fbpx
维基百科

斑馬魚

斑馬魚(又名藍斑馬魚印度斑馬魚斑馬鿕藍條魚花條魚印度魚),是一种热带淡水鱼,為輻鰭魚綱鯉形目鯉科的其中一[3]原生於喜馬拉雅地區,是一种受欢迎的观赏性鱼类。同时,其在科研领域也是一种重要的有脊椎模式生物,尤其是在生物体再生能力的研究方面[4],并且有多种基因编辑后的转基因人工培育种。斑马鱼在被重新被划归为鿕屬Danio)之前,曾被归类为短鿕属(Brachydanio),因而在科研文献中被长期称为Brachydanio rerio,而非如今的Danio rerio[2][5][6][7][8]

斑馬魚
一只成年雌性斑马鱼
科学分类
界: 动物界 Animalia
门: 脊索动物门 Chordata
纲: 辐鳍鱼綱 Actinopteri
目: 鲤形目 Cypriniformes
科: 鯉科 Cyprinidae
属: 鿕属 Danio
种: 斑馬魚 D. rerio
二名法
Danio rerio
(F. Hamilton, 1822)
異名
  • Barilius rerio
    Hamilton, 1822
  • Brachydanio frankei
    Meinken, 1963
  • Brachydanio rerio
    Hamilton, 1822
  • Cyprinus chapalio
    Hamilton, 1822
  • Cyprinus rerio
    Hamilton, 1822
  • Danio frankei
    Meinken, 1963
  • Danio lineatus
    Day, 1868
  • Nuria rerio
    Hamilton, 1822
  • Perilampus striatus
    McClelland, 1839[2]

分布

斑马鱼原生于喜马拉雅地区东南部的溪流中,[9]见於孟加拉印度巴基斯坦緬甸尼泊爾等国。[10]本種類出现在东印度的恒河流域,常栖息于溪流、运河、水沟、池塘、缓流或静滞水体(如稻田等)。[11]斑马鱼是美國日本斯里蘭卡菲律賓模里西斯等地的外来物种,可能是被故意放生或是从养鱼场逃离而引入野外环境中。[10]

特徵

體色為銀色或金色,侧面覆蓋著五条橫紋,這些橫紋從頭部延伸至尾鰭的後端,臀鰭和尾鰭上同樣也有這種條紋,这些条纹与斑马条纹观感有同处,因而得名。背部呈淺橄欖黃;外形侧看为纺锤状,身形扁而修细,口向前。雄性为鱼雷状,体一般长于雌性,金色条纹间有蓝色条纹,色偏红;雌性腹部更大,偏白,条带呈银色,成年雌性可于臀鳍起点前侧观察到小的生殖乳突。斑马鱼可以长到长达6.4厘米,但通常不会长于4厘米。其寿命为2~3年左右,理想条件下可以超过5年。[11][12]

生態

本魚棲息在溪流、溝渠或靜止的水中,每2至3天可產卵一次,每次可產約200顆以上的卵,屬雜食性,以昆蟲、小型甲殼類等為食。性情溫和,喜群游,通常數尾成一群。無家庭觀念。

生殖发育

斑馬魚的发育分为6个阶段:卵裂期,囊胚期,原肠胚期、分裂期、成形期和孵化期[13]

 
斑马鱼发育阶段(各阶段长度如图示比例,成年阶段除外,成年斑马鱼大致长到2.5厘米)

斑马鱼的平均传代时间(generation time)为3个月。雄性斑马鱼需要在场等待排卵產卵发生,随后雌性斑马鱼在每个卵块(clutch)中能够间隔2~3天产下几百枚卵。卵排出后,胚胎发育开始;如若没有精子,生长又在前几个细胞分裂后停止。受精卵几乎立刻变得透明,这一特性使得斑马鱼极大地方便了科研人员,使其适合科学研究。[11]

斑马鱼的胚胎发育身份迅速,受精36小时内先期物质就分化出了所有的器官:胚胎最早见于卵黄中,这时卵黄顶端出现一个巨大的细胞(见右侧,如0h时图);随后,这个细胞一分为二(见0.75h时图);再之后,细胞持续性分裂,直至形成上千个小细胞(见3.25h时图);大量的细胞随后迁移出卵黄的边缘(见8h时图),再随之开始形成一头一尾(见16h时图),尾生长并从卵细胞中分离出来(见24h时图);胚胎消耗作为养料来源的卵黄并逐渐成熟,卵黄逐渐收缩(见72h时图)。过若干月后,成年斑马鱼进入生殖成熟期(见右图底端图)。

科研人员为促进斑马鱼产卵,往往在放置小水箱中放置,模拟河流的岸边。小水箱内置隔板,隔离雌雄;并下有栅格,防止成鱼吞食鱼卵。适时打开隔板,供其交配产卵;因其昼夜节律,斑马鱼早上产卵为佳,故早上打开为好,打开时抬高水箱底栅格,减小鱼的活动范围,方便其交配;可在水箱底部发现卵,透明者为受精卵。科研人员可以通过此方式在10分钟内收集大量鱼卵。[14]雄性斑马鱼会对雌性身上诸如“好的斑纹”之类的显著标记更有反应,然而在集体中,雄性会和其能找到的雌性交配。在交配中吸引雌性的机制尚不清楚。交配环境中有植物,甚至是塑料植物,也会大大地促进产卵。[14]

