fbpx
维基百科

藍絲黛爾石

藍絲黛爾石Lonsdaleite)也译做郎士德碳,又因晶體結構及特性稱作六方金剛石hexagonal diamond)、六方碳。藍絲黛爾石是一種六方晶系金剛石,屬於碳同素異形體的一種構形,咸信為流星上的石墨在墜入地球時所形成。撞擊時的巨大壓力及熱量改變石墨構形形成金剛石,卻又保留了石墨的平行六邊形晶格,並構成了立方的六方晶格。第一次鑑別出藍絲黛爾石是1967年在美國亞利桑那州巴林杰隕石坑[4],從位在其中的「魔谷隕石」中所發現,並以20世紀的愛爾蘭晶體學家英國皇家學會凱瑟琳·朗斯代爾英语Kathleen Lonsdale(Kathleen Lonsdale)命名,因她使用X射線研究了碳的結構。

藍絲黛爾石
Lonsdaleite
藍絲黛爾石的晶体结构
基本資料
類別自然元素礦物
化学式C
施特龙茨分类01.CB.10b
晶体分类雙六方二錐 (6/mmm)
赫尔曼–莫甘记号: (6/m 2/m 2/m)
晶体空间群P63/mmc
晶胞a = 2.51 Å, c = 4.12 Å; Z=4
性質
顏色晶体为灰色,断片为苍黄色至棕色
晶系六方晶系
莫氏硬度7-8
光澤金刚光泽
透明性透明
比重3.2
光學性質单轴(+/-)
折射率n = 2.404
參考文獻[1][2][3]

藍絲黛爾石具有透明棕黃色的外觀,折射率在2.40至2.41之間,比重在3.2至3.3之間。它的莫氏硬度在7至8之間,而金剛石的莫氏硬度則為10。藍絲黛爾石較低的硬度主要原因是因为天然形成礦石不純且不完美所致。但如果以人工合成則比鑽石硬58%,而抗壓程度也比鑽石高了大約58%。[5]

藍絲黛爾石也已經在實驗室中(1966年或更早; 1967年出版[6])被合成,方法是在靜態壓力機或炸藥中壓縮和加熱石墨[7]

硬度

矿物学模拟预测蓝丝黛尔石在<100>面上比钻石硬58%,能抵抗152 GPa的压入压力,而钻石在压入到97 GPa时就会断裂。[8]IIa英语Diamond type钻石英语material properties of diamond的<111>尖端硬度则为162 GPa,超过了这个值。

蓝丝黛尔石的外推特性受到质疑,特别是其极高的硬度,因为在晶体学检查下的样品没有显示出块状六方晶格结构,而是结构缺陷主要是六边形结构的传统的立方钻石结构。[9]对蓝丝黛尔石的X射线衍射数据的定量分析表明,它存在大约等量的六方和立方堆积序列。因此,有人提出“堆叠无序的钻石”是对蓝丝黛尔石最准确的结构描述。[10]另一方面,最近使用原位X射线衍射进行的冲击实验表明,在与陨石撞击相当的动态高压环境中会产生相对较纯的蓝丝黛尔石。[11][12]

存在

 
来自波皮盖陨石坑 的钻石样品:(a) 是纯钻石,而 (b) 是含有一些藍絲黛爾石杂质的钻石。

藍絲黛爾石存在于隕石的金剛石上,是一個連結在金剛石上非肉眼可見的顯微晶體。除魔谷隕石外,在美國新墨西哥州的「肯納隕石」(Kenna meteorite)、南極洲維多利亞地的艾倫丘陵隕石77283(Allan Hills (ALH) 77283)上亦有發現。[13]有争议的克洛维斯彗星假说支持者发现,在墨西哥瓜纳华托州奎采奥湖的沉积物中发现了d间距与蓝丝黛尔石一致的材料。[14]此外,蓝丝黛尔石存在于当地的泥炭沉积物中,被认为是通古斯大爆炸是由流星而非彗星碎片引起的证据。[15][16]

合成

除了通过加压或使用炸药压缩和加热石墨[17][18]蓝丝黛尔石也可以通过化学气相沉积[19][20][21]或是聚合物聚甲炔英语poly(hydridocarbyne)在1,000 °C(1,832 °F)的氩气气氛下热分解而成。[22][23]

