fbpx
维基百科

羧酶体

羧酶体(英語:carboxysome)是一種細菌微區室,為細菌微區室中被研究最多者[2]。羧酶体為多面體的蛋白結構,外為結構蛋白(BMC-H、BMC-P與BMC-T),內為RuBisCO(固碳酵素)與碳酸酐酶兩種酵素[3]。此胞器最早於1956年在藍菌Phormidium uncinatum中發現[4],後來也在數種其他藍菌與化學自營細菌(亦進行固碳)中發現,包括鹽硫杆狀菌酸硫杆狀菌硝化菌[3][5][6] 。1973年研究人員首次自Halothiobacillus neapolitanus法语Halothiobacillus neapolitanus純化羧酶体[7]

化學自營細菌Halothiobacillus neapolitanus的羧酶体(電子顯微鏡圖像),比例尺為100奈米[1]

羧酶体可能是細菌因應大氣中氧氣濃度上升演化出的機制,因氧氣會與二氧化碳競爭RuBisCO的結合位[8],羧酶体提供了二氧化碳濃度較高的微環境,碳酸酐酶生成二氧化碳後可馬上將其供應給RuBisCO進行固碳,避免發生光呼吸的損耗[9][10]

結構 编辑

 
羧酶体的結構模型,RuBP與碳酸酐酶被結構蛋白包裹與其中

低溫電子顯微鏡顯示羧酶体的形狀為正二十面體或接近正二十面體[11][12][13],其外殼為數千個蛋白複合體組成,包裹內部的RuBisCO與碳酸酐酶[11][13]。外殼蛋白大多為組成六聚體的BMC-H,也有少數為組成三聚體的BMC-T與組成五聚體的BMC-P(兩者皆為形似六聚體的假六聚體)[14][15]。BMC-H六聚體中間的孔洞可供固碳作用的受質(碳酸根離子)與產物(3-磷酸甘油酸)經擴散作用進出,此區域帶正電的氨基酸可協助擴散進行[14];BMC-P占據正二十面體的頂點[16];BMC-T三聚體中間的孔洞較大且可受調控開關,可使固碳作用較大的受質(RuBP)與產物(3-磷酸甘油酸)進出[17][18]

種類 编辑

 
(A)Halothiobacillus neapolitanus的α型羧酶体;(B)细长聚球蓝细菌英语Synechococcus elongatus的β型羧酶体。比例尺為200奈米

羧酶体可分為α與β兩型,前者存在α型藍菌、硝化菌、硫氧化菌與紫細菌中,後者則存在部分藍菌中[19],兩者外觀相似,但組成的蛋白種類有異[20][21][22][23],其組成細節、組裝機制可能也有差異,經分析外殼蛋白的序列顯示兩型的羧酶体應是獨立演化產生的[23][24]

α型羧酶体 编辑

α型羧酶体又稱cso型羧酶体,其中的RuBisCO為IA型,為最早被純化、研究的細菌微區室[25][26]。此類羧酶体的直徑約為100至160奈米[27],BMC-H的種類為CsoS1A、B、C等,BMC-P的種類為CsoS4A、B等,BMC-T的種類則為CsoS1D。

β型羧酶体 编辑

β型羧酶体的體積一般大於α型羧酶体,其直徑約為200至400奈米[28],其中的RuBisCO為IB型[2]。此類羧酶体中的蛋白由Ccm基因編碼,其BMC-H為CcmK、BMC-P為CcmL,BMC-T則為CcmO,其組裝為由內至外,即內部的酵素先組裝後,再被外部的結構蛋白包裹[29]

應用 编辑

羧酶体為合成生物學研究所關注[30][31][32],已有研究透過基因轉殖成功在大腸桿菌中表現α型羧酶体[33],也有生物工程研究透過微調羧酶体外殼蛋白而影響其性質[34]。透過基因轉殖將羧酶体轉入作物的葉綠體中可能可顯著提升其固碳作用的效率而增加產量[35][36],目前已有相關研究進行中[37][38]

