fbpx
维基百科

贝亚蒂定理

在数论中,贝亚蒂定理(英文:Beatty sequence)指:若使得。定義集(贝亚蒂列,则P 和 Q 构成正整数集的一个分划:

即是說:若兩個正無理數倒數之和是1,則任何正整數都可剛好以一種形式表示為不大於其中一個無理數的正整數倍的最大整數。

此定理由Sam Beatty在1926年發現。

例子 编辑

比如说对于黄金分割率   而言,可以令  ,有  (根据黄金分割率的性质),生成两个序列:

  • 1,3,4,6,8,9,11,12,14,...(sequence A000201 in the OEIS)
  • 2,5,7,10,13,15,...(sequence A001950 in the OEIS)

这被用来构建 Wythoff array,是证明威佐夫博弈的一个关键步骤。

Rayleigh 定理 编辑

Rayleigh 定理,又被称为贝亚蒂定理,定义为:

指定一个无理数   ,这里存在着一个数   使得贝亚蒂序列    引出的同名集合将正整数集合划分:即所有的正整数属于且仅属于两个集合中的一个。

第一种证明 编辑

给定  ,使得  ,必须要证明任意一个正整数属于且仅属于序列对应的集合   或者   中的一个。

为了证明它,可以构建两个不同的没有交集的集合并排成一个有序序列(可以通过有序序列的有序性,使得下标和值一一对应),通过构造值和对应下标的一一对应的关系,证明任意一个正整数对应的值属于且仅属于两个集合中的一个,而对应两个集合的下标集合正是   

需要考虑如下:对于正整数    而言,有分数    形成的序列。这两个序列对应的的集合没有交集,且容易证明序列本身没有重复元素。

没有交集可以利用反证法,证明两个数  ,有  ,那么满足: ,因为   属于无理数,故   也属于无理数,不能被两个有理数的比来进行表示,矛盾故它们形成的集合没有交集。

将两个序列组合成一个序列,需要证明值   对应的下标就是  :在   形成的子序列中,  的下标为  ;而在另一个子序列,即   形成的序列中,  前面一共有   个数,综上它的下标就为  。同理值   对应的下标就为  

综上这两个没有交集的序列合成的序列下标和值本身是一一对应的,值本身和    是对应的,可以证明这是一个划分。

第二种证明 编辑

重复: 假设, 与定理相反地, 有整数 j > 0 和 km 使得

 

这等价于不等式

 

对于非零的 j, 无理数rs, 等号不可能成立. 所以

 

从而

 

将它们相加并利用条件得,

 

这是不可能的 (两个相邻整数之间没有其他的整数). 所以假设不成立.

遗漏: 假设, 与定理相反地, 有整数 j > 0 和 km 使得

 

因为 j + 1 非零且 rs 为无理数, 等号不可能成立, 所以

 

于是得

 

将这些不等式相加得

 
 

这是不可能的. 所以假设不成立.