2020年,澳大利亚国立大学的研究人员偶然发现使用金刚石压砧就可以在室温下生产蓝丝黛尔石。[24][25]

2021年,华盛顿州立大学的冲击物理研究所发表了一篇论文,称他们创造了足够大的蓝丝黛尔石晶体来测量其硬度,证实它们比普通的立方钻石更坚硬。[26]

参见

参考

  1. ^ Lonsdaleite on Mindat.org. [2005-09-10]. (原始内容于2021-03-31). 
  2. ^ Handbook of Mineralogy (PDF). [2013-02-11]. (原始内容 (PDF)于2012-03-30). 
  3. ^ Lonsdaleite data from Webmineral. [2005-09-10]. (原始内容于2021-03-31). 
  4. ^ . [2005-09-10]. (原始内容存档于2006-10-11). 
  5. ^ Carlomagno, G.M.; Brebbia, C.A. Computational Methods and Experimental Measurements XV. WIT Press. 2011. ISBN 978-1-84564-540-3. 
  6. ^ Bundy, F. P.; Kasper, J. S. Hexagonal Diamond—A New Form of Carbon. Journal of Chemical Physics. 1967, 46 (9): 3437. Bibcode:1967JChPh..46.3437B. doi:10.1063/1.1841236. 
  7. ^ He, Hongliang; Sekine, T.; Kobayashi, T. Direct transformation of cubic diamond to hexagonal diamond. Applied Physics Letters. 2002, 81 (4): 610. Bibcode:2002ApPhL..81..610H. doi:10.1063/1.1495078. 
  8. ^ Pan, Zicheng; Sun, Hong; Zhang, Yi & Chen, Changfeng. Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite. Physical Review Letters. 2009, 102 (5): 055503. Bibcode:2009PhRvL.102e5503P. PMID 19257519. doi:10.1103/PhysRevLett.102.055503. 简明摘要 – Physorg.com (12 February 2009). 
  9. ^ Nemeth, P.; Garvie, L.A.J.; Aoki, T.; Natalia, D.; Dubrovinsky, L.; Buseck, P.R. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nature Communications. 2014, 5: 5447. Bibcode:2014NatCo...5.5447N. PMID 25410324. doi:10.1038/ncomms6447 . 
  10. ^ Salzmann, C.G.; Murray, B.J.; Shephard, J.J. . Diamond and Related Materials. 2015, 59: 69–72 [2021-12-21]. Bibcode:2015DRM....59...69S. S2CID 53416525. arXiv:1505.02561 . doi:10.1016/j.diamond.2015.09.007. (原始内容存档于2021-12-21). 
  11. ^ Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D.O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L.B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E.J.; Goede, S.; Granados, E.; Gregori, G.; Lee, H.J.; Neumayer, P.; Schumaker, W.; Doeppner, T.; Falcone, R.W.; Glenzer, S.H.; Roth, M. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications. 2016, 7: 10970. Bibcode:2016NatCo...710970K. PMC 4793081 . PMID 26972122. doi:10.1038/ncomms10970. 
  12. ^ Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J.M.; Gupta, Yogendra M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Science Advances. 2017-10-01, 3 (10): eaao3561. ISSN 2375-2548. PMC 5659656 . PMID 29098183. doi:10.1126/sciadv.aao3561. 
  13. ^ Kaminskii, F.V.; G.K. Blinova; E.M. Galimov; G.A. Gurkina; Y.A. Klyuev; L.A. Kodina; V.I. Koptil; V.F. Krivonos; L.N. Frolova; A.Y. Khrenov. Polycrystalline aggregates of diamond with lonsdaleite from Yakutian [Sakhan] placers. Mineral. Zhurnal. 1985, 7: 27–36. 
