fbpx
维基百科

窄带隙半导体

窄带隙半导体是指带隙小于0.5 eV,或红外吸收截止波长超过2.5微米的半导体材料。更广义的定义包括带隙小于(1.1 eV)的所有半导体。[1] [2] 现代太赫兹[3]红外[4]热成像[5] 技术均基于此类半导体。

窄带隙材料应用于红外探测器和红外领域,以实现卫星遥感[6]、远程通讯的光子集成电路[7] [8] [9]无人驾驶车辆的Li-Fi系统[10] [11] [12] [13]。这种半导体材料也是太赫技术的材料基础,其应用包括探测隐藏武器安全监视系统[14] [15] [16]太赫兹断层扫描的安全医疗和工业成像系统 [17] [18] [19],以及介电尾场加速器[20] [21] [22]。 此外,嵌入窄带隙半导体的热光伏英语Thermophotovoltaic energy conversion 发电可讲传统太阳能发电系统中浪费的部分能量转化为可用电能,该部分能量占据了太阳光谱的49%左右[23] [24]。 航天和深海应用,以及真空物理装置中,常使用窄带隙半导体来实现超低温冷却[25] [26]

在尖端研发中,窄带隙半导体被制成纳米材料,其强烈的电子空穴耦合会与增加的量子限制效应相互作用[27],这给描述和设计带来了特殊的挑战。麻省理工学院兰克斯提出的“兰克斯模型”扩展了k·p 方法来解决电子能带边缘的非抛物线性问题,但又缺乏精确性[28]。 使用超级计算机利用密度泛函理论进行第一性原理计算,虽然可以得到更精确的能带曲率,但其对算力和算时的要求都太大。 唐爽和崔瑟豪斯夫人提出的“唐-崔瑟豪斯理论[29] [30] 引入了一种低维多带迭代法,以渐进式方法解决了这个问题,并得到了通用汽车的数据支持。[31] [32]

2012年4月12日,麻省理工学院官网以封面新闻报道唐爽和崔瑟豪斯提出的“唐-德雷塞尔豪斯理论”,该理论提出了低维多带迭代法。

窄带隙半导体列表 编辑

材料 化学式 能隙 (300 K)
Mercury cadmium telluride Hg1−xCdxTe II-VI 0 to 1.5 eV
Mercury zinc telluride Hg1−xZnxTe II-VI 0.15 to 2.25 eV
Lead selenide PbSe IV-VI 0.27 eV
Lead(II) sulfide PbS IV-VI 0.37 eV
Lead telluride PbTe IV-VI 0.32 eV
Indium arsenide InAs III-V 0.354 eV
Indium antimonide InSb III-V 0.17 eV
Gallium antimonide GaSb III-V 0.67 eV
Cadmium arsenide Cd3As2 II-V 0.5 to 0.6 eV
Bismuth telluride Bi2Te3 0.21 eV
Tin telluride SnTe IV-VI 0.18 eV
Tin selenide SnSe IV-VI 0.9 eV
Silver(I) selenide Ag2Se 0.07 eV
Magnesium silicide Mg2Si II-IV 0.79 eV[33]

