fbpx
维基百科

素數定理

在數論中,素数定理(英語:Prime number theorem)描述素数在自然數中分佈的漸進情況,給出隨著數字的增大,質數的密度逐漸降低的直覺的形式化描述。1896年法國數學家雅克·阿達馬和比利時數學家德·拉·瓦莱布桑先後獨立給出證明。證明用到了複分析,尤其是黎曼ζ函數

素数的出現規律一直困惑著數學家。一個個地看,素数在正整數中的出現沒有什麼規律。可是總體地看,素数的個數竟然有規可循。對正實數x,定義π(x)為素数计数函数,亦即不大於x的素数個數。數學家找到了一些函數來估計π(x)的增長。以下是第一個這樣的估計。

其中 ln xx自然對數。上式的意思是當 x 趨近無限,π(x)與x/ln x的比值趨近 1。但這不表示它們的數值隨著 x 增大而接近。

下面是對π(x)更好的估計:

,當x 趨近∞。

其中对数积分),而關係式右邊第二項是誤差估計,詳見大O符號

敘述 编辑

定義 π(x) 為素数计数函数,也就是小於等於x 的質數個數。例如 π(10)=4,因為共有 4 個質數小於等於 10,分別是 2、3、5、7。質數定理的敘述為:當 x 趨近無限,π(x) 和   的比值趨近 1。其數學式寫做

 

淺白的說,當 x 很大的時候,π(x) 差不多等於  。該定理被認為是質數的漸進分布定律,以漸進符號可簡化為

 

注意到,上式並不是說指隨著 x 趨近無限,  的差趨近於 0。而是隨著 x 趨近無限,  相對誤差趨近於 0。

因此,質數定理也可以被想像成描述從正整數中抽到素数的概率:從不大於 n 的正整數中隨機選出一個數,它是素数的概率大約是 

質數定理有一個等價數是關於第 n 個素数  的漸近估計式

 

關於 π(x)x / ln xli(x) 的數值 编辑

下表比較了π(x),x/ln x和Li(x):

   [1]  [2]    [3]  
10 4 −0.3 0.921 2.2 2.500
102 25 3.3 1.151 5.1 4.000
103 168 23 1.161 10 5.952
104 1,229 143 1.132 17 8.137
105 9,592 906 1.104 38 10.425
106 78,498 6,116 1.084 130 12.740
107 664,579 44,158 1.071 339 15.047
108 5,761,455 332,774 1.061 754 17.357
109 50,847,534 2,592,592 1.054 1,701 19.667
1010 455,052,511 20,758,029 1.048 3,104 21.975
1011 4,118,054,813 169,923,159 1.043 11,588 24.283
1012 37,607,912,018 1,416,705,193 1.039 38,263 26.590
1013 346,065,536,839 11,992,858,452 1.034 108,971 28.896
1014 3,204,941,750,802 102,838,308,636 1.033 314,890 31.202
1015 29,844,570,422,669 891,604,962,452 1.031 1,052,619 33.507
1016 279,238,341,033,925 7,804,289,844,393 1.029 3,214,632 35.812
1017 2,623,557,157,654,233 68,883,734,693,281 1.027 7,956,589 38.116
1018 24,739,954,287,740,860 612,483,070,893,536 1.025 21,949,555 40.420
1019 234,057,667,276,344,607 5,481,624,169,369,960 1.024 99,877,775 42.725
1020 2,220,819,602,560,918,840 49,347,193,044,659,701 1.023 222,744,644 45.028
1021 21,127,269,486,018,731,928 446,579,871,578,168,707 1.022 597,394,254 47.332
1022 201,467,286,689,315,906,290 4,060,704,006,019,620,994 1.021 1,932,355,208 49.636
1023 1,925,320,391,606,803,968,923 37,083,513,766,578,631,309 1.020 7,250,186,216 51.939
1024 18,435,599,767,349,200,867,866 339,996,354,713,708,049,069 1.019 17,146,907,278 54.243
1025 176,846,309,399,143,769,411,680 3,128,516,637,843,038,351,228 1.018 55,160,980,939 56.546
OEIS A006880 A057835 A057752