參考文獻 编辑

  1. ^ Tsai Y, Sawaya MR, Cannon GC, et al. Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome. PLOS Biol. June 2007, 5 (6): e144. PMC 1872035 . PMID 17518518. doi:10.1371/journal.pbio.0050144. 
  2. ^ 2.0 2.1 Kerfeld, Cheryl A.; Erbilgin, Onur. Bacterial microcompartments and the modular construction of microbial metabolism. Trends in Microbiology. 2015, 23 (1): 22–34. ISSN 0966-842X. PMID 25455419. doi:10.1016/j.tim.2014.10.003 . 
  3. ^ 3.0 3.1 Yeates, Todd O.; Kerfeld, Cheryl A.; Heinhorst, Sabine; Cannon, Gordon C.; Shively, Jessup M. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nature Reviews Microbiology. 2008, 6 (9): 681–691. ISSN 1740-1526. PMID 18679172. S2CID 22666203. doi:10.1038/nrmicro1913. 
  4. ^ G. Drews; W. Niklowitz. Cytology of Cyanophycea. II. Centroplasm and granular inclusions of Phormidium uncinatum. Archiv für Mikrobiologie. 1956, 24 (2): 147–162. PMID 13327992. S2CID 46171409. doi:10.1007/BF00408629. 
  5. ^ E. Gantt; S. F. Conti. Ultrastructure of blue-green algae. Journal of Bacteriology. March 1969, 97 (3): 1486–1493. PMC 249872 . PMID 5776533. doi:10.1128/JB.97.3.1486-1493.1969. 
  6. ^ Shively, J M. Inclusion Bodies of Prokaryotes. Annual Review of Microbiology. 1974, 28 (1): 167–188. ISSN 0066-4227. PMID 4372937. doi:10.1146/annurev.mi.28.100174.001123. 
  7. ^ Shively, J. M.; Ball, F.; Brown, D. H.; Saunders, R. E. Functional Organelles in Prokaryotes: Polyhedral Inclusions (Carboxysomes) of Thiobacillus neapolitanus. Science. 1973, 182 (4112): 584–586. Bibcode:1973Sci...182..584S. ISSN 0036-8075. PMID 4355679. S2CID 10097616. doi:10.1126/science.182.4112.584. 
  8. ^ Badger, M. R. CO
    2
    concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany. 2003, 54 (383): 609–622. ISSN 1460-2431. PMID 12554704. doi:10.1093/jxb/erg076 .
     
  9. ^ Cai, Fei; Menon, Balaraj B.; Cannon, Gordon C.; Curry, Kenneth J.; Shively, Jessup M.; Heinhorst, Sabine. The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO
    2
    Leakage Barrier. PLOS ONE. 2009, 4 (10): e7521. Bibcode:2009PLoSO...4.7521C. ISSN 1932-6203. PMC 2760150 . PMID 19844578. doi:10.1371/journal.pone.0007521 .
     
  10. ^ Dou, Z.; Heinhorst, S.; Williams, E. B.; Murin, C. D.; Shively, J. M.; Cannon, G. C. CO
    2
    Fixation Kinetics of Halothiobacillus neapolitanus Mutant Carboxysomes Lacking Carbonic Anhydrase Suggest the Shell Acts as a Diffusional Barrier for CO
    2
    . Journal of Biological Chemistry. 2008, 283 (16): 10377–10384. ISSN 0021-9258. PMID 18258595. doi:10.1074/jbc.M709285200 .
     
