细胞表面的靶抗原结合 免疫系统通常用其来攻击病原体 每种抗体对一种或数种蛋白质有特异性 那些能与肿瘤抗原结合的抗体可用于治疗癌症 细胞表面受体是抗体疗法的主要目标 如CD20 英语 CD20 CD274与CD279 英语 Programmed cell death protein 1 等 一旦与肿瘤抗原相结合 抗体可以引发抗体依赖细胞介导的细胞毒作用 ADCC 激活补体系统或阻断受体与其配体的相互作用 最终导致细胞死亡 目前已被批准的抗体包括阿仑单抗 英语 Alemtuzumab 伊匹单抗 英语 Ipilimumab 纳武单抗 英语 Nivolumab 奥法木单抗 英语 Ofatumumab 与利妥昔单抗等 主动细胞疗法一般则会从血液或肿瘤中分离出免疫细胞 在将这些细胞体外培养后再输回患者体内去攻击肿瘤 此外 也可以经由基因工程改造后使免疫细胞表达肿瘤特异性受体 再经培养后输回患者体内 能运用于此种疗法的细胞包括自然杀伤细胞 简称NK细胞 淋巴因子活化杀伤细胞 简称LAK细胞 细胞毒性T细胞 简称CTL细胞 树突状细胞 简称DC细胞 等 目录 1 细胞免疫疗法 1 1 树突状细胞疗法 1 1 1 批准药物 1 2 CAR T细胞疗法 1 2 1 批准药物 2 抗体疗法 2 1 抗体类型 2 1 1 偶联 2 1 2 Fc段 2 1 3 非人源 人源抗体 2 2 细胞死亡机制 2 2 1 抗体依赖细胞介导的细胞毒性 ADCC 2 2 2 补体 2 3 FDA批准的抗体 2 3 1 阿仑单抗 2 3 2 阿特珠单抗 2 3 3 度伐鲁单抗 2 3 4 伊匹单抗 2 3 5 纳武单抗 2 3 6 奥法木单抗 2 3 7 帕姆单抗 2 3 8 利妥昔单抗 3 细胞因子疗法 3 1 干扰素 3 2 白细胞介素 4 联合免疫疗法 5 云芝多糖 K 6 研究 6 1 过继性T细胞疗法 6 2 抗CD47疗法 6 3 抗GD2疗法 6 4 免疫检查点 6 4 1 CTLA 4抑制剂 6 4 2 PD 1抑制剂 6 4 3 PD L1抑制剂 6 4 4 其他 6 5 溶瘤病毒 6 6 多糖 6 7 新生抗原 7 参见 8 参考文献细胞免疫疗法 编辑树突状细胞疗法 编辑 nbsp 将血细胞从人体中取出后在体外培养 用肿瘤抗原对其刺激 最后将成熟的DC细胞输回患者体内以引发免疫应答 树突状细胞 DC细胞 能获取肿瘤抗原的特征信息后呈递给淋巴细胞 这些细胞在被激活后会攻击癌細胞 引发抗肿瘤免疫应答 DC细胞是哺乳动物免疫系统中的一种抗原提呈细胞 APC 2 在癌症治疗中用于识别肿瘤抗原 3 Sipuleucel T 英语 Sipuleucel T 是首个经批准的基于DC细胞的癌症疗法 一种促使DC细胞提呈肿瘤抗原信息的方法是使用自体癌細胞溶解物或短肽致敏 4 这些抗原肽常与具有强免疫原性的佐剂 英语 Adjuvant 一同使用 用于增强抗肿瘤免疫应答 其他佐剂还包括能吸引 激活DC细胞的蛋白质或其他化学物质 比如粒细胞 巨噬细胞集落刺激因子 GM CSF 让癌細胞表达GM CSF可以在体内激活DC细胞 如运用基因工程手段改造癌細胞使其产生GM CSF 或用能表达GM CSF的溶瘤病毒 英语 Oncolytic virus 感染癌細胞 此外 亦可从患者血液中分离DC细胞后在体外将其激化 单个肿瘤特异性肽 蛋白质或者癌細胞溶解物可用来活化DC细胞 之后再将这些细胞 或加上佐剂 输回患者体内 以期引发免疫应答 DC细胞疗法还包括使用能与DC细胞表面受体结合的抗体 将抗原加到抗体上能够诱导DC细胞成熟 进而诱发肿瘤免疫应答 TLR3 英语 TLR3 TLR7 英语 TLR7 TLR8 英语 TLR8 CD40等DC细胞受体都被用作抗体目标 3 批准药物 编辑 2010年 Sipuleucel T 商品名Provenge 普列威 被批准用于治疗无症状或仅有轻微症状的转移性去势抵抗性前列腺癌 该疗法首先采用白细胞分离术 英语 Leukapheresis 将患者血液中的APC分离出来 再同由GM CSF和前列腺酸性磷酸酶 英语 Prostatic acid phosphatase PAP 制成的融合蛋白PA2024共同培养后输回患者体内 如此重复三次为一个完整疗程 5 6 7 8 CAR T细胞疗法 编辑 嵌合抗原受体T细胞 CAR T 免疫疗法通过改造T细胞以使其能更有效地识别并杀伤癌細胞 从患者体内采集T细胞后 在其中加上能够识别癌細胞的嵌合抗原受体 英语 Chimeric antigen receptor CAR 再将融合后的CAR T细胞输回患者体内以攻击肿瘤 批准药物 编辑 2017年 美国食品药品监督管理局 FDA 批准了用于治疗急性淋巴性白血病 ALL 的CAR T疗法Tisagenlecleucel 英语 Tisagenlecleucel 商品名Kymriah 9 该疗法能够杀死体内的CD19 英语 CD19 阳性细胞 B细胞 不过除了癌细胞外 也会杀死正常的抗体生成细胞 Axicabtagene ciloleucel 英语 Axicabtagene ciloleucel 商品名Yescarta 则是另一种CAR T免疫疗法 于2017年被批准用于治疗弥漫大B细胞淋巴瘤 10 抗体疗法 编辑 nbsp 多种重组单抗抗体是获得性免疫应答的关键 在识别外源抗原与激发免疫应答的过程中至关重要 抗体是一些由B细胞分泌的Y形蛋白质 由两个片段组成 一是用于结合抗原的抗原结合段 英语 Fragment antigen binding Fab段 二是能够与巨噬细胞 中性粒细胞 NK细胞等免疫细胞表面的Fc受体相互作用的可结晶段 英语 Fragment crystallizable region Fc段 许多免疫治疗方案中都会用到抗体 应用单抗技术能够制造出针对特定肿瘤抗原的抗体 抗体类型 编辑 偶联 编辑 运用于癌症治疗的抗体可分为两类 11 裸单克隆抗体是指没有附加药物的抗体 大多数抗体疗法中采用的即是此类抗体 偶联单克隆抗体则是将抗体与其他具有细胞毒性或放射性的分子连接在一起 用来连接的化学物质一般为化疗药物 不过有时亦会采用其他毒素 抗体与癌細胞表面的特定抗原结合 从而将药物投递至肿瘤 与放射性化合物相结合的抗体称为放射性标记 radiolabelled 抗体 而同化疗药物与毒素连接的则分别被称为化疗标记 chemolabelled 抗体与免疫毒素 immunotoxin 12 Fc段 编辑 Fc段能与Fc受体结合的特征对于抗体激发免疫系统而言十分重要 Fc段有不同的亚类 并且可以经由糖基化等过程进行修饰改造 Fc段的变化会影响抗体与Fc受体结合的能力 并决定抗体所引发的免疫应答类型 13 包括细胞程序性死亡受体1 英语 Programmed cell death protein 1 PD 1 抑制剂与细胞程序性死亡配体1 PD L1 抑制剂在内的许多癌症免疫治疗药物都是抗体 比如抗PD 1的免疫检查点 英语 Immune checkpoint 阻断药可以与T细胞上表达的PD 1结合 从而激活T细胞以清除肿瘤 14 除了与PD 1结合的Fab段外 抗PD 1药物也有Fc段 实验表明免疫药物的Fc段能够影响疗效 例如 抗PD 1药物的Fc段如果与抑制性Fc受体结合会对疗效有负面影响 15 影像研究进一步表明抗PD 1药物的Fc段可能与肿瘤相关巨噬细胞表达的Fc受体结合 导致药物从其目标的T细胞上被夺去 限制了治疗效果 16 此外 以共刺激蛋白CD40为靶点的抗体需要与特定的Fc受体作用以达到最佳效果 17 这些研究说明了基于抗体的免疫检查点阻断疗法中Fc段的重要性 非人源 人源抗体 编辑 抗体还可分为鼠源抗体 人鼠嵌合抗体 人源化抗体与人源抗体 鼠源抗体并非来自人类 因而有产生免疫反应的风险 人鼠嵌合抗体用人类抗体中的恒定区 constant region 替换鼠源抗体的对应区域 试图减轻鼠源抗体的免疫原性 人源化坑体的绝大部分都来自人类 仅有可变区 variable region 中的互补性决定区为鼠源 人源坑体则完全由人类DNA制成 12 nbsp ADCC作用 NK细胞的Fc受体与 覆盖在癌細胞上的 抗体的Fc段相互作用 NK细胞释放穿孔素与颗粒酶 最终导致癌細胞凋亡 细胞死亡机制 编辑 抗体依赖细胞介导的细胞毒性 ADCC 编辑 抗体依赖细胞介导的细胞毒性 ADCC 作用需要抗体与靶细胞的表面结合 抗体由Fab段与Fc段构成 而免疫细胞可以通过其Fc受体识别抗体的Fc段 在NK细胞等许多免疫细胞中都有Fc受体 当NK细胞与被抗体覆盖的靶细胞相遇时 前者的Fc受体与后者的Fc段相互作用 进而释放穿孔素与颗粒酶B 英语 Granzyme B 以杀伤癌細胞 利妥昔单抗 奥法木单抗 