  14. ^ Israde-Alcantara, I.; Bischoff, J.L.; Dominguez-Vazquez, G.; Li, H.-C.; Decarli, P.S.; Bunch, T.E.; et al. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences. 2012, 109 (13): E:738–747. Bibcode:2012PNAS..109E.738I. PMC 3324006 . PMID 22392980. doi:10.1073/pnas.1110614109 . 
  15. ^ Kvasnytsya, Victor; Wirth; Dobrzhinetskaya; Matzel; Jacobsend; Hutcheon; Tappero; Kovalyukh. New evidence of meteoritic origin of the Tunguska cosmic body. Planetary and Space Science. August 2013, 84: 131–140. Bibcode:2013P&SS...84..131K. doi:10.1016/j.pss.2013.05.003. 
  16. ^ Redfern, Simon. . BBC News. British Broadcasting Corporation. [28 June 2013]. (原始内容存档于2022-05-17). 
  17. ^ Bundy, F.P.; Kasper, J.S. Hexagonal diamond — a new form of carbon. Journal of Chemical Physics. 1967, 46 (9): 3437. Bibcode:1967JChPh..46.3437B. doi:10.1063/1.1841236. 
  18. ^ He, Hongliang; Sekine, T.; Kobayashi, T. Direct transformation of cubic diamond to hexagonal diamond. Applied Physics Letters. 2002, 81 (4): 610. Bibcode:2002ApPhL..81..610H. doi:10.1063/1.1495078. 
  19. ^ Bhargava, Sanjay; Bist, H.D.; Sahli, S.; Aslam, M.; Tripathi, H.B. Diamond polytypes in the chemical vapor deposited diamond films. Applied Physics Letters. 1995, 67 (12): 1706. Bibcode:1995ApPhL..67.1706B. doi:10.1063/1.115023. 
  20. ^ Nishitani-Gamo, Mikka; Sakaguchi, Isao; Loh, Kian Ping; Kanda, Hisao; Ando, Toshihiro. Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions. Applied Physics Letters. 1998, 73 (6): 765. Bibcode:1998ApPhL..73..765N. doi:10.1063/1.121994. 
  21. ^ Misra, Abha; Tyagi, Pawan K.; Yadav, Brajesh S.; Rai, P.; Misra, D.S.; Pancholi, Vivek; Samajdar, I.D. Hexagonal diamond synthesis on h-GaN strained films. Applied Physics Letters. 2006, 89 (7): 071911. Bibcode:2006ApPhL..89g1911M. doi:10.1063/1.2218043. 
  22. ^ Nur, Yusuf; Pitcher, Michael; Seyyidoğlu, Semih; Toppare, Levent. Facile synthesis of poly(hydridocarbyne): A precursor to diamond and diamond-like ceramics. Journal of Macromolecular Science, Part A. 2008, 45 (5): 358. S2CID 93635541. doi:10.1080/10601320801946108. 
  23. ^ Nur, Yusuf; Cengiz, Halime M.; Pitcher, Michael W.; Toppare, Levent K. Electrochemical polymerizatıon of hexachloroethane to form poly(hydridocarbyne): A pre-ceramic polymer for diamond production. Journal of Materials Science. 2009, 44 (11): 2774. Bibcode:2009JMatS..44.2774N. S2CID 97604277. doi:10.1007/s10853-009-3364-4. 
  24. ^ Lavars, Nick. Scientists produce rare diamonds in minutes at room temperature. New Atlas. 18 November 2020 [12 February 2021]. (原始内容于2021-01-18). 
  25. ^ McCulloch, Dougal G.; Wong, Sherman; Shiell, Thomas B.; Haberl, Bianca; Cook, Brenton A.; Huang, Xingshuo; Boehler, Reinhard; McKenzie, David R.; Bradby, Jodie E. . Small. 2020, 16 (50): 2004695 [2020-11-21]. ISSN 1613-6829. PMID 33150739. S2CID 226259491. doi:10.1002/smll.202004695. (原始内容存档于2022-05-07). 
  26. ^ . Phys.org. March 2021 [2021-12-18]. (原始内容存档于2022-05-26). 