也可以看看 编辑

参考 编辑

  1. ^ Li, Xiao-Hui. Narrwo-Bandgap Materials for Optoelectronics Applications. Frontiers of Physics. 2022, 17: 13304 [2023-08-04]. doi:10.1007/s11467-021-1055-z. (原始内容于2023-08-04). 
  2. ^ Chu, Junhao; Sher, Arden. Physics and Properties of Narrow Gap Semiconductors. Springer. [2023-08-04]. ISBN 9780387747439. (原始内容于2023-08-04). 
  3. ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. National Association of Broadcasters Engineering Handbook. Taylor and Francis. 2007: 7 [2023-08-04]. ISBN 978-1-136-03410-7. (原始内容于2023-08-04). 
  4. ^ Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS. Micromachines. 2022, 13 (5). doi:10.3390/mi13050703 . 
  5. ^ Hapke B. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. 19 January 2012: 416. ISBN 978-0-521-88349-8. 
  6. ^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  7. ^ Inside Telecom Staff. How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?. Inside Telecom. 30 July 2022 [20 September 2022]. (原始内容于2023-06-11). 
  8. ^ Awad, Ehab. Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides. IEEE Access. October 2018, 6 (1): 55937. S2CID 53043619. doi:10.1109/ACCESS.2018.2873278 . 
  9. ^ Vergyris, Panagiotis. Integrated photonics for quantum applications. Laser Focus World. 16 June 2022 [20 September 2022]. (原始内容于2022-11-28). 
  10. ^ Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research. www.lifi.eng.ed.ac.uk. [2018-01-16]. (原始内容于2023-09-13). 
  11. ^ . Spitzer Space Telescope. NASA / JPL / Caltech. [13 January 2017]. (原始内容存档于13 June 2010). 
  12. ^ Szondy, David. Spitzer goes "Beyond" for final mission. New Atlas. 28 August 2016 [13 January 2017]. (原始内容于2023-08-04). 
  13. ^ Szondy, David. Spitzer goes "Beyond" for final mission. New Atlas. 28 August 2016 [13 January 2017]. (原始内容于2023-08-04). 
  14. ^ "Space in Images – 2002 – 06 – Meeting the team" (页面存档备份,存于互联网档案馆).
  15. ^ Space camera blazes new terahertz trails (页面存档备份,存于互联网档案馆). timeshighereducation.co.uk. 14 February 2003.
  16. ^ . epsrc.ac.uk. 27 February 2004
  17. ^ Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of Terahertz Tomography Techniques. Journal of Infrared, Millimeter, and Terahertz Waves. 2014, 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX 10.1.1.480.4173 . S2CID 120535020. doi:10.1007/s10762-014-0057-0. 
  18. ^ Daniel M. Mittleman, Stefan Hunsche, Luc Boivin, & Martin C. Nuss. (2001). T-ray tomography. Optics Letters, 22(12)
  19. ^ Katayama, I., Akai, R., Bito, M., Shimosato, H., Miyamoto, K., Ito, H., & Ashida, M. (2010). Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals. Applied Physics Letters, 97(2), 021105. doi: 10.1063/1.3463452