英语 Ofatumumab 与阿仑单抗 英语 Alemtuzumab 皆采用ADCC机制 有研究试图改造抗体的Fc段 此举能提高其与一种名为FcgRIIIA的特定Fc受体的亲和力 以期显著提升疗效 18 19 补体 编辑 当抗体与细胞表面结合 补体途径被激活后 补体系统中的血液蛋白可致使细胞死亡 这套系统平时用于清除外来病菌 但也可以被癌症治疗中的抗体所激活 无论是人鼠嵌合抗体 人源化抗体还是人源抗体都能激活该系统 只要其中包含IgG1的Fc段 补体激活杀死细胞的机制包括补体依赖的细胞毒性 形成膜攻击复合物 增强ADCC作用以及CR3依赖细胞介导的细胞毒性 其中补体依赖的细胞毒性 complement dependent cytotoxicity CDC 在抗体与癌細胞表面结合时发生 C1复合物与抗体结合后被激活 最终在肿瘤细胞膜上形成穿膜孔道 20 FDA批准的抗体 编辑 癌症免疫疗法 单克隆抗体 11 21 抗体 英文名 商品名 类型 靶点 批准日期 批准疾病治疗阿仑单抗 Alemtuzumab Campath 人源化 CD52 2001年 B细胞慢性淋巴细胞白血病 22 阿特珠单抗 Atezolizumab Tecentriq 人源化 PD L1 2016年 膀胱癌 23 阿维单抗 Avelumab Bavencio 人源 PD L1 2017年 转移性梅克尔细胞瘤 英语 Merkel cell carcinoma 24 伊匹单抗 Ipilimumab Yervoy 人源 CTLA 4 2011年 转移性黑色素瘤 25 奥法木单抗 Ofatumumab Arzerra 人源 CD20 2009年 顽固性慢性淋巴细胞白血病 26 纳武单抗 Nivolumab Opdivo 人源 PD 1 2014年 不可切除或转移性黑色素瘤 鳞状非小细胞肺癌 英语 Non small cell lung cancer 肾细胞癌 英语 Renal cell carcinoma 大肠癌 肝细胞癌 典型霍奇金氏淋巴瘤 27 28 帕姆单抗 Pembrolizumab Keytruda 人源化 PD 1 2014年 转移性黑色素瘤 27 利妥昔单抗 Rituximab Rituxan Mabthera 人鼠嵌合 CD20 1997年 非霍奇金氏淋巴瘤 29 度伐鲁单抗 Durvalumab Imfinzi 人源 PD L1 2017年 膀胱癌 30 非小细胞肺癌 31 阿仑单抗 编辑 阿仑单抗 alemtuzuma 商品名Campath 1H 是一种抗CD52 英语 CD52 的人源化IgG1单抗 用于医治氟达拉滨 英语 Fludarabine 治疗无效的慢性淋巴细胞白血病 皮肤T细胞淋巴瘤 英语 Cutaneous T cell lymphoma 外周T细胞淋巴瘤 英语 Peripheral T cell lymphoma 与T细胞幼淋巴细胞白血病 英语 T cell prolymphocytic leukemia 超过95 的外周血淋巴细胞 包括T细胞和B细胞 与单核细胞表面存在CD52 但其在淋巴细胞中的作用未知 阿仑单抗能与CD52结合 经补体结合与ADCC机制引发细胞毒性作用 由于靶细胞为免疫细胞 在使用阿仑单抗治疗时可能会有感染 中毒 骨髓抑制等副作用 32 33 34 阿特珠单抗 编辑 阿特珠单抗 atezolizumab 商品名Tecentriq 是一种抗PD L1的全人源化IgG1单抗 用于治疗非小细胞肺癌 尿路上皮癌等 度伐鲁单抗 编辑 度伐鲁单抗 durvalumab 商品名Imfinzi 是一种人源IgG1k单抗 可阻断PD L1和PD 1 CD80 B7 1 之间的相互作用 度伐鲁单抗被批准可用于治疗满足以下条件的局部晚期或转移性尿路上皮癌 在含铂化疗期间或之后疾病有进展 在含铂化疗的新辅助治疗或辅助治疗的十二个月内疾病有进展 伊匹单抗 编辑 伊匹单抗 ipilimumab 商品名Yervoy 是一种抗细胞毒性T淋巴细胞相关抗原4 CTLA 4 的人源IgG1单抗 通常情况下 T细胞的激活依赖于两个信号 与主要组织相容性复合物 MHC 抗原结合的T细胞受体 以及与蛋白CD80 英语 CD80 或CD86 英语 CD86 结合的T细胞表面受体CD28 CTLA 4能与CD80或CD86结合 阻断它们与CD28的结合 进而抑制T细胞的活化 35 36 37 38 免疫系统需要活化的细胞毒性T细胞去攻击黑色素瘤细胞 正常情形下被抑制的黑色素瘤特异性的活化细胞毒性T细胞可引发抗肿瘤免疫应答 伊匹单抗能够改变调节T细胞与细胞毒性T细胞的比例 以强化免疫应答 调节T细胞会抑制其他T细胞 因而更多的调节T细胞不利于清除肿瘤 35 36 37 38 纳武单抗 编辑 纳武单抗 nivolumab 商品名Opdivo 是一种抗PD 1的人源IgG4单抗 可用于治疗黑色素瘤 非小细胞肺癌 英语 Non small cell lung carcinoma 肾细胞癌 英语 Renal cell carcinoma 等 奥法木单抗 编辑 奥法木单抗 ofatumumab 商品名Arzerra 是第二代抗CD20 英语 CD20 的人源IgG1单抗 其可以与在B细胞中高表达的CD20结合 从而治疗慢性淋巴细胞白血病 奥法木单抗与CD20蛋白上的小环结合 而同样以CD20为靶点的利妥昔单抗则与CD20的大环结合 这或许可以解释两者的不同特性 与利妥昔单抗相比 奥法木单抗降低了免疫原性 在更低剂量下便能够激活CDC作用 39 40 帕姆单抗 编辑 帕姆单抗 pembrolizumab 商品名Keytruda 是抗PD 1的人源化IgG4单抗 可用于治疗转移性非小细胞肺癌 不可切除或转移性黑色素瘤 并可在使用铂基类抗肿瘤药物 英语 Platinum based antineoplastic 后作为头颈部鳞状细胞癌 英语 Head and neck squamous cell carcinoma 的二线治疗方案 同时亦能用于治疗成人与儿童的顽固性典型霍奇金氏淋巴瘤 41 42 利妥昔单抗 编辑 主条目 利妥昔单抗 利妥昔单抗 rituximab 商品名Rituxan 是一种抗CD20的人鼠嵌合IgG1单抗 由同样以CD20为靶点的替伊莫单抗 英语 Ibritumomab 进一步研发而来 能有效治疗特定类型的B细胞恶性肿瘤 其中包括侵袭性或惰性淋巴瘤 如弥漫大B细胞淋巴瘤 滤泡淋巴瘤 以及白血病 如B细胞慢性淋巴细胞白血病 尽管CD20的功能尚不明确 但可能与钙离子通道有关 该单抗的作用机制为补体介导的细胞毒性 complement mediated cytotoxicity CMC 其他机制还包括细胞凋亡与细胞生长阻滞 此外 利妥昔单抗还能与化疗联用 可提高肿瘤B细胞对化疗的敏感性 43 44 44 45 46 47 细胞因子疗法 编辑细胞因子是肿瘤内多种细胞产生的蛋白质 可用于调节免疫应答 而肿瘤则会设法利用细胞因子以促进自身生长 降低免疫应答 细胞因子所具有免疫调节功能使它们可以作为药物被用于激发免疫应答 干扰素与白细胞介素是两类最常用的细胞因子 48 白细胞介素 2 IL 2 与干扰素 a IFNa 是能够调整 控制免疫系统行为的细胞因子 它们能增强抗肿瘤反应 因而被用于被动癌症治疗 干扰素 a被用于治疗毛细胞白血病 英语 Hairy cell leukemia 与艾滋病有关的卡波西氏肉瘤 滤泡淋巴瘤 英语 Follicular lymphoma 慢性粒细胞性白血病与黑色素瘤 白细胞介素 2则被用于治疗黑色素瘤与肾细胞癌 干扰素 编辑 干扰素 IFN 由免疫系统合成 一般与抗病毒应答有关 但亦可用于癌症 干扰素可分为I型 IFNa与IFNb II型 IFNg 与III型 IFNl 三大家族 IFNa被批准用于治疗毛细胞白血病 与艾滋病有关的卡波西氏肉瘤 滤泡淋巴瘤 慢性粒细胞性白血病与黑色素瘤 I型与II型干扰素家族已被广泛研究 尽管有研究表明两者都能够提升免疫系统的抗肿瘤效果 但其中只有I型干扰素的效果经临床试验证实 IFNl则在动物实验中表现出了抗肿瘤效应 49 50 与I型干扰素不同 IFNg尚未被批准用于癌症治疗 不过 已有实验表明使用了IFNg的膀胱癌与黑色素瘤患者的生存率得到了提升 而在二期与三期卵巢癌患者中 IFNg的效果最为明显 癌細胞中IFNg的体外实验研究则更为充分 结果表明IFNg能有效抑制癌細胞的增殖 引发细胞凋亡或自噬机制最终杀死癌細胞 51 白细胞介素 编辑 白细胞介素 IL 有一系列免疫调节作用 IL 2被用于治疗黑色素瘤与肾细胞癌 一般情况下IL 2能够同时激活效应T细胞与调节T细胞 对其具体的作用机理尚待研究 48 52 联合免疫疗法 