  11. ^ 11.0 11.1 Iancu, Cristina V.; Ding, H. Jane; Morris, Dylan M.; Dias, D. Prabha; Gonzales, Arlene D.; Martino, Anthony; Jensen, Grant J. The Structure of Isolated Synechococcus Strain WH8102 Carboxysomes as Revealed by Electron Cryotomography. Journal of Molecular Biology. 2007, 372 (3): 764–773. ISSN 0022-2836. PMC 2453779 . PMID 17669419. doi:10.1016/j.jmb.2007.06.059. 
  12. ^ Iancu, Cristina V.; Morris, Dylan M.; Dou, Zhicheng; Heinhorst, Sabine; Cannon, Gordon C.; Jensen, Grant J. Organization, Structure, and Assembly of α-Carboxysomes Determined by Electron Cryotomography of Intact Cells. Journal of Molecular Biology. 2010, 396 (1): 105–117. ISSN 0022-2836. PMC 2853366 . PMID 19925807. doi:10.1016/j.jmb.2009.11.019. 
  13. ^ 13.0 13.1 Schmid, Michael F.; Paredes, Angel M.; Khant, Htet A.; Soyer, Ferda; Aldrich, Henry C.; Chiu, Wah; Shively, Jessup M. Structure of Halothiobacillus neapolitanus Carboxysomes by Cryo-electron Tomography. Journal of Molecular Biology. 2006, 364 (3): 526–535. ISSN 0022-2836. PMC 1839851 . PMID 17028023. doi:10.1016/j.jmb.2006.09.024. hdl:11147/2128. 
  14. ^ 14.0 14.1 Kerfeld, C. A. Protein Structures Forming the Shell of Primitive Bacterial Organelles. Science. 2005, 309 (5736): 936–938. Bibcode:2005Sci...309..936K. CiteSeerX 10.1.1.1026.896 . ISSN 0036-8075. PMID 16081736. S2CID 24561197. doi:10.1126/science.1113397. 
  15. ^ Melnicki, Matthew R.; Sutter, Markus; Kerfeld, Cheryl A. Evolutionary relationships among shell proteins of carboxysomes and metabolosomes. Current Opinion in Microbiology. October 2021, 63: 1–9. PMC 8525121 . PMID 34098411. doi:10.1016/j.mib.2021.05.011. 
  16. ^ Tanaka, S.; Kerfeld, C. A.; Sawaya, M. R.; Cai, F.; Heinhorst, S.; Cannon, G. C.; Yeates, T. O. Atomic-Level Models of the Bacterial Carboxysome Shell. Science. 2008, 319 (5866): 1083–1086. Bibcode:2008Sci...319.1083T. ISSN 0036-8075. PMID 18292340. S2CID 5734731. doi:10.1126/science.1151458. 
  17. ^ Cai, F.; Sutter, M.; Cameron, J. C.; Stanley, D. N.; Kinney, J. N.; Kerfeld, C. A. The Structure of CcmP, a Tandem Bacterial Microcompartment Domain Protein from the β-Carboxysome, Forms a Subcompartment Within a Microcompartment. Journal of Biological Chemistry. 2013, 288 (22): 16055–16063. ISSN 0021-9258. PMC 3668761 . PMID 23572529. doi:10.1074/jbc.M113.456897 . 
  18. ^ Klein, Michael G.; Zwart, Peter; Bagby, Sarah C.; Cai, Fei; Chisholm, Sallie W.; Heinhorst, Sabine; Cannon, Gordon C.; Kerfeld, Cheryl A. Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport (PDF). Journal of Molecular Biology. 2009, 392 (2): 319–333. ISSN 0022-2836. PMID 19328811. S2CID 42771660. doi:10.1016/j.jmb.2009.03.056. hdl:1721.1/61355 . 
  19. ^ Sommer, Manuel; Cai, Fei; Melnicki, Matthew; Kerfeld, Cheryl A. β-Carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. Journal of Experimental Botany. 22 June 2017, 68 (14): 3841–3855. PMC 5853843 . PMID 28419380. doi:10.1093/jxb/erx115. 
  20. ^ Zarzycki, J.; Axen, S. D.; Kinney, J. N.; Kerfeld, C. A. Cyanobacterial-based approaches to improving photosynthesis in plants. Journal of Experimental Botany. 2012, 64 (3): 787–798. ISSN 0022-0957. PMID 23095996. doi:10.1093/jxb/ers294 . 
  21. ^ Rae, B. D.; Long, B. M.; Badger, M. R.; Price, G. D. Functions, Compositions, and Evolution of the Two Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO
    2
    Fixation in Cyanobacteria and Some Proteobacteria. Microbiology and Molecular Biology Reviews. 2013, 77 (3): 357–379. ISSN 1092-2172. PMC 3811607 . PMID 24006469. doi:10.1128/MMBR.00061-12.
     
  22. ^ Turmo, Aiko; Gonzalez-Esquer, C. Raul; Kerfeld, Cheryl A. Carboxysomes: metabolic modules for CO
    2
    fixation. FEMS Microbiology Letters. 2017-08-14, 364 (18). ISSN 1574-6968. PMID 28934381. doi:10.1093/femsle/fnx176.
     