外部連結 编辑

贝亚蒂定理, 在数论中, 英文, beatty, sequence, 若p, displaystyle, mathbb, mathbb, 使得1, displaystyle, frac, frac, 定義集, 贝亚蒂列, displaystyle, lfloor, rfloor, mathbb, lfloor, rfloor, mathbb, 则p, 构成正整数集的一个分划, displaystyle, emptyset, displaystyle, mathbb, 即是說, 若兩個正無理數的倒數之和是1, 則任何. 在数论中 贝亚蒂定理 英文 Beatty sequence 指 若p q R p q Q displaystyle p q in mathbb R p q not in mathbb Q 使得1 p 1 q 1 displaystyle frac 1 p frac 1 q 1 定義集 贝亚蒂列 P n p n Z Q n q n Z displaystyle P lfloor np rfloor n in mathbb Z Q lfloor nq rfloor n in mathbb Z 则P 和 Q 构成正整数集的一个分划 P Q displaystyle P cap Q emptyset P Q Z displaystyle P cup Q mathbb Z 即是說 若兩個正無理數的倒數之和是1 則任何正整數都可剛好以一種形式表示為不大於其中一個無理數的正整數倍的最大整數 此定理由Sam Beatty在1926年發現 目录 1 例子 2 Rayleigh 定理 2 1 第一种证明 2 2 第二种证明 3 外部連結例子 编辑比如说对于黄金分割率 ϕ displaystyle phi nbsp 而言 可以令 r ϕ displaystyle r phi nbsp 有 s ϕ 1 ϕ ϕ 1 displaystyle s phi 1 frac phi phi 1 nbsp 根据黄金分割率的性质 生成两个序列 1 3 4 6 8 9 11 12 14 sequence A000201 in the OEIS 2 5 7 10 13 15 sequence A001950 in the OEIS 这被用来构建 Wythoff array 是证明威佐夫博弈的一个关键步骤 Rayleigh 定理 编辑Rayleigh 定理 又被称为贝亚蒂定理 定义为 指定一个无理数 r gt 1 displaystyle r gt 1 nbsp 这里存在着一个数 s gt 1 displaystyle s gt 1 nbsp 使得贝亚蒂序列 B displaystyle B nbsp 和 B displaystyle B nbsp 引出的同名集合将正整数集合划分 即所有的正整数属于且仅属于两个集合中的一个 第一种证明 编辑 给定 r gt 1 displaystyle r gt 1 nbsp 使得 s r r 1 displaystyle s r r 1 nbsp 必须要证明任意一个正整数属于且仅属于序列对应的集合 B n r n Z displaystyle B lfloor nr rfloor n in mathbb Z nbsp 或者 B n s n Z displaystyle B lfloor ns rfloor n in mathbb Z nbsp 中的一个 为了证明它 可以构建两个不同的没有交集的集合并排成一个有序序列 可以通过有序序列的有序性 使得下标和值一一对应 通过构造值和对应下标的一一对应的关系 证明任意一个正整数对应的值属于且仅属于两个集合中的一个 而对应两个集合的下标集合正是 B displaystyle B nbsp 和 B displaystyle B nbsp 需要考虑如下 对于正整数 j displaystyle j nbsp 和 k displaystyle k nbsp 而言 有分数 j r displaystyle j over r nbsp 和 k s displaystyle k over s nbsp 形成的序列 这两个序列对应的的集合没有交集 且容易证明序列本身没有重复元素 没有交集可以利用反证法 证明两个数 j k Z displaystyle j k in mathbb Z nbsp 有 j r k s displaystyle j over r k over s nbsp 那么满足 j k r s r 1 displaystyle j over k r over s r 1 nbsp 因为 r displaystyle r nbsp 属于无理数 故 r 1 displaystyle r 1 nbsp 也属于无理数 不能被两个有理数的比来进行表示 矛盾故它们形成的集合没有交集 将两个序列组合成一个序列 需要证明值 j r displaystyle j over r nbsp 对应的下标就是 j s displaystyle lfloor js rfloor nbsp 在 i r displaystyle i over r nbsp 形成的子序列中 j r displaystyle j over r nbsp 的下标为 j displaystyle j nbsp 而在另一个子序列 即 k s displaystyle k over s nbsp 形成的序列中 j r displaystyle j over r nbsp 前面一共有 j s r displaystyle lfloor js over r rfloor nbsp 个数 综上它的下标就为 j j s r j j s 1 j j s 1 j s displaystyle j lfloor js over r rfloor j lfloor j s 1 rfloor lfloor j j s 1 rfloor lfloor js rfloor nbsp 同理值 k s displaystyle k over s nbsp 对应的下标就为 k r displaystyle lfloor kr rfloor nbsp 综上这两个没有交集的序列合成的序列下标和值本身是一一对应的 值本身和 B displaystyle B nbsp 和 B displaystyle B nbsp 是对应的 可以证明这是一个划分 第二种证明 编辑 重复 假设 与定理相反地 有整数 j gt 0 和 k 和 m 使得 j k r m s displaystyle j left lfloor k cdot r right rfloor left lfloor m cdot s right rfloor nbsp 这等价于不等式 j k r lt j 1 且 j m s lt j 1 displaystyle j leq k cdot r lt j 1 text 且 j leq m cdot s lt j 1 nbsp 对于非零的 j 无理数r 和 s 等号不可能成立 所以 j lt k r lt j 1 且 j lt m s lt j 1 displaystyle j lt k cdot r lt j 1 text 且 j lt m cdot s lt j 1 nbsp 从而 j r lt k lt j 1 r 且 j s lt m lt j 1 s displaystyle j over r lt k lt j 1 over r text 且 j over s lt m lt j 1 over s nbsp 将它们相加并利用条件得 j lt k m lt j 1 displaystyle j lt k m lt j 1 nbsp 这是不可能的 两个相邻整数之间没有其他的整数 所以假设不成立 遗漏 假设 与定理相反地 有整数 j gt 0 和 k 和 m 使得 k r lt j 且 j 1 k 1 r 且 m s lt j 且 j 1 m 1 s displaystyle k cdot r lt j text 且 j 1 leq k 1 cdot r text 且 m cdot s lt j text 且 j 1 leq m 1 cdot s nbsp 因为 j 1 非零且 r 和 s 为无理数 等号不可能成立 所以 k r lt j 且 j 1 lt k 1 r 且 m s lt j 且 j 1 lt m 1 s displaystyle k cdot r lt j text 且 j 1 lt k 1 cdot r text 且 m cdot s lt j text 且 j 1 lt m 1 cdot s nbsp 于是得 k lt j r 且 j 1 r lt k 1 且 m lt j s 且 j 1 s lt m 1 displaystyle k lt j over r text 且 j 1 over r lt k 1 text 且 m lt j over s text 且 j 1 over s lt m 1 nbsp 将这些不等式相加得 k m lt j 且 j 1 lt k m 2 displaystyle k m lt j text 且 j 1 lt k m 2 nbsp k m lt j lt k m 1 displaystyle k m lt j lt k m 1 nbsp 这是不可能的 所以假设不成立 外部連結 编辑http www sftw umac mo fstitl 10mmo betty html 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 贝亚蒂定理 amp oldid 76672669, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。