编辑将多种免疫疗法合用 如同时使用PD 1与CTLA 4抑制剂 能够强化坑肿瘤应答 以达到持久应答的目的 53 54 冷冻消融联合免疫疗法则能够增强免疫刺激应答并产生协同效应 可用于以根治为目的转移性癌症治疗 55 在采用免疫检查点疗法的同时联用其他药物或许能加强免疫应答 这是目前临床研究的热点 56 如联合使用CSF 1R 英语 Colony stimulating factor 1 receptor 抑制剂与TLR激动剂就获得了良好效果 57 58 云芝多糖 K 编辑日本厚生劳动省于1980年代批准使用从云芝中提取的云芝多糖 K 英语 Polysaccharide K 用于激发化疗患者的免疫系统 但在美国等其他国家 多糖K属于膳食补充剂而非药物 59 研究 编辑过继性T细胞疗法 编辑 nbsp 肿瘤特异性的T细胞可通过分离肿瘤浸润淋巴细胞或基因改造外周血细胞得到 这些T细胞在激活扩增后注入患者体内 过继性T细胞疗法 adoptive T cell therapy 是一种向患者输送T细胞的被动免疫疗法 T细胞存在于血液与组织内 通常在有外源病原体时会激活 当T细胞的表面受体遇到表面抗原上呈现出外源蛋白质的细胞时 T细胞会被激活 这些细胞可以是被感染细胞或者抗原提呈细胞 APC T细胞同时出现在正常组织与肿瘤组织中 在肿瘤组织中的T细胞被称为肿瘤浸润淋巴细胞 TIL DC细胞等APC将肿瘤抗原提呈给T细胞后能将T细胞激活 尽管被激活的T细胞有能力攻击肿瘤 但由于肿瘤所在的环境能够抑制免疫反应 从而防止了免疫介导的肿瘤杀伤机制 60 有多种方法能够生成靶向肿瘤的T细胞 肿瘤样本或者血液中能够分离出肿瘤抗原特异性的T细胞 之后再在体外培养并激活这些T细胞 激活手段包括基因治疗或者将T细胞暴露于肿瘤抗原之中 目前 已有多项以过继性细胞输注 英语 Adoptive cell transfer ACT 为基础的临床试验 61 62 63 64 65 2018年发表的一项研究表明 此前多种免疫疗法治疗无效的转移性黑色素瘤患者在经ACT治疗后表现出了临床疗效 66 2017年 FDA首次批准了tisagenlecleucel 英语 tisagenlecleucel 与axicabtagene ciloleucel 英语 axicabtagene ciloleucel 两个过继性T细胞疗法 10 67 此外 另一种方法是采用健康异体供者的半相合gd T细胞 英语 Gamma delta T cell 或NK细胞进行过继性输注 此方法不会造成移植物对抗宿主疾病 GvHD 但被移植细胞的功能常会出现受损情形 68 抗CD47疗法 编辑 许多癌細胞上存在CD47过表达的现象 从而逃避宿主免疫系统的监视 CD47与其受体信号调节蛋白a 英语 Signal regulatory protein alpha SIRPa 的结合 使癌細胞得以逃避巨噬细胞对其的吞噬 69 抗CD47疗法的目的即是恢复吞噬作用 现在已有证据表明抗CD47疗法能够引发T细胞对肿瘤的特异性杀伤作用 70 71 多项以此为基础的疗法正在研发之中 其中包括抗CD47抗体 诱骗受体 英语 Decoy receptors 抗SIRPa抗体 双特异性抗体等 70 截至2017年 多项针对实体肿瘤与血液系统肿瘤的临床试验已经启动 70 72 抗GD2疗法 编辑 nbsp GD2神经节苷脂细胞表面的糖类抗原可以作为免疫疗法的靶点 GD2 英语 GD2 是一种神经节苷脂 存在于多种癌細胞表面 包括神经母细胞瘤 视网膜母细胞瘤 黑色素瘤 小细胞肺癌 脑瘤 骨肉瘤 横纹肌肉瘤 尤文氏肉瘤 脂肪肉瘤 纤维肉瘤 英语 Fibrosarcoma 平滑肌肉瘤以及其他软组织肉瘤 英语 Soft tissue sarcoma 由于正常组织表面一般不会表达GD2 使其成为免疫疗法的一个潜在靶点 目前已有相关临床试验在进行中 73 免疫检查点 编辑 nbsp 通过抑制免疫负调节机制 CTLA 4 PD 1 来治疗癌症免疫检查点 英语 Immune checkpoint 能够影响免疫系统的功能 其可以是刺激性或抑制性的 肿瘤会利用这些检查点来保护自己 逃避免疫系统的攻击 目前经批准的免疫检查点疗法皆是通过阻断抑制性检查点受体发挥作用的 当负反馈信号被阻断后能够激起机体的免疫应答以杀伤肿瘤 74 跨膜蛋白细胞程序性死亡受体1 英语 Programmed cell death protein 1 PD 1 又称CD279 与其配体细胞程序性死亡配体1 PD L1 又称CD274 间的相互作用是一个研究热点 癌細胞表面的PD L1能够与免疫细胞表面的PD 1相结合 以维护免疫抑制环境 PD L1能调节T细胞功能 肿瘤通过上调PD L1表达来抑制T细胞的活化 此外 PD L1还能抑制依赖FAS与干扰素的细胞凋亡过程 从而保护癌細胞免受由T细胞生成的细胞毒分子的杀伤 能够与PD 1或PD L1结合的抗体可用于阻断它们的相互作用 以使T细胞发挥功能 攻击肿瘤 75 CTLA 4抑制剂 编辑 2011年 FDA批准了首个免疫检查点抗体 用于治疗黑色素瘤的伊匹单抗 76 伊匹单抗能够阻断检查点分子细胞毒性T淋巴细胞相关抗原4 CTLA 4 而临床试验还表明抗CTLA 4疗法有利于肺癌与胰腺癌治疗 并能通过联合用药增强疗效 77 78 目前有试验正研究多种类型的癌症治疗中联用CTLA 4抑制剂与PD 1 PD L1抑制剂的效果 79 不过 使用检查点抗体 尤其是CTLA 4抗体 的患者常饱受免疫介导的不良反应困扰 这些副作用主要影响皮肤 胃肠道 肝脏与内分泌系统 80 这可能是由于注入的抗体在血液中扩散 进而在大范围内激活了T细胞 科研人员利用小鼠膀胱癌模型研究发现 在肿瘤区域局域低剂量注入CTLA 4抗体时取得的肿瘤抑制效果与将抗体输送至全身的效果相当 81 由于局域输入抗体能够减少其扩散 该疗法可能有助于降低治疗的副作用 81 PD 1抑制剂 编辑 抗PD 1的IgG4纳武单抗的试验结果于2010年首次发表 74 2014年被批准 纳武单抗可用于治疗黑色素瘤 肺癌 肾癌 膀胱癌 头颈癌 霍奇金淋巴瘤等 82 2016年的一项针对非小细胞肺癌的纳武单抗临床试验并没能达到一线治疗的主要终点目标 但FDA批准其可用于二 三线治疗 83 帕姆单抗是另一种PD 1抑制剂 于2014年被FDA批准用于治疗黑色素瘤与肺癌 82 替雷利珠单抗 英语 Tislelizumab tislelizumab BGB A317 则消除了与Fcg受体的结合能力 目前处于早期临床试验阶段 84 PD L1抑制剂 编辑 2016年 PD L1抑制剂阿特珠单抗被批准用于治疗膀胱癌 85 目前其他正在研发中的PD L1抗体包括阿维单抗 英语 Avelumab 86 度伐鲁单抗 87 以及一种名为Affimer 英语 Affimer 的抗体替代技术 88 其他 编辑 其他方法还包括以细胞内免疫检查点 如CISH 英语 CISH 为靶点的检查点阻断疗法 还有些癌症患者经免疫检查点阻断治疗后没有缓解 与其他癌症疗法联用或许能提高检查点阻断疗法的缓解率 对癌症动物模型的研究表明 联合放疗 血管靶向药物以及免疫原性化疗 immunogenic chemotherapy 89 等能提升检查点阻断的疗效 溶瘤病毒 编辑 溶瘤病毒 英语 Oncolytic virus 是一类能感染并杀伤癌細胞的病毒 溶瘤病毒可以特异性地在癌細胞中复制 增殖 并释放出新的感染性病毒颗粒破坏其他癌細胞 这种病毒不仅能直接杀死癌細胞 还能刺激宿主的抗肿瘤免疫应答以利于长期免疫治疗 90 91 92 利用病毒来治疗癌症的想法早在20世纪初便已出现 不过直至1960年代后该领域的研究才开始逐渐系统化 腺病毒 呼肠孤病毒 麻疹病毒 单纯疱疹病毒 新城病病毒 牛痘病毒等都先后在临床试验中被用作溶瘤病毒 T Vec 英语 Talimogene laherparepvec 则是首个经FDA批准的溶瘤病毒 可用于治疗黑色素瘤 另有其他多种溶瘤病毒正经历二期 三期临床试验 多糖 编辑 在蕈类中发现的多糖等化合物可用于调节免疫系统 或有助于癌症治疗 例如 有实验研究发现b 葡聚糖 如香菇多糖 可激活巨噬细胞 NK细胞 T细胞及免疫系统细胞因子 已有临床试验研究其作为免疫佐剂的效果 93 新生抗原 编辑 许多癌細胞会出现基因突变 而这些突变可作为T细胞免疫治疗潜在的靶抗原 这些抗原就被称为 新生抗原 neoantigen RNA测序数据表明 突变负荷 mutational burdern 越高的肿瘤中CD8 T细胞越多 NK细胞与T细胞的细胞杀伤活性与许多肿瘤的突变负荷呈正相关 在接受帕姆单抗治疗的非小细胞肺癌患者中 突变负荷与疗效显著相关 