歷史 编辑

1797年至1798年間,法國數學家勒讓德根據上述的質數表猜測, 大約等於  ,其中  是未知的函數。勒讓德於1808年出版一本關於數論的書的第二版,書中他給出更精確的猜測:  。根據高斯自己在1849年的回憶,他在15歲或16歲(1792或1793年)的時候就已經考慮過類似的問題了[4]。1832年,狄利克雷經過跟高斯的交流之後,給出了一個新的逼近函數  ,(事實上他是用一個有點不一樣的級數表達式)。勒讓德和狄利克雷的式子皆等價於現在的版本,但如果考慮逼近式與   的差,而不是比值的話,狄利克雷的式子是準確許多的。

俄國數學家切比雪夫參考了歐拉在1731年的工作,引進了定義在實數軸上黎曼ζ函數,企圖證明質數分布的漸進式,並將他所得到的結果寫成兩篇論文,分別在1848和1850年發表。切比雪夫可以證明,如果 存在且有限,則它一定是1[5]。此外,在沒有假設任何結果之下,他也證明當 x 足夠大, 會界在兩個很靠近 1 的數字之間[6]。雖然切比雪夫的論文沒辦法證明質數定理,但它對   已經可以推論出伯特蘭-切比雪夫定理:對任何大於 的正整數 ,存在一個質數介於  之間。

1859年,黎曼提交了一篇關於質數分布的非常重要的報告《論小於給定數值的質數個數英语On the Number of Primes Less Than a Given Magnitude》,這也是黎曼在這個領域的唯一一篇文章。黎曼在報告中使用了創新的想法,將 函數的定義解析延拓到整個複數平面,並且將質數的分布與 函數的零點緊密的聯繫起來。因此,這篇報告是歷史上首次用複分析的方法研究實函數  。1896年法國數學家雅克·阿達馬和比利時數學家夏尔-让·德拉瓦莱·普桑先後獨立給出證明。兩個證明延著黎曼的思路繼續拓展,且都使用複分析的工具,其中的關鍵步驟是證明如果複數 可以寫成   的形式,且  ,則  [7]

進入20世紀之後,阿達馬和普桑證明的定理經常被稱作質數定理,定理的其他不同證明也陸陸續續被發現,這之中包括1949年阿特勒·塞爾伯格艾狄胥·帕爾發現的「初等證明」。原本的證明是既冗長,又複雜,於是有很多後面發現的證明使用了陶伯定理英语Tauberian theorem讓證明變得比較簡短,但卻變得讓人比較難以消化。1980年,美國數學家唐納德·J·紐曼英语Donald J. Newman發現了一個簡潔的證明[8][9],這可能是目前已知最簡單的證明。不過,證明中使用了柯西積分公式,因此一般不被視為是為初等的證明。

因為黎曼ζ函數與 關係密切,關於黎曼 函數的黎曼猜想數論很重要。一旦猜想獲證,便能大大改進素数定理誤差的估計。1901年瑞典數學家海里格·馮·科赫證明出,假設黎曼猜想成立,以上關係式誤差項的估計可改進為

 

至於大O項的常數則還未知道。[來源請求]

初等證明 编辑

素数定理有些初等證明只需用數論的方法。第一個初等證明於1949年由匈牙利數學家保羅·艾狄胥和挪威數學家阿特利·西爾伯格合作得出。

在此之前一些數學家不相信能找出不需借助艱深數學的初等證明。像英國數學家哈代便說過素数定理必須以複分析證明,顯出定理結果的「深度」。他認為只用到實數不足以解決某些問題,必須引進複數來解決。

相關條目 编辑

參考資料 编辑

  1. ^ A006880
  2. ^ A057835
  3. ^ A057752
  4. ^ C. F. Gauss. Werke, Bd 2, 1st ed, 444–447. Göttingen 1863.
  5. ^ Costa Pereira, N. A Short Proof of Chebyshev's Theorem. American Mathematical Monthly. August–September 1985, 92 (7): 494–495. JSTOR 2322510. doi:10.2307/2322510. 
  6. ^ Nair, M. On Chebyshev-Type Inequalities for Primes. American Mathematical Monthly. February 1982, 89 (2): 126–129. JSTOR 2320934. doi:10.2307/2320934. 
  7. ^ Ingham, A. E. The Distribution of Prime Numbers. Cambridge University Press. 1990: 2–5. ISBN 978-0-521-39789-6. 
  8. ^ Newman, Donald J. Simple analytic proof of the prime number theorem. American Mathematical Monthly. 1980, 87 (9): 693–696. JSTOR 2321853. MR 0602825. doi:10.2307/2321853. 
  9. ^ Zagier, Don. Newman's short proof of the prime number theorem. American Mathematical Monthly. 1997, 104 (8): 705–708 [2019-05-03]. JSTOR 2975232. MR 1476753. doi:10.2307/2975232. (原始内容于2021-04-20). 

