fbpx
维基百科

旋转矩阵

旋转矩阵(英語:Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的矩阵。旋转矩阵不包括点反演,点反演可以改变手性,也就是把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。旋转可分为主动旋转与被动旋转。主动旋转是指将向量逆时针围绕旋转轴所做出的旋转。被动旋转是对坐标轴本身进行的逆时针旋转,它相当于主动旋转的逆操作。

性质

  是任何维的一般旋转矩阵:  

  • 两个向量的点积(內積)在它们都被一个旋转矩阵操作之后保持不变:
 
     这里的   是单位矩阵。
  • 一个矩阵是旋转矩阵,当且仅当它是正交矩阵并且它的行列式是1。正交矩阵的行列式是 ±1;如果行列式是 −1,则它包含了一个反射而不是真旋转矩阵。
  • 旋转矩阵是正交矩阵,如果它的列向量形成   的一个正交基,就是说在任何两个列向量之间的标量积是零(正交性)而每个列向量的大小是单位一(单位向量)。
 
这里的指数是以泰勒级数定义的而   是以矩阵乘法定义的。矩阵A叫做旋转的“生成元”。旋转矩阵的李代数是它的生成元的代数,它就是斜对称矩阵的代数。生成元可以通过 M 的矩阵对数来找到。

二维空间

在二维空间中,旋转可以用一个单一的角   定义。作为约定,正角表示逆时针旋转。把笛卡尔坐标列向量关于原点逆时针旋转   的矩阵是:

 

三维空间

在三维空间中,旋转矩阵有一个等于单位1的实特征值。旋转矩阵指定关于对应的特征向量的旋转(欧拉旋转定理)。如果旋转角是 θ,则旋转矩阵的另外两个(复数)特征值是 exp(iθ) 和 exp(-iθ)。从而得出 3 维旋转的迹数等于 1 + 2 cos(θ),这可用来快速的计算任何 3 维旋转的旋转角。

3 维旋转矩阵的生成元是三维斜对称矩阵。因为只需要三个实数来指定 3 维斜对称矩阵,得出只用三个实数就可以指定一个 3 维旋转矩阵。

旋转

生成旋转矩阵的一种简单方式是把它作为三个基本旋转的序列复合。关于右手笛卡尔坐标系的 x-, y- 和 z-轴的旋转分别叫做 roll, pitchyaw 旋转。因为这些旋转被表达为关于一个轴的旋转,它们的生成元很容易表达。

  • x-轴的主动旋转定义为:
  这里的   是 roll 角,和右手螺旋的方向相同(在yz平面逆时针)。
  • y-轴的主动旋转定义为:
  这里的   是 pitch 角,和右手螺旋的方向相同(在zx平面逆时针)。
  • z-轴的主动旋转定义为:
  这里的   是 yaw 角,和右手螺旋的方向相同(在xy平面逆时针)。
 

在飞行动力学中,roll, pitch 和 yaw 角通常分别采用符号  ,  , 和  ;但是为了避免混淆于欧拉角这里使用符号  ,   

任何 3 维旋转矩阵   都可以用这三个角  ,  , 和   来刻画,并且可以表示为 roll, pitch 和 yaw 矩阵的乘积。

  是在   中的旋转矩阵  

  中所有旋转的集合,加上复合运算形成了旋转群 SO(3)。这里讨论的矩阵接着提供了这个群的群表示。更高维的情况可参见 Givens旋转

角-轴表示和四元数表示

在三维中,旋转可以通过单一的旋转角   和所围绕的单位向量方向   来定义。

 

这个旋转可以简单的以生成元来表达:

 

在运算于向量 r 上的时候,这等价于Rodrigues旋转公式

 

角-轴表示密切关联于四元数表示。依据轴和角,四元数可以给出为正规化四元数 Q:

 

这里的 i, jkQ 的三个虚部。

欧拉角表示

在三维空间中,旋转可以通过三个欧拉角   来定义。有一些可能的欧拉角定义,每个都可以依据 roll, pitch 和 yaw 的复合来表达。依据 "x-y-z" 欧拉角,在右手笛卡尔坐标中的旋转矩阵可表达为:

 

进行乘法运算生成:

 

对称保持 SVD 表示

对旋转轴   和旋转角  ,旋转矩阵

 

这里的   的纵列张开正交于   的空间而    度 Givens 旋转,就是说

 