而在接受伊匹单抗治疗的黑色素瘤患者中 治疗的长期效果亦与突变负荷相关 尽管程度不及前例 有研究分析了经MHC呈递的新生抗原肽段后发现 治疗效果好的患者的肽段中有一组四肽 英语 Tetrapeptide 序列 而在治疗无效或低效的患者中却没有 94 不过其他一些研究中的新生抗原却没有表现出四肽特征 95 参见 编辑癌症疫苗参考文献 编辑 Korneev KV Atretkhany KN Drutskaya MS Grivennikov SI Kuprash DV Nedospasov SA TLR signaling and proinflammatory cytokines as drivers of tumorigenesis Cytokine January 2017 89 127 135 PMID 26854213 doi 10 1016 j cyto 2016 01 021 Riddell SR Progress in cancer vaccines by enhanced self presentation Proceedings of the National Academy of Sciences of the United States of America July 2001 98 16 8933 5 Bibcode 2001PNAS 98 8933R PMC 55350 nbsp PMID 11481463 doi 10 1073 pnas 171326398 3 0 3 1 Palucka K Banchereau J Dendritic cell based therapeutic cancer vaccines Immunity July 2013 39 1 38 48 PMC 3788678 nbsp PMID 23890062 doi 10 1016 j immuni 2013 07 004 Hirayama M Nishimura Y The present status and future prospects of peptide based cancer vaccines International Immunology July 2016 28 7 319 28 PMID 27235694 doi 10 1093 intimm dxw027 Gardner TA Elzey BD Hahn NM Sipuleucel T Provenge autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate resistant metastatic prostate cancer Human Vaccines amp Immunotherapeutics April 2012 8 4 534 9 PMID 22832254 doi 10 4161 hv 19795 Oudard S Progress in emerging therapies for advanced prostate cancer Cancer Treatment Reviews May 2013 39 3 275 89 PMID 23107383 doi 10 1016 j ctrv 2012 09 005 Sims RB Development of sipuleucel T autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer Vaccine June 2012 30 29 4394 7 PMID 22122856 doi 10 1016 j vaccine 2011 11 058 Shore ND Mantz CA Dosoretz DE Fernandez E Myslicki FA McCoy C Finkelstein SE Fishman MN Building on sipuleucel T for immunologic treatment of castration resistant prostate cancer Cancer Control January 2013 20 1 7 16 PMID 23302902 doi 10 1177 107327481302000103 Commissioner Office of the Press Announcements FDA approval brings first gene therapy to the United States www fda gov 2017 12 13 原始内容存档于2017 09 03 英语 10 0 10 1 FDA approves CAR T cell therapy to treat adults with certain types of large B cell lymphoma fda gov 2017 10 18 2017 11 08 原始内容存档于2017 11 08 11 0 11 1 Scott AM Wolchok JD Old LJ Antibody therapy of cancer Nature Reviews Cancer March 2012 12 4 278 87 PMID 22437872 doi 10 1038 nrc3236 12 0 12 1 Harding FA Stickler MM Razo J DuBridge RB The immunogenicity of humanized and fully human antibodies residual immunogenicity resides in the CDR regions MAbs May Jun 2010 2 3 256 65 PMC 2881252 nbsp PMID 20400861 doi 10 4161 mabs 2 3 11641 Pincetic A Bournazos S DiLillo DJ Maamary J Wang TT Dahan R Fiebiger BM Ravetch JV Type I and type II Fc receptors regulate innate and adaptive immunity Nature Immunology August 2014 15 8 707 16 PMID 25045879 doi 10 1038 ni 2939 Topalian SL Hodi FS Brahmer JR Gettinger SN Smith DC McDermott DF Powderly JD Carvajal RD Sosman JA Atkins MB Leming PD Spigel DR Antonia SJ Horn L Drake CG Pardoll DM Chen L Sharfman WH Anders RA Taube JM McMiller TL Xu H Korman AJ Jure Kunkel M Agrawal S McDonald D Kollia GD Gupta A Wigginton JM Sznol M Safety activity and immune correlates of anti PD 1 antibody in cancer The New England Journal of Medicine June 2012 366 26 2443 54 PMC 3544539 nbsp PMID 22658127 doi 10 1056 NEJMoa1200690 Dahan R Sega E Engelhardt J Selby M Korman AJ Ravetch JV FcgRs Modulate the Anti tumor Activity of Antibodies Targeting the PD 1 PD L1 Axis Cancer Cell October 2015 28 4 543 PMID 28854351 doi 10 1016 j ccell 2015 09 011 Arlauckas SP Garris CS Kohler RH Kitaoka M Cuccarese MF Yang KS Miller MA Carlson JC Freeman GJ Anthony RM Weissleder R Pittet MJ In vivo imaging reveals a tumor associated macrophage mediated resistance pathway