  23. ^ 23.0 23.1 Kerfeld, Cheryl A; Melnicki, Matthew R. Assembly, function and evolution of cyanobacterial carboxysomes. Current Opinion in Plant Biology. June 2016, 31: 66–75. ISSN 1369-5266. PMID 27060669. doi:10.1016/j.pbi.2016.03.009. 
  24. ^ Melnicki, Matthew R.; Sutter, Markus; Kerfeld, Cheryl A. Evolutionary relationships among shell proteins of carboxysomes and metabolosomes. Current Opinion in Microbiology. October 2021, 63: 1–9. PMC 8525121 . PMID 34098411. doi:10.1016/j.mib.2021.05.011. 
  25. ^ Shively JM, Bock E, Westphal K, Cannon GC. Icosahedral inclusions (carboxysomes) of Nitrobacter agilis. Journal of Bacteriology. November 1977, 132 (2): 673–675. PMC 221910 . PMID 199579. doi:10.1128/JB.132.2.673-675.1977. 
  26. ^ Cannon, G. C.; Shively, J. M. Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Archives of Microbiology. 1983, 134 (1): 52–59. ISSN 0302-8933. S2CID 22329896. doi:10.1007/BF00429407. 
  27. ^ Heinhorst, Sabine; Cannon, Gordon C.; Shively, Jessup M. Carboxysomes and Their Structural Organization in Prokaryotes. Nanomicrobiology. 2014: 75–101. ISBN 978-1-4939-1666-5. doi:10.1007/978-1-4939-1667-2_4. 
  28. ^ Cai, Fei; Dou, Zhicheng; Bernstein, Susan; Leverenz, Ryan; Williams, Eric; Heinhorst, Sabine; Shively, Jessup; Cannon, Gordon; Kerfeld, Cheryl. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component. Life. 2015, 5 (2): 1141–1171. ISSN 2075-1729. PMC 4499774 . PMID 25826651. doi:10.3390/life5021141 . 
  29. ^ Cameron, Jeffrey?C.; Wilson, Steven?C.; Bernstein, Susan?L.; Kerfeld, Cheryl?A. Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway. Cell. 2013, 155 (5): 1131–1140. ISSN 0092-8674. PMID 24267892. doi:10.1016/j.cell.2013.10.044 . 
  30. ^ Kerfeld, Cheryl A. Plug-and-play for improving primary productivity. American Journal of Botany. December 2015, 102 (12): 1949–1950. ISSN 0002-9122. PMID 26656128. doi:10.3732/ajb.1500409 . 
  31. ^ Zarzycki, Jan; Axen, Seth D.; Kinney, James N.; Kerfeld, Cheryl A. Cyanobacterial-based approaches to improving photosynthesis in plants. Journal of Experimental Botany. 2012-10-23, 64 (3): 787–798. ISSN 1460-2431. PMID 23095996. doi:10.1093/jxb/ers294 . 
  32. ^ Gonzalez-Esquer, C. Raul; Newnham, Sarah E.; Kerfeld, Cheryl A. Bacterial microcompartments as metabolic modules for plant synthetic biology. The Plant Journal. 2016-06-20, 87 (1): 66–75. ISSN 0960-7412. PMID 26991644. doi:10.1111/tpj.13166. 
  33. ^ Bonacci, W.; Teng, P. K.; Afonso, B.; Niederholtmeyer, H.; Grob, P.; Silver, P. A.; Savage, D. F. Modularity of a carbon-fixing protein organelle. Proceedings of the National Academy of Sciences. 2011, 109 (2): 478–483. ISSN 0027-8424. PMC 3258634 . PMID 22184212. doi:10.1073/pnas.1108557109 . 
  34. ^ Cai, Fei; Sutter, Markus; Bernstein, Susan L.; Kinney, James N.; Kerfeld, Cheryl A. Engineering Bacterial Microcompartment Shells: Chimeric Shell Proteins and Chimeric Carboxysome Shells. ACS Synthetic Biology. 2015, 4 (4): 444–453. ISSN 2161-5063. PMID 25117559. doi:10.1021/sb500226j. 
  35. ^ McGrath, JM; Long, SP. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis.. Plant Physiology. 2014, 164 (4): 2247–61. PMC 3982776 . PMID 24550242. doi:10.1104/pp.113.232611. 
  36. ^ Yin, X; Struik, PC. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS.. Journal of Experimental Botany. 2017, 68 (9): 2345–2360. PMC 5447886 . PMID 28379522. doi:10.1093/jxb/erx085. 
  37. ^ Long, BM; Hee, WY. Carboxysome encapsulation of the CO
    2
    -fixing enzyme Rubisco in tobacco chloroplasts.. Nature Communications. 2018, 9 (1): 3570. Bibcode:2018NatCo...9.3570L. PMC 6120970 . PMID 30177711. doi:10.1038/s41467-018-06044-0.
     