参见

外部链接

旋转矩阵, 英語, rotation, matrix, 是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的矩阵, 不包括点反演, 点反演可以改变手性, 也就是把右手坐标系改变成左手坐标系或反之, 所有旋转加上反演形成了正交矩阵的集合, 旋转可分为主动旋转与被动旋转, 主动旋转是指将向量逆时针围绕旋转轴所做出的旋转, 被动旋转是对坐标轴本身进行的逆时针旋转, 它相当于主动旋转的逆操作, 目录, 性质, 二维空间, 三维空间, 旋转, 轴表示和四元数表示, 欧拉角表示, 对称保持, 表示, 参见, . 旋转矩阵 英語 Rotation matrix 是在乘以一个向量的时候有改变向量的方向但不改变大小的效果并保持了手性的矩阵 旋转矩阵不包括点反演 点反演可以改变手性 也就是把右手坐标系改变成左手坐标系或反之 所有旋转加上反演形成了正交矩阵的集合 旋转可分为主动旋转与被动旋转 主动旋转是指将向量逆时针围绕旋转轴所做出的旋转 被动旋转是对坐标轴本身进行的逆时针旋转 它相当于主动旋转的逆操作 目录 1 性质 2 二维空间 3 三维空间 3 1 旋转 3 2 角 轴表示和四元数表示 3 3 欧拉角表示 3 4 对称保持 SVD 表示 4 参见 5 外部链接性质 编辑设 M displaystyle mathbf M 是任何维的一般旋转矩阵 M R n n displaystyle mathbf M in mathbb R n times n 两个向量的点积 內積 在它们都被一个旋转矩阵操作之后保持不变 a b M a M b displaystyle mathbf a top cdot mathbf b mathbf Ma top cdot mathbf M mathbf b dd 从而得出旋转矩阵的逆矩阵是它的转置矩阵 M M 1 M M I displaystyle mathbf M mathbf M 1 mathbf M mathbf M top mathcal I 这里的 I displaystyle mathcal I 是单位矩阵 dd 一个矩阵是旋转矩阵 当且仅当它是正交矩阵并且它的行列式是1 正交矩阵的行列式是 1 如果行列式是 1 则它包含了一个反射而不是真旋转矩阵 旋转矩阵是正交矩阵 如果它的列向量形成 R n displaystyle mathbb R n 的一个正交基 就是说在任何两个列向量之间的标量积是零 正交性 而每个列向量的大小是单位一 单位向量 任何旋转矩阵可以表示为斜对称矩阵 A的指数 M exp A k 0 A k k displaystyle mathbf M exp mathbf A sum k 0 infty frac mathbf A k k dd 这里的指数是以泰勒级数定义的而 A k displaystyle mathbf A k 是以矩阵乘法定义的 矩阵A叫做旋转的 生成元 旋转矩阵的李代数是它的生成元的代数 它就是斜对称矩阵的代数 生成元可以通过 M 的矩阵对数来找到 二维空间 编辑主条目 复数 数学 矩陣表達式 在二维空间中 旋转可以用一个单一的角 8 displaystyle theta 定义 作为约定 正角表示逆时针旋转 把笛卡尔坐标的列向量关于原点逆时针旋转 8 displaystyle theta 的矩阵是 M 8 cos 8 sin 8 sin 8 cos 8 cos 8 1 0 0 1 sin 8 0 1 1 0 exp 8 0 1 1 0 displaystyle M theta begin bmatrix cos theta amp sin theta sin theta amp cos theta end bmatrix cos theta begin bmatrix 1 amp 0 0 amp 1 end bmatrix sin theta begin bmatrix 0 amp 1 1 amp 0 end bmatrix exp left theta begin bmatrix 0 amp 1 1 amp 0 end bmatrix right 三维空间 编辑在三维空间中 旋转矩阵有一个等于单位1的实特征值 旋转矩阵指定关于对应的特征向量的旋转 欧拉旋转定理 如果旋转角是 8 则旋转矩阵的另外两个 复数 特征值是 exp i8 和 exp i8 从而得出 3 维旋转的迹数等于 1 2 cos 8 这可用来快速的计算任何 3 维旋转的旋转角 3 维旋转矩阵的生成元是三维斜对称矩阵 因为只需要三个实数来指定 3 维斜对称矩阵 得出只用三个实数就可以指定一个 3 维旋转矩阵 旋转 编辑 主条目 Tait Bryan角 生成旋转矩阵的一种简单方式是把它作为三个基本旋转的序列复合 关于右手笛卡尔坐标系的 x y 和 z 轴的旋转分别叫做 roll pitch 和 yaw 旋转 因为这些旋转被表达为关于一个轴的旋转 它们的生成元很容易表达 绕 x 轴的主动旋转定义为 R x 8 x 1 0 0 0 cos 8 x sin 8 x 0 sin 8 x cos 8 x exp 8 x 0 0 0 0 0 1 0 1 0 displaystyle mathcal R x theta x begin bmatrix 1 amp 0 amp 0 0 amp cos theta x amp sin theta x 0 amp sin theta x amp cos theta x end bmatrix exp left theta x begin bmatrix 0 amp 0 amp 0 0 amp 0 amp 1 0 amp 1 amp 0 end bmatrix right 这里的 8 x displaystyle theta