in anti PD 1 therapy Science Translational Medicine May 2017 9 389 eaal3604 PMC 5734617 nbsp PMID 28490665 doi 10 1126 scitranslmed aal3604 Dahan R Barnhart BC Li F Yamniuk AP Korman AJ Ravetch JV Therapeutic Activity of Agonistic Human Anti CD40 Monoclonal Antibodies Requires Selective FcgR Engagement Cancer Cell July 2016 29 6 820 831 PMC 4975533 nbsp PMID 27265505 doi 10 1016 j ccell 2016 05 001 Weiner LM Surana R Wang S Monoclonal antibodies versatile platforms for cancer immunotherapy Nature Reviews Immunology May 2010 10 5 317 27 PMC 3508064 nbsp PMID 20414205 doi 10 1038 nri2744 Seidel UJ Schlegel P Lang P Natural killer cell mediated antibody dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies Frontiers in Immunology 2013 4 76 PMC 3608903 nbsp PMID 23543707 doi 10 3389 fimmu 2013 00076 Gelderman KA Tomlinson S Ross GD Gorter A Complement function in mAb mediated cancer immunotherapy Trends in Immunology March 2004 25 3 158 64 PMID 15036044 doi 10 1016 j it 2004 01 008 Waldmann TA Immunotherapy past present and future Nature Medicine March 2003 9 3 269 77 PMID 12612576 doi 10 1038 nm0303 269 Demko S Summers J Keegan P Pazdur R FDA drug approval summary alemtuzumab as single agent treatment for B cell chronic lymphocytic leukemia The Oncologist February 2008 13 2 167 74 PMID 18305062 doi 10 1634 theoncologist 2007 0218 FDA approves new targeted treatment for bladder cancer FDA 2016 05 18 2016 05 20 原始内容存档于2018 04 24 US Food and Drug Administration Avelumab Prescribing Label PDF 原始内容存档 PDF 于2017 03 24 Pazdur R FDA approval for Ipilimumab 2013 11 07 原始内容存档于2015 04 06 Lemery SJ Zhang J Rothmann MD Yang J Earp J Zhao H McDougal A Pilaro A Chiang R Gootenberg JE Keegan P Pazdur R U S Food and Drug Administration approval ofatumumab for the treatment of patients with chronic lymphocytic leukemia refractory to fludarabine and alemtuzumab Clinical Cancer Research September 2010 16 17 4331 8 PMID 20601446 doi 10 1158 1078 0432 CCR 10 0570 27 0 27 1 Sharma P Allison JP The future of immune checkpoint therapy Science April 2015 348 6230 56 61 Bibcode 2015Sci 348 56S PMID 25838373 doi 10 1126 science aaa8172 Opdivo Drug Approval History 2018 10 04 原始内容存档于2017 12 29 James JS Dubs G FDA approves new kind of lymphoma treatment Food and Drug Administration AIDS Treatment News December 1997 284 2 3 PMID 11364912 Research Center for Drug Evaluation and Approved Drugs Durvalumab Imfinzi www fda gov 2017 05 06 原始内容存档于2017 05 08 英语 FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC 原始内容存档于2018 07 25 Byrd JC Stilgenbauer S Flinn IW Chronic Lymphocytic Leukemia 页面存档备份 存于互联网档案馆 Hematology Am Soc Hematol Educ Program 2004 163 183 Date retrieved 26 01 2006 Domagala A Kurpisz M CD52 antigen a review Medical Science Monitor Mar Apr 2001 7 2 325 31 PMID 11257744 Dearden C How I treat prolymphocytic leukemia Blood July 2012 120 3 538 51 PMID 22649104 doi 10 1182 blood 2012 01 380139 35 0 35 1 Sondak VK Smalley KS Kudchadkar R Grippon S Kirkpatrick P Ipilimumab Nature Reviews Drug Discovery June 2011 10 6 411 2 PMID 21629286 doi 10 1038 nrd3463 36 0 36 1 Lipson EJ Drake CG Ipilimumab an anti CTLA 4 antibody for metastatic melanoma Clinical Cancer Research November 2011 17 22 6958 62 PMC 3575079 nbsp PMID 21900389 doi 10 1158 1078 0432 CCR 11 1595 37 0 37 1 Thumar JR Kluger HM Ipilimumab a promising immunotherapy for melanoma Oncology December 2010 24 14 1280 8 PMID 21294471 38 0 38 1 Chambers CA Kuhns MS Egen JG Allison JP CTLA 4 mediated inhibition in regulation of T cell responses mechanisms and manipulation in tumor immunotherapy Annual Review of Immunology 2001 19 565 94 PMID 11244047 doi 10 1146 annurev immunol 19 1 565 Castillo J