  38. ^ Lin, Myat T.; Occhialini, Alessandro; Andralojc, P. John; Parry, Martin A. J.; Hanson, Maureen R. A faster Rubisco with potential to increase photosynthesis in crops. Nature. 2014, 513 (7519): 547–550. Bibcode:2014Natur.513..547L. ISSN 0028-0836. PMC 4176977 . PMID 25231869. doi:10.1038/nature13776. 

羧酶体, 英語, carboxysome, 是一種細菌微區室, 為細菌微區室中被研究最多者, 為多面體的蛋白結構, 外為結構蛋白, p與bmc, 內為rubisco, 固碳酵素, 與碳酸酐酶兩種酵素, 此胞器最早於1956年在藍菌phormidium, uncinatum中發現, 後來也在數種其他藍菌與化學自營細菌, 亦進行固碳, 中發現, 包括鹽硫杆狀菌, 酸硫杆狀菌與硝化菌等, 1973年研究人員首次自halothiobacillus, neapolitanus, 法语, halothiobacillus, n. 羧酶体 英語 carboxysome 是一種細菌微區室 為細菌微區室中被研究最多者 2 羧酶体為多面體的蛋白結構 外為結構蛋白 BMC H BMC P與BMC T 內為RuBisCO 固碳酵素 與碳酸酐酶兩種酵素 3 此胞器最早於1956年在藍菌Phormidium uncinatum中發現 4 後來也在數種其他藍菌與化學自營細菌 亦進行固碳 中發現 包括鹽硫杆狀菌 酸硫杆狀菌與硝化菌等 3 5 6 1973年研究人員首次自Halothiobacillus neapolitanus 法语 Halothiobacillus neapolitanus 純化羧酶体 7 化學自營細菌Halothiobacillus neapolitanus的羧酶体 電子顯微鏡圖像 比例尺為100奈米 1 羧酶体可能是細菌因應大氣中氧氣濃度上升演化出的機制 因氧氣會與二氧化碳競爭RuBisCO的結合位 8 羧酶体提供了二氧化碳濃度較高的微環境 碳酸酐酶生成二氧化碳後可馬上將其供應給RuBisCO進行固碳 避免發生光呼吸的損耗 9 10 目录 1 結構 2 種類 2 1 a型羧酶体 2 2 b型羧酶体 3 應用 4 參考文獻結構 编辑 nbsp 羧酶体的結構模型 RuBP與碳酸酐酶被結構蛋白包裹與其中低溫電子顯微鏡顯示羧酶体的形狀為正二十面體或接近正二十面體 11 12 13 其外殼為數千個蛋白複合體組成 包裹內部的RuBisCO與碳酸酐酶 11 13 外殼蛋白大多為組成六聚體的BMC H 也有少數為組成三聚體的BMC T與組成五聚體的BMC P 兩者皆為形似六聚體的假六聚體 14 15 BMC H六聚體中間的孔洞可供固碳作用的受質 碳酸根離子 與產物 3 磷酸甘油酸 經擴散作用進出 此區域帶正電的氨基酸可協助擴散進行 14 BMC P占據正二十面體的頂點 16 BMC T三聚體中間的孔洞較大且可受調控開關 可使固碳作用較大的受質 RuBP 與產物 3 磷酸甘油酸 進出 17 18 種類 编辑 nbsp A Halothiobacillus neapolitanus的a型羧酶体 B 细长聚球蓝细菌 英语 Synechococcus elongatus 的b型羧酶体 比例尺為200奈米羧酶体可分為a與b兩型 前者存在a型藍菌 硝化菌 硫氧化菌與紫細菌中 後者則存在部分藍菌中 19 兩者外觀相似 但組成的蛋白種類有異 20 21 22 23 其組成細節 組裝機制可能也有差異 經分析外殼蛋白的序列顯示兩型的羧酶体應是獨立演化產生的 23 24 a型羧酶体 编辑 a型羧酶体又稱cso型羧酶体 其中的RuBisCO為IA型 為最早被純化 研究的細菌微區室 25 26 此類羧酶体的直徑約為100至160奈米 27 BMC H的種類為CsoS1A B C等 BMC P的種類為CsoS4A B等 BMC T的種類則為CsoS1D b型羧酶体 编辑 b型羧酶体的體積一般大於a型羧酶体 其直徑約為200至400奈米 28 其中的RuBisCO為IB型 2 此類羧酶体中的蛋白由Ccm基因編碼 其BMC H為CcmK BMC P為CcmL BMC T則為CcmO 其組裝為由內至外 即內部的酵素先組裝後 再被外部的結構蛋白包裹 29 應用 编辑羧酶体為合成生物學研究所關注 30 31 32 已有研究透過基因轉殖成功在大腸桿菌中表現a型羧酶体 33 也有生物工程研究透過微調羧酶体外殼蛋白而影響其性質 34 透過基因轉殖將羧酶体轉入作物的葉綠體中可能可顯著提升其固碳作用的效率而增加產量 35 36 目前已有相關研究進行中 37 38 參考文獻 编辑 nbsp 分子与细胞生物学主题 Tsai Y Sawaya MR Cannon GC et al Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome PLOS Biol June 2007 5 6 e144 PMC 1872035 nbsp PMID 17518518 doi 10 1371 journal pbio 0050144 2 0 2 1 Kerfeld Cheryl A Erbilgin Onur Bacterial microcompartments and the modular construction of microbial metabolism Trends in Microbiology 2015 23 1 22 34 ISSN 0966 842X PMID 25455419 doi 10 1016 j tim 2014 10 003 nbsp 3 0 3 1 Yeates Todd O Kerfeld Cheryl A Heinhorst Sabine Cannon Gordon C Shively Jessup M Protein based organelles in bacteria carboxysomes and related microcompartments Nature Reviews Microbiology 2008 6 9 681 691 ISSN 1740 1526 PMID 18679172 S2CID 22666203 doi 10 1038 nrmicro1913 G Drews W Niklowitz Cytology of Cyanophycea II Centroplasm and granular inclusions of Phormidium uncinatum Archiv fur Mikrobiologie 