  20. ^ Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno. Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures. Applied Physics Letters. 2010-10-25, 97 (17): 171501. doi:10.1063/1.3505339. 
  21. ^ Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. Terahertz-driven linear electron acceleration. Nature Communications. 2015-10-06, 6 (1): 8486. doi:10.1038/ncomms9486. 
  22. ^ Jing, Chunguang. Dielectric Wakefield Accelerators. Reviews of Accelerator Science and Technology. 2016, 09 (6): 127–149. doi:10.1142/s1793626816300061. 
  23. ^ Poortmans, Jef. . [2008-02-17]. (原始内容存档于2007-10-13). 
  24. ^ A new heat engine with no moving parts is as efficient as a steam turbine. MIT News | Massachusetts Institute of Technology. 13 April 2022 [2022-04-13]. (原始内容于2023-06-07) (英语). 
  25. ^ Radebaugh, Ray. Cryocoolers: the state of the art and recent developments. Journal of Physics: Condensed Matter. 2009-03-31, 21 (16): 164219. Bibcode:2009JPCM...21p4219R. ISSN 0953-8984. PMID 21825399. S2CID 22695540. doi:10.1088/0953-8984/21/16/164219 (英语). 
  26. ^ Cooper, Bernard E; Hadfield, Robert H. Viewpoint: Compact cryogenics for superconducting photon detectors. Superconductor Science and Technology. 2022-06-28, 35 (8): 080501. Bibcode:2022SuScT..35h0501C. ISSN 0953-2048. S2CID 249534834. doi:10.1088/1361-6668/ac76e9 (英语). 
  27. ^ Non-Parabolic Model for the Solution of 2-D Quantum Transverse States Applied to Narrow Conduction Channel Simulation. Springer. 2006 [2023-08-04]. (原始内容于2023-08-04). 
  28. ^ Zawadzki, Wlodzimierz; Lax, Benjamin. Two-Band Model for Bloch Electrons in Crossed Electric and Magnetic Fields. Physical Review Letters. 1966, 16: 1001 [2023-08-04]. doi:10.1103/PhysRevLett.16.1001. (原始内容于2023-08-04). 
  29. ^ Tang, Shuang; Mildred, Dresselhaus. Phase diagrams of BiSb thin films with different growth orientations. Physical Review B. 2012, 86 (7): 075436 [2023-08-04]. doi:10.1103/PhysRevB.86.075436. (原始内容于2023-06-19). 
  30. ^ Tang, Shuang; Mildred, Dresselhaus. Electronic phases, band gaps, and band overlaps of bismuth antimony nanowires. Physical Review B. 2014, 89 (4): 045424 [2023-08-04]. doi:10.1103/PhysRevB.89.045424. (原始内容于2023-06-19). 
  31. ^ Heremans, Joseph. Electronic Properties of Nano-Structured Bismuth-Antimony Materials. Physical Review Letters. 2002, 88: 216801 [2023-08-04]. doi:10.1103/PhysRevLett.88.216801. (原始内容于2023-08-04). 
  32. ^ Joesph Heremans. Thermoelectrics Born Again. 2018-04-09 [2023-08-04]. (原始内容于2023-08-04). 
  33. ^ Nelson, James T. Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si. American Journal of Physics (American Association of Physics Teachers (AAPT)). 1955, 23 (6): 390–390. ISSN 0002-9505. doi:10.1119/1.1934018. 
  • 多恩豪斯,R.,尼姆茨,G.,施利希特,B.(1983)。窄带隙半导体。施普林格现代物理学小册子98 ,ISBN 978-3-540-12091-9 (打印)ISBN 978-3-540-39531-7 (在线)