外部链接 编辑

素數定理, 此條目需要补充更多来源, 2011年3月29日, 请协助補充多方面可靠来源以改善这篇条目, 无法查证的内容可能會因為异议提出而被移除, 致使用者, 请搜索一下条目的标题, 来源搜索, 質數定理, 网页, 新闻, 书籍, 学术, 图像, 以检查网络上是否存在该主题的更多可靠来源, 判定指引, 在數論中, 素数定理, 英語, prime, number, theorem, 描述素数在自然數中分佈的漸進情況, 給出隨著數字的增大, 質數的密度逐漸降低的直覺的形式化描述, 1896年法國數學家雅克, 阿達馬和比. 此條目需要补充更多来源 2011年3月29日 请协助補充多方面可靠来源以改善这篇条目 无法查证的内容可能會因為异议提出而被移除 致使用者 请搜索一下条目的标题 来源搜索 質數定理 网页 新闻 书籍 学术 图像 以检查网络上是否存在该主题的更多可靠来源 判定指引 在數論中 素数定理 英語 Prime number theorem 描述素数在自然數中分佈的漸進情況 給出隨著數字的增大 質數的密度逐漸降低的直覺的形式化描述 1896年法國數學家雅克 阿達馬和比利時數學家德 拉 瓦莱布桑先後獨立給出證明 證明用到了複分析 尤其是黎曼z函數 素数的出現規律一直困惑著數學家 一個個地看 素数在正整數中的出現沒有什麼規律 可是總體地看 素数的個數竟然有規可循 對正實數x 定義p x 為素数计数函数 亦即不大於x的素数個數 數學家找到了一些函數來估計p x 的增長 以下是第一個這樣的估計 p x x ln x displaystyle pi x approx frac x ln x 其中 ln x 為 x 的自然對數 上式的意思是當 x 趨近無限 p x 與x ln x的比值趨近 1 但這不表示它們的數值隨著 x 增大而接近 下面是對p x 更好的估計 p x L i x O x e 1 15 ln x displaystyle pi x rm Li x O left xe frac 1 15 sqrt ln x right 當x 趨近 其中L i x 2 x d t ln t displaystyle rm Li x int 2 x frac dt ln t 对数积分 而關係式右邊第二項是誤差估計 詳見大O符號 目录 1 敘述 2 關於 p x x ln x 和 li x 的數值 3 歷史 4 初等證明 5 相關條目 6 參考資料 7 外部链接敘述 编辑定義 p x 為素数计数函数 也就是小於等於x 的質數個數 例如 p 10 4 因為共有 4 個質數小於等於 10 分別是 2 3 5 7 質數定理的敘述為 當 x 趨近無限 p x 和 x ln x displaystyle frac x ln x nbsp 的比值趨近 1 其數學式寫做 lim x p x x ln x 1 displaystyle lim x to infty frac pi x frac x ln x 1 nbsp 淺白的說 當 x 很大的時候 p x 差不多等於 x ln x displaystyle frac x ln x nbsp 該定理被認為是質數的漸進分布定律 以漸進符號可簡化為 p x x ln x displaystyle pi x sim frac x ln x nbsp 注意到 上式並不是說指隨著 x 趨近無限 p x displaystyle pi x nbsp 與 x ln x displaystyle frac x ln x nbsp 的差趨近於 0 而是隨著 x 趨近無限 p x displaystyle pi x nbsp 與 x ln x displaystyle frac x ln x nbsp 的相對誤差趨近於 0 因此 質數定理也可以被想像成描述從正整數中抽到素数的概率 從不大於 n 的正整數中隨機選出一個數 它是素数的概率大約是1 ln n displaystyle frac 1 ln n nbsp 質數定理有一個等價數是關於第 n 個素数 p n displaystyle p n nbsp 的漸近估計式 p n n ln n displaystyle p n sim n ln n nbsp 關於 p x x ln x 和 li x 的數值 编辑下表比較了p x x ln x和Li x x displaystyle x nbsp p x displaystyle boldsymbol pi x nbsp 1 p x x ln x displaystyle boldsymbol pi x frac x ln x nbsp 2 p x x ln x displaystyle frac boldsymbol pi x frac x ln x nbsp L i x p x displaystyle rm Li x boldsymbol pi x nbsp 3 x p x displaystyle frac x boldsymbol pi x nbsp 10 4 0 3 0 921 2 2 2 500102 25 3 3 1 151 5 1 4 000103 168 23 1 161 10 5 952104 1 229 143 1 132 