x 是 roll 角 和右手螺旋的方向相同 在yz平面逆时针 绕 y 轴的主动旋转定义为 R y 8 y cos 8 y 0 sin 8 y 0 1 0 sin 8 y 0 cos 8 y exp 8 y 0 0 1 0 0 0 1 0 0 displaystyle mathcal R y theta y begin bmatrix cos theta y amp 0 amp sin theta y 0 amp 1 amp 0 sin theta y amp 0 amp cos theta y end bmatrix exp left theta y begin bmatrix 0 amp 0 amp 1 0 amp 0 amp 0 1 amp 0 amp 0 end bmatrix right 这里的 8 y displaystyle theta y 是 pitch 角 和右手螺旋的方向相同 在zx平面逆时针 绕 z 轴的主动旋转定义为 R z 8 z cos 8 z sin 8 z 0 sin 8 z cos 8 z 0 0 0 1 exp 8 z 0 1 0 1 0 0 0 0 0 displaystyle mathcal R z theta z begin bmatrix cos theta z amp sin theta z amp 0 sin theta z amp cos theta z amp 0 0 amp 0 amp 1 end bmatrix exp left theta z begin bmatrix 0 amp 1 amp 0 1 amp 0 amp 0 0 amp 0 amp 0 end bmatrix right 这里的 8 z displaystyle theta z 是 yaw 角 和右手螺旋的方向相同 在xy平面逆时针 在飞行动力学中 roll pitch 和 yaw 角通常分别采用符号 g displaystyle gamma a displaystyle alpha 和 b displaystyle beta 但是为了避免混淆于欧拉角这里使用符号 8 x displaystyle theta x 8 y displaystyle theta y 和 8 z displaystyle theta z 任何 3 维旋转矩阵 M R 3 3 displaystyle mathcal M in mathbb R 3 times 3 都可以用这三个角 8 x displaystyle theta x 8 y displaystyle theta y 和 8 z displaystyle theta z 来刻画 并且可以表示为 roll pitch 和 yaw 矩阵的乘积 M displaystyle mathcal M 是在 R 3 3 displaystyle mathbb R 3 times 3 中的旋转矩阵 8 x 8 y 8 z 0 p M R z 8 z R y 8 y R x 8 x displaystyle Leftrightarrow exists theta x theta y theta z in 0 ldots pi mathcal M mathcal R z theta z mathcal R y theta y mathcal R x theta x 在 R 3 displaystyle mathbb R 3 中所有旋转的集合 加上复合运算形成了旋转群 SO 3 这里讨论的矩阵接着提供了这个群的群表示 更高维的情况可参见 Givens旋转 角 轴表示和四元数表示 编辑 主条目 轴角和四元数和空间旋转 在三维中 旋转可以通过单一的旋转角 8 displaystyle theta 和所围绕的单位向量方向 v x y z displaystyle hat mathbf v x y z 来定义 M v 8 cos 8 1 cos 8 x 2 1 cos 8 x y sin 8 z 1 cos 8 x z sin 8 y 1 cos 8 y x sin 8 z cos 8 1 cos 8 y 2 1 cos 8 y z sin 8 x 1 cos 8 z x sin 8 y 1 cos 8 z y sin 8 x cos 8 1 cos 8 z 2 displaystyle mathcal M hat mathbf v theta begin bmatrix cos theta 1 cos theta x 2 amp 1 cos theta xy sin theta z amp 1 cos theta xz sin theta y 1 cos theta yx sin theta z amp cos theta 1 cos theta y 2 amp 1 cos theta yz sin theta x 1 cos theta zx sin theta y amp 1 cos theta zy sin theta x amp cos theta 1 cos theta z 2 end bmatrix 这个旋转可以简单的以生成元来表达 M v 8 exp 8 0 z y z 0 x y x 0 displaystyle mathcal M hat mathbf v theta exp left theta begin bmatrix 0 amp z amp y z amp 0 amp x y amp x amp 0 end bmatrix right 在运算于向量 r 上的时候 这等价于Rodrigues旋转公式 M r r cos 8 v r sin 8 v r v 1 cos 8 displaystyle mathcal M cdot mathbf r mathbf r cos theta hat