外部链接

  • Mindat.org (页面存档备份,存于互联网档案馆) accessed 3/13/05.
  • Webmineral (页面存档备份,存于互联网档案馆) accessed 3/13/05.
  • Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.
  • Frondel, C. & U.B. Marvin (1967), Lonsdaleite, a new hexagonal polymorph of diamond. Nature: 214: 587-589
  • Frondel, C. & U.B. Marvin (1967), Lonsdaleite, a hexagonal polymorph of diamond, Am.Min.: 52
  • Bianconi, P. et al (2004), Diamond and Diamond-like Carbon from a Preceramic Polymer. J. Am. Chem. Soc. Vol. 126, No. 10, 3191-3202


藍絲黛爾石, lonsdaleite, 也译做郎士德碳, 又因晶體結構及特性稱作六方金剛石, hexagonal, diamond, 六方碳, 是一種六方晶系的金剛石, 屬於碳同素異形體的一種構形, 咸信為流星上的石墨在墜入地球時所形成, 撞擊時的巨大壓力及熱量改變石墨構形形成金剛石, 卻又保留了石墨的平行六邊形晶格, 並構成了立方的六方晶格, 第一次鑑別出是1967年在美國亞利桑那州的巴林杰隕石坑, 從位在其中的, 魔谷隕石, 中所發現, 並以20世紀的愛爾蘭晶體學家和英國皇家學會凱瑟琳, 朗斯代爾, 英语, k. 藍絲黛爾石 Lonsdaleite 也译做郎士德碳 又因晶體結構及特性稱作六方金剛石 hexagonal diamond 六方碳 藍絲黛爾石是一種六方晶系的金剛石 屬於碳同素異形體的一種構形 咸信為流星上的石墨在墜入地球時所形成 撞擊時的巨大壓力及熱量改變石墨構形形成金剛石 卻又保留了石墨的平行六邊形晶格 並構成了立方的六方晶格 第一次鑑別出藍絲黛爾石是1967年在美國亞利桑那州的巴林杰隕石坑 4 從位在其中的 魔谷隕石 中所發現 並以20世紀的愛爾蘭晶體學家和英國皇家學會凱瑟琳 朗斯代爾 英语 Kathleen Lonsdale Kathleen Lonsdale 命名 因她使用X射線研究了碳的結構 藍絲黛爾石Lonsdaleite藍絲黛爾石的晶体结构基本資料類別自然元素礦物化学式C施特龙茨分类01 CB 10b晶体分类雙六方二錐 6 mmm 赫尔曼 莫甘记号 6 m 2 m 2 m 晶体空间群P63 mmc晶胞a 2 51 A c 4 12 A Z 4性質顏色晶体为灰色 断片为苍黄色至棕色晶系六方晶系莫氏硬度7 8光澤金刚光泽透明性透明比重3 2光學性質单轴 折射率n 2 404參考文獻 1 2 3 藍絲黛爾石具有透明棕黃色的外觀 折射率在2 40至2 41之間 比重在3 2至3 3之間 它的莫氏硬度在7至8之間 而金剛石的莫氏硬度則為10 藍絲黛爾石較低的硬度主要原因是因为天然形成礦石不純且不完美所致 但如果以人工合成則比鑽石硬58 而抗壓程度也比鑽石高了大約58 5 藍絲黛爾石也已經在實驗室中 1966年或更早 1967年出版 6 被合成 方法是在靜態壓力機或炸藥中壓縮和加熱石墨 7 目录 1 硬度 2 存在 3 合成 4 参见 5 参考 6 外部链接硬度 编辑矿物学模拟预测蓝丝黛尔石在 lt 100 gt 面上比钻石硬58 能抵抗152 GPa的压入压力 而钻石在压入到97 GPa时就会断裂 8 IIa 英语 Diamond type 钻石 英语 material properties of diamond 的 lt 111 gt 尖端硬度则为162 GPa 超过了这个值 蓝丝黛尔石的外推特性受到质疑 特别是其极高的硬度 因为在晶体学检查下的样品没有显示出块状六方晶格结构 而是结构缺陷主要是六边形结构的传统的立方钻石结构 9 对蓝丝黛尔石的X射线衍射数据的定量分析表明 它存在大约等量的六方和立方堆积序列 因此 有人提出 堆叠无序的钻石 是对蓝丝黛尔石最准确的结构描述 10 另一方面 最近使用原位X射线衍射进行的冲击实验表明 在与陨石撞击相当的动态高压环境中会产生相对较纯的蓝丝黛尔石 11 12 存在 编辑 来自波皮盖陨石坑 的钻石样品 a 是纯钻石 而 b 是含有一些藍絲黛爾石杂质的钻石 藍絲黛爾石存在于隕石的金剛石上 是一個連結在金剛石上非肉眼可見的顯微晶體 除魔谷隕石外 在美國新墨西哥州的 肯納隕石 Kenna meteorite 南極洲維多利亞地的艾倫丘陵隕石77283 Allan Hills ALH 77283 上亦有發現 13 有争议的克洛维斯彗星假说支持者发现 在墨西哥瓜纳华托州奎采奥湖的沉积物中发现了d间距与蓝丝黛尔石一致的材料 14 此外 蓝丝黛尔石存在于当地的泥炭沉积物中 被认为是通古斯大爆炸是由流星而非彗星碎片引起的证据 15 16 合成 编辑除了通过加压或使用炸药压缩和加热石墨 17 18 蓝丝黛尔石也可以通过化学气相沉积 19 20 21 或是聚合物聚甲炔 英语 poly hydridocarbyne 在1 000 C 1 832 F 的氩气气氛下热分解而成 22 23 2020年 澳大利亚国立大学的研究人员偶然发现使用金刚石压砧就可以在室温下生产蓝丝黛尔石 24 25 2021年 华盛顿州立大学的冲击物理研究所发表了一篇论文 称他们创造了足够大的蓝丝黛尔石晶体来测量其硬度 证实它们比普通的立方钻石更坚硬 26 参见 编辑聚合钻石纳米棒 隕石學辭彙 矿物列表参考 编辑 Lonsdaleite on Mindat org 2005 09 10 原始内容存档于2021 03 31 Handbook of Mineralogy PDF 2013 02 11 原始内容存档 PDF 于2012 03 30 Lonsdaleite data from Webmineral 2005 09 10 原始内容存档于2021 03 31 存档副本 2005 09 10 原始内容存档于2006 10 11 Carlomagno G M Brebbia C A Computational Methods and Experimental