Perez K The role of ofatumumab in the treatment of chronic lymphocytic leukemia resistant to previous therapies Journal of Blood Medicine 2010 1 1 8 PMC 3262337 nbsp PMID 22282677 doi 10 2147 jbm s7284 Zhang B Ofatumumab MAbs Jul Aug 2009 1 4 326 31 PMC 2726602 nbsp PMID 20068404 doi 10 4161 mabs 1 4 8895 Pembrolizumab label PDF FDA May 2017 2018 10 04 原始内容存档 PDF 于2020 10 17 linked from Index page at FDA website 页面存档备份 存于互联网档案馆 November 2016 Pembrolizumab label at eMC UK Electronic Medicines Compendium 2017 01 27 2018 10 04 原始内容存档于2017 12 13 Keating GM Rituximab a review of its use in chronic lymphocytic leukaemia low grade or follicular lymphoma and diffuse large B cell lymphoma Drugs July 2010 70 11 1445 76 PMID 20614951 doi 10 2165 11201110 000000000 00000 44 0 44 1 Plosker GL Figgitt DP Rituximab a review of its use in non Hodgkin s lymphoma and chronic lymphocytic leukaemia Drugs 2003 63 8 803 43 PMID 12662126 doi 10 2165 00003495 200363080 00005 Cerny T Borisch B Introna M Johnson P Rose AL Mechanism of action of rituximab Anti Cancer Drugs November 2002 13 Suppl 2 S3 10 PMID 12710585 doi 10 1097 00001813 200211002 00002 Janeway C Travers P Walport M Shlomchik M Immunobiology Fifth New York and London Garland Science 2001 2018 10 04 ISBN 978 0 8153 4101 7 原始内容存档于2009 06 28 页码请求 Weiner GJ Rituximab mechanism of action Seminars in Hematology April 2010 47 2 115 23 PMC 2848172 nbsp PMID 20350658 doi 10 1053 j seminhematol 2010 01 011 48 0 48 1 Dranoff G Cytokines in cancer pathogenesis and cancer therapy Nature Reviews Cancer January 2004 4 1 11 22 PMID 14708024 doi 10 1038 nrc1252 Dunn GP Koebel CM Schreiber RD Interferons immunity and cancer immunoediting Nature Reviews Immunology November 2006 6 11 836 48 PMID 17063185 doi 10 1038 nri1961 Lasfar A Abushahba W Balan M Cohen Solal KA Interferon lambda a new sword in cancer immunotherapy Clinical amp Developmental Immunology 2011 2011 349575 PMC 3235441 nbsp PMID 22190970 doi 10 1155 2011 349575 Razaghi A Owens L Heimann K Review of the recombinant human interferon gamma as an immunotherapeutic Impacts of production platforms and glycosylation Journal of Biotechnology December 2016 240 48 60 PMID 27794496 doi 10 1016 j jbiotec 2016 10 022 Coventry BJ Ashdown ML The 20th anniversary of interleukin 2 therapy bimodal role explaining longstanding random induction of complete clinical responses Cancer Management and Research 2012 4 215 21 PMC 3421468 nbsp PMID 22904643 doi 10 2147 cmar s33979 Ott PA Hodi FS Kaufman HL Wigginton JM Wolchok JD Combination immunotherapy a road map Journal for Immunotherapy of Cancer 2017 5 16 PMC 5319100 nbsp PMID 28239469 doi 10 1186 s40425 017 0218 5 Mahoney KM Rennert PD Freeman GJ Combination cancer immunotherapy and new immunomodulatory targets Nature Reviews Drug Discovery August 2015 14 8 561 84 PMID 26228759 doi 10 1038 nrd4591 Thermal Ablative Therapies and Immune Checkpoint Modulation Can Locoregional Approaches Effect a Systemic Response 2015 2018 10 04 原始内容存档于2018 06 02 Tang J Shalabi A Hubbard Lucey VM Comprehensive analysis of the clinical immuno oncology landscape Annals of Oncology January 2018 29 1 84 91 PMID 29228097 doi 10 1093 annonc mdx755 Perry CJ Munoz Rojas AR Meeth KM Kellman LN Amezquita RA Thakral D Du VY Wang JX Damsky W Kuhlmann AL Sher JW Bosenberg M Miller Jensen K Kaech SM Myeloid targeted immunotherapies act in synergy to induce inflammation and antitumor immunity The Journal of Experimental Medicine March 2018 215 3 877 893 PMID 29436395 doi 10 1084 jem 20171435 Rodell CB Arlauckas SP Cuccarese MF Garris CS Li R Ahmed MS Kohler RH Pittet MJ Weissleder R TLR7 8 agonist loaded nanoparticles promote the polarization