mathbf v times mathbf r sin theta hat mathbf v cdot mathbf r hat mathbf v 1 cos theta 角 轴表示密切关联于四元数表示 依据轴和角 四元数可以给出为正规化四元数 Q Q x i y j z k sin 8 2 cos 8 2 displaystyle Q xi yj zk sin theta 2 cos theta 2 这里的 i j 和 k 是 Q 的三个虚部 欧拉角表示 编辑 主条目 欧拉角 在三维空间中 旋转可以通过三个欧拉角 a b g displaystyle alpha beta gamma 来定义 有一些可能的欧拉角定义 每个都可以依据 roll pitch 和 yaw 的复合来表达 依据 x y z 欧拉角 在右手笛卡尔坐标中的旋转矩阵可表达为 M a b g R z g R y b R x a displaystyle mathcal M alpha beta gamma mathcal R z gamma mathcal R y beta mathcal R x alpha 进行乘法运算生成 M a b g cos g sin g 0 sin g cos g 0 0 0 1 cos b 0 sin b 0 1 0 sin b 0 cos b 1 0 0 0 cos a sin a 0 sin a cos a cos g cos b sin g cos g sin b sin g cos b cos g sin g sin b sin b 0 cos b 1 0 0 0 cos a sin a 0 sin a cos a cos g cos b sin g cos a cos g sin b sin a sin g sin a cos g sin b cos a sin g cos b cos g cos a sin g sin b sin a cos g sin a sin g sin b cos a sin b cos b sin a cos b cos a displaystyle begin aligned mathcal M alpha beta gamma amp begin bmatrix cos gamma amp sin gamma amp 0 sin gamma amp cos gamma amp 0 0 amp 0 amp 1 end bmatrix begin bmatrix cos beta amp 0 amp sin beta 0 amp 1 amp 0 sin beta amp 0 amp cos beta end bmatrix begin bmatrix 1 amp 0 amp 0 0 amp cos alpha amp sin alpha 0 amp sin alpha amp cos alpha end bmatrix amp begin bmatrix cos gamma cos beta amp sin gamma amp cos gamma sin beta sin gamma cos beta amp cos gamma amp sin gamma sin beta sin beta amp 0 amp cos beta end bmatrix begin bmatrix 1 amp 0 amp 0 0 amp cos alpha amp sin alpha 0 amp sin alpha amp cos alpha end bmatrix amp begin bmatrix cos gamma cos beta amp sin gamma cos alpha cos gamma sin beta sin alpha amp sin gamma sin alpha cos gamma sin beta cos alpha sin gamma cos beta amp cos gamma cos alpha sin gamma sin beta sin alpha amp cos gamma sin alpha sin gamma sin beta cos alpha sin beta amp cos beta sin alpha amp cos beta cos alpha end bmatrix end aligned 对称保持 SVD 表示 编辑 对旋转轴 q displaystyle q 和旋转角 8 displaystyle theta 旋转矩阵 M q q T Q G Q T displaystyle mathcal M qq T QGQ T 这里的 Q q 1 q 2 displaystyle Q begin bmatrix q 1 amp q 2 end bmatrix 的纵列张开正交于 q displaystyle q 的空间而 G displaystyle G 是 8 displaystyle theta 度 Givens 旋转 就是说 G cos 8 sin 8 sin 8 cos 8 displaystyle G begin bmatrix cos theta amp sin theta sin theta amp cos theta end bmatrix 参见 编辑坐标旋转 旋转表示 等距同构 正交矩阵 Rodrigues旋转公式 旋转 旋转群外部链接 编辑Rotation matrices at Mathworld 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 旋转矩阵 amp oldid 69234607, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。