1956 24 2 147 162 PMID 13327992 S2CID 46171409 doi 10 1007 BF00408629 E Gantt S F Conti Ultrastructure of blue green algae Journal of Bacteriology March 1969 97 3 1486 1493 PMC 249872 nbsp PMID 5776533 doi 10 1128 JB 97 3 1486 1493 1969 Shively J M Inclusion Bodies of Prokaryotes Annual Review of Microbiology 1974 28 1 167 188 ISSN 0066 4227 PMID 4372937 doi 10 1146 annurev mi 28 100174 001123 Shively J M Ball F Brown D H Saunders R E Functional Organelles in Prokaryotes Polyhedral Inclusions Carboxysomes of Thiobacillus neapolitanus Science 1973 182 4112 584 586 Bibcode 1973Sci 182 584S ISSN 0036 8075 PMID 4355679 S2CID 10097616 doi 10 1126 science 182 4112 584 Badger M R CO2 concentrating mechanisms in cyanobacteria molecular components their diversity and evolution Journal of Experimental Botany 2003 54 383 609 622 ISSN 1460 2431 PMID 12554704 doi 10 1093 jxb erg076 nbsp Cai Fei Menon Balaraj B Cannon Gordon C Curry Kenneth J Shively Jessup M Heinhorst Sabine The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier PLOS ONE 2009 4 10 e7521 Bibcode 2009PLoSO 4 7521C ISSN 1932 6203 PMC 2760150 nbsp PMID 19844578 doi 10 1371 journal pone 0007521 nbsp Dou Z Heinhorst S Williams E B Murin C D Shively J M Cannon G C CO2 Fixation Kinetics of Halothiobacillus neapolitanus Mutant Carboxysomes Lacking Carbonic Anhydrase Suggest the Shell Acts as a Diffusional Barrier for CO2 Journal of Biological Chemistry 2008 283 16 10377 10384 ISSN 0021 9258 PMID 18258595 doi 10 1074 jbc M709285200 nbsp 11 0 11 1 Iancu Cristina V Ding H Jane Morris Dylan M Dias D Prabha Gonzales Arlene D Martino Anthony Jensen Grant J The Structure of Isolated Synechococcus Strain WH8102 Carboxysomes as Revealed by Electron Cryotomography Journal of Molecular Biology 2007 372 3 764 773 ISSN 0022 2836 PMC 2453779 nbsp PMID 17669419 doi 10 1016 j jmb 2007 06 059 Iancu Cristina V Morris Dylan M Dou Zhicheng Heinhorst Sabine Cannon Gordon C Jensen Grant J Organization Structure and Assembly of a Carboxysomes Determined by Electron Cryotomography of Intact Cells Journal of Molecular Biology 2010 396 1 105 117 ISSN 0022 2836 PMC 2853366 nbsp PMID 19925807 doi 10 1016 j jmb 2009 11 019 13 0 13 1 Schmid Michael F Paredes Angel M Khant Htet A Soyer Ferda Aldrich Henry C Chiu Wah Shively Jessup M Structure of Halothiobacillus neapolitanus Carboxysomes by Cryo electron Tomography Journal of Molecular Biology 2006 364 3 526 535 ISSN 0022 2836 PMC 1839851 nbsp PMID 17028023 doi 10 1016 j jmb 2006 09 024 hdl 11147 2128 14 0 14 1 Kerfeld C A Protein Structures Forming the Shell of Primitive Bacterial Organelles Science 2005 309 5736 936 938 Bibcode 2005Sci 309 936K CiteSeerX 10 1 1 1026 896 nbsp ISSN 0036 8075 PMID 16081736 S2CID 24561197 doi 10 1126 science 1113397 Melnicki Matthew R Sutter Markus Kerfeld Cheryl A Evolutionary relationships among shell proteins of carboxysomes and metabolosomes Current Opinion in Microbiology