of tumour associated macrophages to enhance cancer immunotherapy Nature Biomedical Engineering 2018 05 21 doi 10 1038 s41551 018 0236 8 Coriolus Versicolor American Cancer Society 原始内容存档于2006 02 15 Restifo NP Dudley ME Rosenberg SA Adoptive immunotherapy for cancer harnessing the T cell response Nature Reviews Immunology March 2012 12 4 269 81 PMID 22437939 doi 10 1038 nri3191 Carroll J Novartis Penn s customized T cell wows ASH with stellar leukemia data Fierce Biotech December 2013 2018 10 04 原始内容存档于2016 03 04 Carroll John Servier stages an entry into high stakes CAR T showdown with Novartis FierceBiotech February 2014 2018 10 04 原始内容存档于2016 03 03 Regalado A Biotech s Coming Cancer Cure Supercharge your immune cells to defeat cancer Juno Therapeutics believes its treatments can do exactly that MIT Technology Review June 2015 2018 10 04 原始内容存档于2015 06 20 CAR T Cell Therapy Engineering Patients Immune Cells to Treat Their Cancers cancer gov 2013 12 06 2014 05 09 原始内容存档于2014 05 12 NIH study demonstrates that a new cancer immunotherapy method could be effective against a wide range of cancers nih gov 2014 05 08 2014 05 09 原始内容存档于2014 05 09 Andersen R Borch TH Draghi A Gokuldass A Rana MA Pedersen M Nielsen M Kongsted P Kjeldsen JW Westergaard MC Radic HD Chamberlain CA Holmich LR Hendel HW Larsen MS Met O Svane IM Donia M T cells isolated from patients with checkpoint inhibitor resistant melanoma are functional and can mediate tumor regression Ann Oncol April 2018 PMID 29688262 doi 10 1093 annonc mdy139 FDA approval brings first gene therapy to the United States fda gov 2017 08 30 2017 11 08 原始内容存档于2017 09 03 Wilhelm M Smetak M Schaefer Eckart K Kimmel B Birkmann J Einsele H Kunzmann V Successful adoptive transfer and in vivo expansion of haploidentical gd T cells Journal of Translational Medicine February 2014 12 45 PMC 3926263 nbsp PMID 24528541 doi 10 1186 1479 5876 12 45 Jaiswal S Chao MP Majeti R Weissman IL Macrophages as mediators of tumor immunosurveillance Trends in Immunology June 2010 31 6 212 9 PMC 3646798 nbsp PMID 20452821 doi 10 1016 j it 2010 04 001 70 0 70 1 70 2 Weiskopf K Cancer immunotherapy targeting the CD47 SIRPa axis European Journal of Cancer May 2017 76 100 109 PMID 28286286 doi 10 1016 j ejca 2017 02 013 Matlung HL Szilagyi K Barclay NA van den Berg TK The CD47 SIRPa signaling axis as an innate immune checkpoint in cancer Immunological Reviews March 2017 276 1 145 164 PMID 28258703 doi 10 1111 imr 12527 Veillette A Chen J SIRPa CD47 Immune Checkpoint Blockade in Anticancer Therapy Trends in Immunology March 2018 39 3 173 184 PMID 29336991 doi 10 1016 j it 2017 12 005 Ahmed M Cheung NK Engineering anti GD2 monoclonal antibodies for cancer immunotherapy FEBS Letters January 2014 588 2 288 97 PMID 24295643 doi 10 1016 j febslet 2013 11 030 74 0 74 1 Pardoll DM The blockade of immune checkpoints in cancer immunotherapy Nature Reviews Cancer March 2012 12 4 252 64 PMC 4856023 nbsp PMID 22437870 doi 10 1038 nrc3239 Granier C De Guillebon E Blanc C Roussel H Badoual C Colin E Saldmann A Gey A Oudard S Tartour E Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer ESMO Open 2017 2 2 e000213 PMC 5518304 nbsp PMID 28761757 doi 10 1136 esmoopen 2017 000213 Cameron F Whiteside G Perry C Ipilimumab first global approval Drugs May 2011 71 8 1093 104 PMID 21668044 doi 10 2165 11594010 000000000 00000 Lynch TJ Bondarenko I Luft A Serwatowski P Barlesi F Chacko R Sebastian M Neal J Lu H Cuillerot JM Reck M Ipilimumab in combination with paclitaxel and carboplatin as first line treatment in stage IIIB IV non small cell lung cancer results from a randomized double blind multicenter phase II study Journal of Clinical