17 8 137105 9 592 906 1 104 38 10 425106 78 498 6 116 1 084 130 12 740107 664 579 44 158 1 071 339 15 047108 5 761 455 332 774 1 061 754 17 357109 50 847 534 2 592 592 1 054 1 701 19 6671010 455 052 511 20 758 029 1 048 3 104 21 9751011 4 118 054 813 169 923 159 1 043 11 588 24 2831012 37 607 912 018 1 416 705 193 1 039 38 263 26 5901013 346 065 536 839 11 992 858 452 1 034 108 971 28 8961014 3 204 941 750 802 102 838 308 636 1 033 314 890 31 2021015 29 844 570 422 669 891 604 962 452 1 031 1 052 619 33 5071016 279 238 341 033 925 7 804 289 844 393 1 029 3 214 632 35 8121017 2 623 557 157 654 233 68 883 734 693 281 1 027 7 956 589 38 1161018 24 739 954 287 740 860 612 483 070 893 536 1 025 21 949 555 40 4201019 234 057 667 276 344 607 5 481 624 169 369 960 1 024 99 877 775 42 7251020 2 220 819 602 560 918 840 49 347 193 044 659 701 1 023 222 744 644 45 0281021 21 127 269 486 018 731 928 446 579 871 578 168 707 1 022 597 394 254 47 3321022 201 467 286 689 315 906 290 4 060 704 006 019 620 994 1 021 1 932 355 208 49 6361023 1 925 320 391 606 803 968 923 37 083 513 766 578 631 309 1 020 7 250 186 216 51 9391024 18 435 599 767 349 200 867 866 339 996 354 713 708 049 069 1 019 17 146 907 278 54 2431025 176 846 309 399 143 769 411 680 3 128 516 637 843 038 351 228 1 018 55 160 980 939 56 546OEIS A006880 A057835 A057752歷史 编辑1797年至1798年間 法國數學家勒讓德根據上述的質數表猜測 p x displaystyle pi x nbsp 大約等於 x A ln x B displaystyle frac x A ln x B nbsp 其中A displaystyle A nbsp B displaystyle B nbsp 是未知的函數 勒讓德於1808年出版一本關於數論的書的第二版 書中他給出更精確的猜測 A 1 displaystyle A 1 nbsp B 1 08366 displaystyle B 1 08366 nbsp 根據高斯自己在1849年的回憶 他在15歲或16歲 1792或1793年 的時候就已經考慮過類似的問題了 4 1832年 狄利克雷經過跟高斯的交流之後 給出了一個新的逼近函數 l i x displaystyle li x nbsp 事實上他是用一個有點不一樣的級數表達式 勒讓德和狄利克雷的式子皆等價於現在的版本 但如果考慮逼近式與 p x displaystyle pi x nbsp 的差 而不是比值的話 狄利克雷的式子是準確許多的 俄國數學家切比雪夫參考了歐拉在1731年的工作 引進了定義在實數軸上黎曼z函數 企圖證明質數分布的漸進式 並將他所得到的結果寫成兩篇論文 分別在1848和1850年發表 切比雪夫可以證明 如果lim x p x x ln x displaystyle lim x to infty frac pi x frac x ln x nbsp 存在且有限 則它一定是1 5 此外 在沒有假設任何結果之下 他也證明當 x 足夠大 p x x ln x displaystyle frac pi x frac x ln x nbsp 會界在兩個很靠近 1 的數字之間 6 雖然切比雪夫的論文沒辦法證明質數定理 但它對 p x displaystyle pi x nbsp 已經可以推論出伯特蘭 切比雪夫定理 對任何大於1 displaystyle 1 nbsp 的正整數n displaystyle n