October 2021 63 1 9 PMC 8525121 nbsp PMID 34098411 doi 10 1016 j mib 2021 05 011 Tanaka S Kerfeld C A Sawaya M R Cai F Heinhorst S Cannon G C Yeates T O Atomic Level Models of the Bacterial Carboxysome Shell Science 2008 319 5866 1083 1086 Bibcode 2008Sci 319 1083T ISSN 0036 8075 PMID 18292340 S2CID 5734731 doi 10 1126 science 1151458 Cai F Sutter M Cameron J C Stanley D N Kinney J N Kerfeld C A The Structure of CcmP a Tandem Bacterial Microcompartment Domain Protein from the b Carboxysome Forms a Subcompartment Within a Microcompartment Journal of Biological Chemistry 2013 288 22 16055 16063 ISSN 0021 9258 PMC 3668761 nbsp PMID 23572529 doi 10 1074 jbc M113 456897 nbsp Klein Michael G Zwart Peter Bagby Sarah C Cai Fei Chisholm Sallie W Heinhorst Sabine Cannon Gordon C Kerfeld Cheryl A Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport PDF Journal of Molecular Biology 2009 392 2 319 333 ISSN 0022 2836 PMID 19328811 S2CID 42771660 doi 10 1016 j jmb 2009 03 056 hdl 1721 1 61355 nbsp Sommer Manuel Cai Fei Melnicki Matthew Kerfeld Cheryl A b Carboxysome bioinformatics identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints Journal of Experimental Botany 22 June 2017 68 14 3841 3855 PMC 5853843 nbsp PMID 28419380 doi 10 1093 jxb erx115 Zarzycki J Axen S D Kinney J N Kerfeld C A Cyanobacterial based approaches to improving photosynthesis in plants Journal of Experimental Botany 2012 64 3 787 798 ISSN 0022 0957 PMID 23095996 doi 10 1093 jxb ers294 nbsp Rae B D Long B M Badger M R Price G D Functions Compositions and Evolution of the Two Types of Carboxysomes Polyhedral Microcompartments That Facilitate CO2 Fixation in Cyanobacteria and Some Proteobacteria Microbiology and Molecular Biology Reviews 2013 77 3 357 379 ISSN 1092 2172 PMC 3811607 nbsp PMID 24006469 doi 10 1128 MMBR 00061 12 Turmo Aiko Gonzalez Esquer C Raul Kerfeld Cheryl A Carboxysomes metabolic modules for CO2 fixation FEMS Microbiology Letters 2017 08 14 364 18 ISSN 1574 6968 PMID 28934381 doi 10 1093 femsle fnx176 23 0 23 1 Kerfeld Cheryl A Melnicki Matthew R Assembly function and evolution of cyanobacterial carboxysomes Current Opinion in Plant Biology June 2016 31 66 75 ISSN 1369 5266 PMID 27060669 doi 10 1016 j pbi 2016 03 009 Melnicki Matthew R Sutter Markus Kerfeld Cheryl A Evolutionary relationships among shell proteins of carboxysomes and metabolosomes Current Opinion in Microbiology October 2021 63 1 9 PMC 8525121 nbsp PMID 34098411 doi 10 1016 j mib 2021 05 011 Shively JM Bock E Westphal K Cannon GC Icosahedral inclusions carboxysomes of Nitrobacter agilis Journal of Bacteriology November 1977 132 2 673 675 PMC 221910 nbsp PMID 199579 doi 10 1128 JB 132 2 673 675 1977 Cannon G C Shively J M Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus Archives of Microbiology 1983 134 1 52 59 ISSN 0302 8933 S2CID 22329896 doi 10 1007 BF00429407 Heinhorst Sabine Cannon Gordon C Shively Jessup M Carboxysomes