Measurements XV WIT Press 2011 ISBN 978 1 84564 540 3 Bundy F P Kasper J S Hexagonal Diamond A New Form of Carbon Journal of Chemical Physics 1967 46 9 3437 Bibcode 1967JChPh 46 3437B doi 10 1063 1 1841236 He Hongliang Sekine T Kobayashi T Direct transformation of cubic diamond to hexagonal diamond Applied Physics Letters 2002 81 4 610 Bibcode 2002ApPhL 81 610H doi 10 1063 1 1495078 Pan Zicheng Sun Hong Zhang Yi amp Chen Changfeng Harder than diamond Superior indentation strength of wurtzite BN and lonsdaleite Physical Review Letters 2009 102 5 055503 Bibcode 2009PhRvL 102e5503P PMID 19257519 doi 10 1103 PhysRevLett 102 055503 简明摘要 Physorg com 12 February 2009 Nemeth P Garvie L A J Aoki T Natalia D Dubrovinsky L Buseck P R Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material Nature Communications 2014 5 5447 Bibcode 2014NatCo 5 5447N PMID 25410324 doi 10 1038 ncomms6447 Salzmann C G Murray B J Shephard J J Extent of stacking disorder in diamond Diamond and Related Materials 2015 59 69 72 2021 12 21 Bibcode 2015DRM 59 69S S2CID 53416525 arXiv 1505 02561 doi 10 1016 j diamond 2015 09 007 原始内容存档于2021 12 21 Kraus D Ravasio A Gauthier M Gericke D O Vorberger J Frydrych S Helfrich J Fletcher L B Schaumann G Nagler B Barbrel B Bachmann B Gamboa E J Goede S Granados E Gregori G Lee H J Neumayer P Schumaker W Doeppner T Falcone R W Glenzer S H Roth M Nanosecond formation of diamond and lonsdaleite by shock compression of graphite Nature Communications 2016 7 10970 Bibcode 2016NatCo 710970K PMC 4793081 PMID 26972122 doi 10 1038 ncomms10970 Turneaure Stefan J Sharma Surinder M Volz Travis J Winey J M Gupta Yogendra M Transformation of shock compressed graphite to hexagonal diamond in nanoseconds Science Advances 2017 10 01 3 10 eaao3561 ISSN 2375 2548 PMC 5659656 PMID 29098183 doi 10 1126 sciadv aao3561 Kaminskii F V G K Blinova E M Galimov G A Gurkina Y A Klyuev L A Kodina V I Koptil V F Krivonos L N Frolova A Y Khrenov Polycrystalline aggregates of diamond with lonsdaleite from Yakutian Sakhan placers Mineral Zhurnal 1985 7 27 36 Israde Alcantara I Bischoff J L Dominguez Vazquez G Li H C Decarli P S Bunch T E et al Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis Proceedings of the National Academy of Sciences 2012 109 13 E 738 747 Bibcode 2012PNAS 109E 738I PMC 3324006 PMID 22392980 doi 10 1073 pnas 1110614109 Kvasnytsya Victor Wirth Dobrzhinetskaya Matzel Jacobsend Hutcheon Tappero Kovalyukh New evidence of meteoritic origin of the Tunguska cosmic body Planetary and Space Science August 2013 84 131 140 Bibcode 2013P amp SS 84 131K doi 10 1016 j pss 2013 05 003 Redfern Simon Russian meteor shockwave circled globe twice BBC News British Broadcasting Corporation 28 June 2013 