窄带隙半导体, 是指带隙小于0, 或红外吸收截止波长超过2, 5微米的半导体材料, 更广义的定义包括带隙小于硅, 的所有半导体, 现代太赫兹, 红外, 和热成像, 技术均基于此类半导体, 窄带隙材料应用于红外探测器和红外领域, 以实现卫星遥感, 远程通讯的光子集成电路, 和无人驾驶车辆的li, fi系统, 这种半导体材料也是太赫技术的材料基础, 其应用包括探测隐藏武器的安全监视系统, 太赫兹断层扫描的安全医疗和工业成像系统, 以及介电尾场加速器, 此外, 嵌入的热光伏, 英语, thermophotovoltaic. 窄带隙半导体是指带隙小于0 5 eV 或红外吸收截止波长超过2 5微米的半导体材料 更广义的定义包括带隙小于硅 1 1 eV 的所有半导体 1 2 现代太赫兹 3 红外 4 和热成像 5 技术均基于此类半导体 窄带隙材料应用于红外探测器和红外领域 以实现卫星遥感 6 远程通讯的光子集成电路 7 8 9 和无人驾驶车辆的Li Fi系统 10 11 12 13 这种半导体材料也是太赫技术的材料基础 其应用包括探测隐藏武器的安全监视系统 14 15 16 太赫兹断层扫描的安全医疗和工业成像系统 17 18 19 以及介电尾场加速器 20 21 22 此外 嵌入窄带隙半导体的热光伏 英语 Thermophotovoltaic energy conversion 发电可讲传统太阳能发电系统中浪费的部分能量转化为可用电能 该部分能量占据了太阳光谱的49 左右 23 24 航天和深海应用 以及真空物理装置中 常使用窄带隙半导体来实现超低温冷却 25 26 在尖端研发中 窄带隙半导体被制成纳米材料 其强烈的电子空穴耦合会与增加的量子限制效应相互作用 27 这给描述和设计带来了特殊的挑战 麻省理工学院的兰克斯 提出的 兰克斯模型 扩展了k p 方法来解决电子能带边缘的非抛物线性问题 但又缺乏精确性 28 使用超级计算机利用密度泛函理论进行第一性原理计算 虽然可以得到更精确的能带曲率 但其对算力和算时的要求都太大 唐爽和崔瑟豪斯夫人提出的 唐 崔瑟豪斯理论 29 30 引入了一种低维多带迭代法 以渐进式方法解决了这个问题 并得到了通用汽车的数据支持 31 32 2012年4月12日 麻省理工学院官网以封面新闻报道唐爽和崔瑟豪斯提出的 唐 德雷塞尔豪斯理论 该理论提出了低维多带迭代法 窄带隙半导体列表 编辑材料 化学式 族 能隙 300 K Mercury cadmium telluride Hg1 xCdxTe II VI 0 to 1 5 eVMercury zinc telluride Hg1 xZnxTe II VI 0 15 to 2 25 eVLead selenide PbSe IV VI 0 27 eVLead II sulfide PbS IV VI 0 37 eVLead telluride PbTe IV VI 0 32 eVIndium arsenide InAs III V 0 354 eVIndium antimonide InSb III V 0 17 eVGallium antimonide GaSb III V 0 67 eVCadmium arsenide Cd3As2 II V 0 5 to 0 6 eVBismuth telluride Bi2Te3 0 21 eVTin telluride SnTe IV VI 0 18 eVTin selenide SnSe IV VI 0 9 eVSilver I selenide Ag2Se 0 07 eVMagnesium silicide Mg2Si II IV 0 79 eV 33 也可以看看 编辑半导体材料清单 宽带隙半导体参考 编辑 Li Xiao Hui Narrwo Bandgap Materials for Optoelectronics Applications Frontiers of Physics 2022 17 13304 2023 08 04 doi 10 1007 s11467 021 1055 z 原始内容存档于2023 08 04 Chu Junhao Sher Arden Physics and Properties of Narrow Gap Semiconductors Springer 2023 08 04 ISBN 9780387747439 原始内容存档于2023 08 04 Jones Graham A Layer David H Osenkowsky Thomas G National Association of Broadcasters Engineering Handbook Taylor and Francis 2007 7 2023 08 04 ISBN 978 1 136 03410 7 原始内容存档于2023 08 04 Avraham M Nemirovsky J Blank T Golan G Nemirovsky Y Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS Micromachines 2022 13 5 doi 10 3390 mi13050703 nbsp Hapke B Theory of Reflectance and Emittance Spectroscopy Cambridge University Press 19 January 2012 416 ISBN 978 0 521 88349 8 Lovett D R Semimetals and narrow bandgap semiconductors Pion Limited London 1977 Chapter 7 Inside Telecom Staff How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure Inside Telecom 30 July 2022 20 September 2022 原始内容存档于2023 06 11 Awad Ehab Bidirectional Mode Slicing and Re Combining for Mode Conversion in Planar Waveguides IEEE Access October 2018 6 1 55937 S2CID 53043619 doi 10 1109 ACCESS 2018 2873278 nbsp Vergyris Panagiotis Integrated photonics for quantum applications Laser Focus World 16 June 2022 20 September 2022 原始内容存档于2022 11 28 Comprehensive Summary of Modulation Techniques for LiFi LiFi Research www lifi eng ed ac uk 2018 01 16 原始内容存档于2023 09 13 The Infrared Array Camera IRAC Spitzer Space Telescope NASA JPL Caltech 13 January 2017 原始内容存档于13 June 2010 Szondy David Spitzer goes Beyond for final mission New Atlas 28 August 2016 13 January 2017 原始内容存档于2023 08 04 Szondy David Spitzer goes Beyond for final mission New Atlas 28 August 2016 13 January 2017 原始内容存档于2023 08 04 Space in Images 2002 06 Meeting the team 页面存档备份 存于互联网档案馆 Space camera blazes new terahertz trails 页面存档备份 存于互联网档案馆 timeshighereducation co uk 14 February 2003 Winner of the 2003 04 Research