and Their Structural Organization in Prokaryotes Nanomicrobiology 2014 75 101 ISBN 978 1 4939 1666 5 doi 10 1007 978 1 4939 1667 2 4 Cai Fei Dou Zhicheng Bernstein Susan Leverenz Ryan Williams Eric Heinhorst Sabine Shively Jessup Cannon Gordon Kerfeld Cheryl Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component Life 2015 5 2 1141 1171 ISSN 2075 1729 PMC 4499774 nbsp PMID 25826651 doi 10 3390 life5021141 nbsp Cameron Jeffrey C Wilson Steven C Bernstein Susan L Kerfeld Cheryl A Biogenesis of a Bacterial Organelle The Carboxysome Assembly Pathway Cell 2013 155 5 1131 1140 ISSN 0092 8674 PMID 24267892 doi 10 1016 j cell 2013 10 044 nbsp Kerfeld Cheryl A Plug and play for improving primary productivity American Journal of Botany December 2015 102 12 1949 1950 ISSN 0002 9122 PMID 26656128 doi 10 3732 ajb 1500409 nbsp Zarzycki Jan Axen Seth D Kinney James N Kerfeld Cheryl A Cyanobacterial based approaches to improving photosynthesis in plants Journal of Experimental Botany 2012 10 23 64 3 787 798 ISSN 1460 2431 PMID 23095996 doi 10 1093 jxb ers294 nbsp Gonzalez Esquer C Raul Newnham Sarah E Kerfeld Cheryl A Bacterial microcompartments as metabolic modules for plant synthetic biology The Plant Journal 2016 06 20 87 1 66 75 ISSN 0960 7412 PMID 26991644 doi 10 1111 tpj 13166 Bonacci W Teng P K Afonso B Niederholtmeyer H Grob P Silver P A Savage D F Modularity of a carbon fixing protein organelle Proceedings of the National Academy of Sciences 2011 109 2 478 483 ISSN 0027 8424 PMC 3258634 nbsp PMID 22184212 doi 10 1073 pnas 1108557109 nbsp Cai Fei Sutter Markus Bernstein Susan L Kinney James N Kerfeld Cheryl A Engineering Bacterial Microcompartment Shells Chimeric Shell Proteins and Chimeric Carboxysome Shells ACS Synthetic Biology 2015 4 4 444 453 ISSN 2161 5063 PMID 25117559 doi 10 1021 sb500226j McGrath JM Long SP Can the cyanobacterial carbon concentrating mechanism increase photosynthesis in crop species A theoretical analysis Plant Physiology 2014 164 4 2247 61 PMC 3982776 nbsp PMID 24550242 doi 10 1104 pp 113 232611 Yin X Struik PC Can increased leaf photosynthesis be converted into higher crop mass production A simulation study for rice using the crop model GECROS Journal of Experimental Botany 2017 68 9 2345 2360 PMC 5447886 nbsp PMID 28379522 doi 10 1093 jxb erx085 Long BM Hee WY Carboxysome encapsulation of the CO2 fixing enzyme Rubisco in tobacco chloroplasts Nature Communications 2018 9 1 3570 Bibcode 2018NatCo 9 3570L PMC 6120970 nbsp PMID 30177711 doi 10 1038 s41467 018 06044 0 Lin Myat T Occhialini Alessandro Andralojc P John Parry Martin A J Hanson Maureen R A faster Rubisco with potential to increase photosynthesis in crops Nature 2014 513 7519 547 550 Bibcode 2014Natur 513 547L ISSN 0028 0836 PMC 4176977 nbsp PMID 25231869 doi 10 1038 nature13776 取自 https zh wikipedia org w index php title 羧酶体 amp oldid 76613645, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。