原始内容存档于2022 05 17 Bundy F P Kasper J S Hexagonal diamond a new form of carbon Journal of Chemical Physics 1967 46 9 3437 Bibcode 1967JChPh 46 3437B doi 10 1063 1 1841236 He Hongliang Sekine T Kobayashi T Direct transformation of cubic diamond to hexagonal diamond Applied Physics Letters 2002 81 4 610 Bibcode 2002ApPhL 81 610H doi 10 1063 1 1495078 Bhargava Sanjay Bist H D Sahli S Aslam M Tripathi H B Diamond polytypes in the chemical vapor deposited diamond films Applied Physics Letters 1995 67 12 1706 Bibcode 1995ApPhL 67 1706B doi 10 1063 1 115023 Nishitani Gamo Mikka Sakaguchi Isao Loh Kian Ping Kanda Hisao Ando Toshihiro Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions Applied Physics Letters 1998 73 6 765 Bibcode 1998ApPhL 73 765N doi 10 1063 1 121994 Misra Abha Tyagi Pawan K Yadav Brajesh S Rai P Misra D S Pancholi Vivek Samajdar I D Hexagonal diamond synthesis on h GaN strained films Applied Physics Letters 2006 89 7 071911 Bibcode 2006ApPhL 89g1911M doi 10 1063 1 2218043 Nur Yusuf Pitcher Michael Seyyidoglu Semih Toppare Levent Facile synthesis of poly hydridocarbyne A precursor to diamond and diamond like ceramics Journal of Macromolecular Science Part A 2008 45 5 358 S2CID 93635541 doi 10 1080 10601320801946108 Nur Yusuf Cengiz Halime M Pitcher Michael W Toppare Levent K Electrochemical polymerization of hexachloroethane to form poly hydridocarbyne A pre ceramic polymer for diamond production Journal of Materials Science 2009 44 11 2774 Bibcode 2009JMatS 44 2774N S2CID 97604277 doi 10 1007 s10853 009 3364 4 Lavars Nick Scientists produce rare diamonds in minutes at room temperature New Atlas 18 November 2020 12 February 2021 原始内容存档于2021 01 18 McCulloch Dougal G Wong Sherman Shiell Thomas B Haberl Bianca Cook Brenton A Huang Xingshuo Boehler Reinhard McKenzie David R Bradby Jodie E Investigation of room temperature formation of the ultra hard nanocarbons diamond and lonsdaleite Small 2020 16 50 2004695 2020 11 21 ISSN 1613 6829 PMID 33150739 S2CID 226259491 doi 10 1002 smll 202004695 原始内容存档于2022 05 07 Lab made hexagonal diamonds stiffer than natural cubic diamonds Phys org March 2021 2021 12 18 原始内容存档于2022 05 26 外部链接 编辑Mindat org 页面存档备份 存于互联网档案馆 accessed 3 13 05 Webmineral 页面存档备份 存于互联网档案馆 accessed 3 13 05 Anthony J W et al 1995 Mineralogy of Arizona 3rd ed Frondel C amp U B Marvin 1967 Lonsdaleite a new hexagonal polymorph of diamond Nature 214 587 589 Frondel C amp U B Marvin 1967 Lonsdaleite a hexagonal polymorph of diamond Am Min 52 Bianconi P et al 2004 Diamond and Diamond like Carbon from a Preceramic Polymer J Am Chem Soc Vol 126 No 10 3191 3202 取自 https zh wikipedia org w index php title 藍絲黛爾石 amp oldid 73806681, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。