fbpx
维基百科

代数图论

代数图论(algebraic graph theory)是用代数方法处理图论问题的数学分支。这不同于几何、组合或算法的方法。代数图论有三个主要分支,分别使用线性代数,使用群论,以及研究图不变量。

佩特森图,一种高度对称的图。它的直径为2。其自同构群有120个元素,事实上就是对称群

代数图论的分支 编辑

使用线性代数 编辑

代数图论的第一个分支用线性代数来研究图,特别是研究图的邻接矩阵拉普拉斯矩阵(这部分代数图论也被称为谱图理论)。以佩特森图为例,邻接矩阵的谱为(-2, -2, -2, -2, 1, 1, 1, 1, 1, 3)。通过一些定理把谱的性质与图的其他性质联系起来。举一个简单的例子,对于直径为D的连通图,它的谱至少有D+1个不同的值[1]。图的谱可用于分析网络的同步

使用群论 编辑

 
交错群 凯莱图,在三维空间中构成了截角四面体

代数图论的第二个分支用群论来研究图,尤其是自同构群以及几何群论。重点是根据对称性对图进行分类,以及不同类别之间的包含关系。某些特殊类别的图足够少,可以把它们列举出来。根据Frucht定理,所以的群都可以表示成连通图的自同构群[2]。另外,给定一个群,可以作出相应的凯莱图,凯莱图有一些性质与群的结构相关[1]

代数图论的第二个分支与第一个分支有联系,因为图的对称性在图的谱中也有反映。尤其是,对于高度对称的图,例如佩特森图,不同的特征值的数目很少[1](佩特森图有3个不同的特征值,在直径相等的图中是最少的)。凯莱图的谱与群的结构直接相关,尤其是与不可约特征标相关[1][3]

研究图不变量 编辑

 
用三种颜色对佩特森图的顶点进行着色。根据色多项式,有120种3着色。

最后,代数图论的第三个分支研究图不变量的代数性质,尤其是色多项式、Tutte多项式与扭结不变量。例如,图的色多项式计算了顶点着色的个数。佩特森图的色多项式为 [1]。这意味着佩特森图不能用1种或2种颜色着色,但可以用3种颜色着色,且着色方式有120种。代数图论的这一领域的许多工作都是为了证明四色定理而启发。可是仍然有许多未解决的问题,例如如何判定两个图的色多项式相同,以及如何判定一个多项式是不是某个图的色多项式。

另见 编辑

参考资料 编辑

  1. ^ 1.0 1.1 1.2 1.3 1.4 Biggs, Norman (1993), Algebraic Graph Theory (2nd ed.), Cambridge: Cambridge University Press, ISBN 0-521-45897-8
  2. ^ R. Frucht. Graphs of Degree 3 with given abstract group, Can. J. Math. 3 1949.
  3. ^ Babai, L (1996), "Automorphism groups, isomorphism, reconstruction", in Graham, R; Grötschel, M; Lovász, L, Handbook of Combinatorics, Elsevier
  • Godsil, Chris; Royle, Gordon (2001), Algebraic Graph Theory, Graduate Texts in Mathematics, 207, New York: Springer-Verlag.

代数图论, algebraic, graph, theory, 是用代数方法处理图论问题的数学分支, 这不同于几何, 组合或算法的方法, 有三个主要分支, 分别使用线性代数, 使用群论, 以及研究图不变量, 佩特森图, 一种高度对称的图, 它的直径为2, 其自同构群有120个元素, 事实上就是对称群s5, displaystyle, 目录, 的分支, 使用线性代数, 使用群论, 研究图不变量, 另见, 参考资料的分支, 编辑使用线性代数, 编辑, 的第一个分支用线性代数来研究图, 特别是研究图的邻接矩阵或拉普拉斯矩. 代数图论 algebraic graph theory 是用代数方法处理图论问题的数学分支 这不同于几何 组合或算法的方法 代数图论有三个主要分支 分别使用线性代数 使用群论 以及研究图不变量 佩特森图 一种高度对称的图 它的直径为2 其自同构群有120个元素 事实上就是对称群S5 displaystyle S 5 目录 1 代数图论的分支 1 1 使用线性代数 1 2 使用群论 1 3 研究图不变量 2 另见 3 参考资料代数图论的分支 编辑使用线性代数 编辑 代数图论的第一个分支用线性代数来研究图 特别是研究图的邻接矩阵或拉普拉斯矩阵的谱 这部分代数图论也被称为谱图理论 以佩特森图为例 邻接矩阵的谱为 2 2 2 2 1 1 1 1 1 3 通过一些定理把谱的性质与图的其他性质联系起来 举一个简单的例子 对于直径为D的连通图 它的谱至少有D 1个不同的值 1 图的谱可用于分析网络的同步 使用群论 编辑 nbsp 交错群A4 displaystyle A 4 nbsp 的凯莱图 在三维空间中构成了截角四面体 代数图论的第二个分支用群论来研究图 尤其是自同构群以及几何群论 重点是根据对称性对图进行分类 以及不同类别之间的包含关系 某些特殊类别的图足够少 可以把它们列举出来 根据Frucht定理 所以的群都可以表示成连通图的自同构群 2 另外 给定一个群 可以作出相应的凯莱图 凯莱图有一些性质与群的结构相关 1 代数图论的第二个分支与第一个分支有联系 因为图的对称性在图的谱中也有反映 尤其是 对于高度对称的图 例如佩特森图 不同的特征值的数目很少 1 佩特森图有3个不同的特征值 在直径相等的图中是最少的 凯莱图的谱与群的结构直接相关 尤其是与不可约特征标相关 1 3 研究图不变量 编辑 nbsp 用三种颜色对佩特森图的顶点进行着色 根据色多项式 有120种3着色 最后 代数图论的第三个分支研究图不变量的代数性质 尤其是色多项式 Tutte多项式与扭结不变量 例如 图的色多项式计算了顶点着色的个数 佩特森图的色多项式为t t 1 t 2 t7 12t6 67t5 230t4 529t3 814t2 775t 352 displaystyle t t 1 t 2 t 7 12t 6 67t 5 230t 4 529t 3 814t 2 775t 352 nbsp 1 这意味着佩特森图不能用1种或2种颜色着色 但可以用3种颜色着色 且着色方式有120种 代数图论的这一领域的许多工作都是为了证明四色定理而启发 可是仍然有许多未解决的问题 例如如何判定两个图的色多项式相同 以及如何判定一个多项式是不是某个图的色多项式 另见 编辑谱图理论 代数组合学 代数连通度 邻接矩阵参考资料 编辑 1 0 1 1 1 2 1 3 1 4 Biggs Norman 1993 Algebraic Graph Theory 2nd ed Cambridge Cambridge University Press ISBN 0 521 45897 8 R Frucht Graphs of Degree 3 with given abstract group Can J Math 3 1949 Babai L 1996 Automorphism groups isomorphism reconstruction in Graham R Grotschel M Lovasz L Handbook of Combinatorics ElsevierGodsil Chris Royle Gordon 2001 Algebraic Graph Theory Graduate Texts in Mathematics 207 New York Springer Verlag 取自 https zh wikipedia org w index php title 代数图论 amp oldid 53886911, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。