nbsp 存在一個質數介於n displaystyle n nbsp 和2 n displaystyle 2n nbsp 之間 1859年 黎曼提交了一篇關於質數分布的非常重要的報告 論小於給定數值的質數個數 英语 On the Number of Primes Less Than a Given Magnitude 這也是黎曼在這個領域的唯一一篇文章 黎曼在報告中使用了創新的想法 將z displaystyle zeta nbsp 函數的定義解析延拓到整個複數平面 並且將質數的分布與z displaystyle zeta nbsp 函數的零點緊密的聯繫起來 因此 這篇報告是歷史上首次用複分析的方法研究實函數 p x displaystyle pi x nbsp 1896年法國數學家雅克 阿達馬和比利時數學家夏尔 让 德拉瓦莱 普桑先後獨立給出證明 兩個證明延著黎曼的思路繼續拓展 且都使用複分析的工具 其中的關鍵步驟是證明如果複數s displaystyle s nbsp 可以寫成 1 i t displaystyle 1 it nbsp 的形式 且 t gt 0 displaystyle t gt 0 nbsp 則 z s 0 displaystyle zeta s neq 0 nbsp 7 進入20世紀之後 阿達馬和普桑證明的定理經常被稱作質數定理 定理的其他不同證明也陸陸續續被發現 這之中包括1949年阿特勒 塞爾伯格和艾狄胥 帕爾發現的 初等證明 原本的證明是既冗長 又複雜 於是有很多後面發現的證明使用了陶伯定理 英语 Tauberian theorem 讓證明變得比較簡短 但卻變得讓人比較難以消化 1980年 美國數學家唐納德 J 紐曼 英语 Donald J Newman 發現了一個簡潔的證明 8 9 這可能是目前已知最簡單的證明 不過 證明中使用了柯西積分公式 因此一般不被視為是為初等的證明 因為黎曼z函數與p x displaystyle pi x nbsp 關係密切 關於黎曼z displaystyle zeta nbsp 函數的黎曼猜想對數論很重要 一旦猜想獲證 便能大大改進素数定理誤差的估計 1901年瑞典數學家海里格 馮 科赫證明出 假設黎曼猜想成立 以上關係式誤差項的估計可改進為 p x L i x O x ln x displaystyle pi x rm Li x O left sqrt x ln x right nbsp 至於大O項的常數則還未知道 來源請求 初等證明 编辑素数定理有些初等證明只需用數論的方法 第一個初等證明於1949年由匈牙利數學家保羅 艾狄胥和挪威數學家阿特利 西爾伯格合作得出 在此之前一些數學家不相信能找出不需借助艱深數學的初等證明 像英國數學家哈代便說過素数定理必須以複分析證明 顯出定理結果的 深度 他認為只用到實數不足以解決某些問題 必須引進複數來解決 相關條目 编辑抽象解析数论 切比雪夫函數 與質數定理密切相關的函數 質數計數函數參考資料 编辑 A006880 A057835 A057752 C F Gauss Werke Bd 2 1st ed 444 447 Gottingen 1863 Costa Pereira N A Short Proof of Chebyshev s Theorem American Mathematical Monthly August September 1985 92 7 494 495 JSTOR 2322510 doi 10 2307 2322510 Nair M On Chebyshev Type Inequalities for Primes American Mathematical Monthly February 1982 89 2 126 129 JSTOR 2320934 doi 10 2307 2320934 Ingham A E The Distribution of Prime Numbers Cambridge University Press 1990 2 5 ISBN 978 0 521 39789 6 Newman Donald J Simple analytic proof of the prime number theorem American Mathematical Monthly 1980 87 9 693 696 JSTOR 2321853 MR 0602825 doi 10 2307 2321853 Zagier Don Newman s short proof of the prime number theorem American Mathematical Monthly 1997 104 8 705 708 2019 05 03 JSTOR 2975232 MR 1476753 doi 10 2307 2975232 原始内容存档于2021 04 20 外部链接 编辑 取自 https zh wikipedia org w index php title 質數定理 amp oldid 79943019, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。