Councils Business Plan Competition 24 February 2004 epsrc ac uk 27 February 2004 Guillet J P Recur B Frederique L Bousquet B Canioni L Manek Honninger I Desbarats P Mounaix P Review of Terahertz Tomography Techniques Journal of Infrared Millimeter and Terahertz Waves 2014 35 4 382 411 Bibcode 2014JIMTW 35 382G CiteSeerX 10 1 1 480 4173 nbsp S2CID 120535020 doi 10 1007 s10762 014 0057 0 Daniel M Mittleman Stefan Hunsche Luc Boivin amp Martin C Nuss 2001 T ray tomography Optics Letters 22 12 Katayama I Akai R Bito M Shimosato H Miyamoto K Ito H amp Ashida M 2010 Ultrabroadband terahertz generation using 4 N N dimethylamino 4 N methyl stilbazolium tosylate single crystals Applied Physics Letters 97 2 021105 doi 10 1063 1 3463452 Dolgashev Valery Tantawi Sami Higashi Yasuo Spataro Bruno Geometric dependence of radio frequency breakdown in normal conducting accelerating structures Applied Physics Letters 2010 10 25 97 17 171501 doi 10 1063 1 3505339 Nanni Emilio A Huang Wenqian R Hong Kyung Han Ravi Koustuban Fallahi Arya Moriena Gustavo Dwayne Miller R J Kartner Franz X Terahertz driven linear electron acceleration Nature Communications 2015 10 06 6 1 8486 doi 10 1038 ncomms9486 Jing Chunguang Dielectric Wakefield Accelerators Reviews of Accelerator Science and Technology 2016 09 6 127 149 doi 10 1142 s1793626816300061 Poortmans Jef IMEC website Photovoltaic Stacks 2008 02 17 原始内容存档于2007 10 13 A new heat engine with no moving parts is as efficient as a steam turbine MIT News Massachusetts Institute of Technology 13 April 2022 2022 04 13 原始内容存档于2023 06 07 英语 Radebaugh Ray Cryocoolers the state of the art and recent developments Journal of Physics Condensed Matter 2009 03 31 21 16 164219 Bibcode 2009JPCM 21p4219R ISSN 0953 8984 PMID 21825399 S2CID 22695540 doi 10 1088 0953 8984 21 16 164219 英语 Cooper Bernard E Hadfield Robert H Viewpoint Compact cryogenics for superconducting photon detectors Superconductor Science and Technology 2022 06 28 35 8 080501 Bibcode 2022SuScT 35h0501C ISSN 0953 2048 S2CID 249534834 doi 10 1088 1361 6668 ac76e9 英语 Non Parabolic Model for the Solution of 2 D Quantum Transverse States Applied to Narrow Conduction Channel Simulation Springer 2006 2023 08 04 原始内容存档于2023 08 04 Zawadzki Wlodzimierz Lax Benjamin Two Band Model for Bloch Electrons in Crossed Electric and Magnetic Fields Physical Review Letters 1966 16 1001 2023 08 04 doi 10 1103 PhysRevLett 16 1001 原始内容存档于2023 08 04 Tang Shuang Mildred Dresselhaus Phase diagrams of BiSb thin films with different growth orientations Physical Review B 2012 86 7 075436 2023 08 04 doi 10 1103 PhysRevB 86 075436 原始内容存档于2023 06 19 Tang Shuang Mildred Dresselhaus Electronic phases band gaps and band overlaps of bismuth antimony nanowires Physical Review B 2014 89 4 045424 2023 08 04 doi 10 1103 PhysRevB 89 045424 原始内容存档于2023 06 19 Heremans Joseph Electronic Properties of Nano Structured Bismuth Antimony Materials Physical Review Letters 2002 88 216801 2023 08 04 doi 10 1103 PhysRevLett 88 216801 原始内容存档于2023 08 04 Joesph Heremans Thermoelectrics Born Again 2018 04 09 2023 08 04 原始内容存档于2023 08 04 Nelson James T Chicago Section 1 Electrical and optical properties of MgPSn and Mg2Si American Journal of Physics American Association of Physics Teachers AAPT 1955 23 6 390 390 ISSN 0002 9505 doi 10 1119 1 1934018 多恩豪斯 R 尼姆茨 G 施利希特 B 1983 窄带隙半导体 施普林格现代物理学小册子98 ISBN 978 3 540 12091 9 打印 ISBN 978 3 540 39531 7 在线 取自 https zh wikipedia org w index php title 窄带隙半导体 amp oldid 78973084, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。