Oncology June 2012 30 17 2046 54 PMID 22547592 doi 10 1200 JCO 2011 38 4032 Le DT Lutz E Uram JN Sugar EA Onners B Solt S Zheng L Diaz LA Donehower RC Jaffee EM Laheru DA Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM CSF gene in previously treated pancreatic cancer Journal of Immunotherapy September 2013 36 7 382 9 PMC 3779664 nbsp PMID 23924790 doi 10 1097 CJI 0b013e31829fb7a2 Clinical trial number NCT01928394 for A Study of Nivolumab by Itself or Nivolumab Combined With Ipilimumab in Patients With Advanced or Metastatic Solid Tumors at ClinicalTrials gov Postow MA Callahan MK Wolchok JD Immune Checkpoint Blockade in Cancer Therapy Journal of Clinical Oncology June 2015 33 17 1974 82 PMC 4980573 nbsp PMID 25605845 doi 10 1200 JCO 2014 59 4358 81 0 81 1 van Hooren L Sandin LC Moskalev I Ellmark P Dimberg A Black P Totterman TH Mangsbo SM Local checkpoint inhibition of CTLA 4 as a monotherapy or in combination with anti PD1 prevents the growth of murine bladder cancer European Journal of Immunology February 2017 47 2 385 393 PMID 27873300 doi 10 1002 eji 201646583 82 0 82 1 Pollack A F D A Approves an Immunotherapy Drug for Bladder Cancer The New York Times 2016 05 18 2016 05 21 ISSN 0362 4331 原始内容存档于2016 05 21 Steele A Bristol Myers Opdivo Failed to Meet Endpoint in Key Lung Cancer Study Wall Street Journal 2016 08 05 2016 08 05 ISSN 0099 9660 原始内容存档于2016 08 06 BeiGene Ltd BeiGene Presents Initial Clinical Data on PD 1 Antibody BGB A317 at the 2016 American Society of Clinical Oncology Annual Meeting Globe Newswire 2018 10 04 原始内容存档于2017 08 24 Roche FDA grants priority review for Roche s cancer immunotherapy atezolizumab in specific type of lung cancer 2018 10 04 原始内容存档于2017 09 08 Merck Group Immuno oncology Avelumab 2018 10 04 原始内容存档于2017 06 11 Cure today Durvalumab continues to progress in treatment of advanced bladder cancer 2018 10 04 原始内容存档于2017 08 17 Avacta Life Sciences Affimer biotherapeutics target cancer s off switch with PD L1 inhibitor 2018 10 04 原始内容存档于2016 08 06 Pfirschke C Engblom C Rickelt S Cortez Retamozo V Garris C Pucci F et al Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy Immunity February 2016 44 2 343 54 PMID 26872698 doi 10 1016 j immuni 2015 11 024 Fukuhara H Ino Y Todo T Oncolytic virus therapy A new era of cancer treatment at dawn Cancer Science October 2016 107 10 1373 1379 PMC 5084676 nbsp PMID 27486853 doi 10 1111 cas 13027 Haddad D Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment Imaging and Transgene Delivery Frontiers in Oncology 2017 7 96 PMC 5440573 nbsp PMID 28589082 doi 10 3389 fonc 2017 00096 Marin Acevedo JA Soyano AE Dholaria B Knutson KL Lou Y Cancer immunotherapy beyond immune checkpoint inhibitors Journal of Hematology amp Oncology January 2018 11 1 8 PMC 5767051 nbsp PMID 29329556 doi 10 1186 s13045 017 0552 6 Aleem E b Glucans and their applications in cancer therapy focus on human studies Anti Cancer Agents in Medicinal Chemistry June 2013 13 5 709 19 PMID 23140353 doi 10 2174 1871520611313050007 Snyder A Makarov V Merghoub T Yuan J Zaretsky JM Desrichard A Walsh LA Postow MA Wong P Ho TS Hollmann TJ Bruggeman C Kannan K Li Y Elipenahli C Liu C Harbison CT Wang L Ribas A Wolchok JD Chan TA Genetic basis for clinical response to CTLA 4 blockade in melanoma The New England Journal of Medicine December 2014 371 23 2189 2199 PMC 4315319 nbsp PMID 25409260 doi 10 1056 NEJMoa1406498 Schumacher TN Schreiber RD Neoantigens in cancer immunotherapy Science April 2015 348 6230 69 74 Bibcode 2015Sci 348 69S PMID 25838375 doi 10 1126 science aaa4971 取自 https zh wikipedia org w index php title 癌症免疫疗法 amp oldid 74898212, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。