品种分类

转基因品种

斑馬魚是研究發育生物學的新興模式動物。斑馬魚由於具有飼育容易、胚胎透明、體外受精突變種多、遺傳學工具成熟等諸多優點,近年來已成為研究脊椎動物發育與人類遺傳疾病的新興模式生物。與其他脊椎動物相較下,斑馬魚最大的優點就是具有多達6,000多種的遺傳突變種,這些突變種的建立大致上是利用X射線ENU反轉錄病毒的感染造成基因組的突變,之後再經由多次的子代篩選所得。這些突變種的表徵包含如胚層分化,器官發育,生理調適與行為表現等多方面,所以可提供研究人員極佳的正向遺傳學材料來進行發育機制上的研究。另外在斑馬魚系統中也開發出阻斷基因功能的工具-嗎啉基,可快速以逆向遺傳學手法來驗證基因的功能。所以正向遺傳學與逆向遺傳學的巧妙利用,可以正確推導出斑馬魚遺傳發育途徑,也是目前斑馬魚成為研究人類疾病新興模式生物的主要原因。

从2003年后期起,表达绿色、红色、黄色荧光蛋白的转基因品种斑马鱼在美国上市。表达荧光蛋白的斑马鱼也被商家称为“螢光魚”。别的培养品种包括“golden”、“sandy”、“longfin”、“leopard”等。其中leopard品种,之前被称为Danio frankei,是一种由于色素变异产生的带点状色彩的斑马鱼品种。[15]Xanthochromism英语Xanthochromism的普通斑马鱼品种与leopard品种、长鳍次种都已通过育种筛选获得并被用于水族鱼类交易。(Xanthochromism是一种有关红色素被黄色素替代的带有特殊黄色。)[16]

野生品种

斑马鱼信息网英语Zebrafish Information Network(ZFIN)提供了最新的目前已知野生型(wild-type,简称WT)斑马鱼信息。[17]

杂交品种

不同鿕属品种之间的杂交品种可能仍具有生殖能力,例如D. rerio(斑马鱼)与D. nigrofasciatus的杂交品种。[5]

养殖要求

水族养殖

為相當受歡迎的觀賞魚,飼養時以寬約60公分的水族箱為宜。

斑马鱼适应性强,易于新手养殖,因其性格活泼、繁殖迅速、较为美观、价格便宜、易于获得而受欢迎。[18]斑马鱼能6只以上成群游动,并且可以与水族箱中其它品种鱼类有互动,但它们易于感染卵旋虫病英语Oodinium天鹅绒病英语velvet disease微孢子蟲病分枝杆菌病等疾病。成年斑马鱼会食鱼卵,保护鱼卵要通过将生殖区域隔离开来。

斑马鱼也常被用来产生转基因品种,也是荧光鱼的第一代品种。

  水族养殖
注:以下内容为大致意见,仅供参考,请谨慎阅读使用。
原产地区 喜马拉雅地区 用水要求
水质-硬度 5~12 °GH 水质-pH 6~7
适宜温度 22~24 °C 最小水量 100升
食性偏好 杂食 成年大小 5厘米
生殖情况 卵生 栖息偏好 浅表层水域
社群习性 群居行动 养殖难度 简单

喂食情况

斑马鱼属杂食性鱼类,主要食用浮游动物浮游植物昆虫昆虫幼体等,但在食物条件不理想的情况下也会食用别的食物,例如蠕虫、甲壳类动物等。[11]

在實驗室中,斑马鱼苗通常用草履虫喂养,待其成長到一定大小後則餵食豐年蝦,成年的斑馬魚則是吃一般的魚飼料。[19]

科研特性

 
斑马鱼的色素細胞为科学家广泛研究的对象,此处表现出对背景的偽裝
 
图下方展示的是斑马鱼色素突变,突变种由插入诱变英语mutagenesis基因产生。[5]上方为野生型,与之对比。变异种不能很好地合成黑色素,故其黑素細胞缺乏黑色素

斑马鱼是一种常见且常用的科研模式生物,被用于研究脊椎动物的发育以及基因功能。由美国分子生物学George Streisinger英语George Streisinger及他在俄勒冈大学的同事在1970、80年代首先在实验室中使用作模式生物。George Streisinger所进行的斑马鱼克隆实验形成了最早一批成功的脊椎动物克隆体之一。 [20]斑马鱼在科研领域的重要性在成功的大规模先导性基因筛查英语genetic screen中被凸显,这一实验常被称为Tübingen/Boston筛查(the Tübingen/Boston screens)。该品种鱼目前已有特有的线上数据库,包括遗传学数据库、基因组学数据库、发育信息数据库、斑马鱼信息网英语Zebrafish Information Network (Zebrafish Information Network,简称ZFIN)。斑马鱼国际资源中心(The Zebrafish International Resource Center,简称ZIRC)储存了斑马鱼的遗传学信息,并由29,250对等位基因的信息对研究领域发布。斑马鱼也是少数几种被送上太空的鱼类英语Animals in space之一。

使用斑马鱼进行的研究已经在发育生物学肿瘤学[21]毒理学[22][23]生殖医学畸形学遗传学神经科学环境科学幹細胞再生醫學[24][25]进化理论[5]等领域取得进展。

作为模式生物的特性

作为模式生物,斑马鱼在科研领域具有许多优势。其基因組已经被全部测序,並被充分了解,其发育行为容易理解、易于观察、便于测验。其胚胎发育迅速,胚胎相对较大、突出而且透明,还可以在母体外發育。[26]此外,科研人员可以获得已经被研究成型的、带有特定特征的变异种。

其它的好处包括:在早期发育阶段,斑马鱼胚胎大小几乎不变,便于染色之类的简单技术操作;其发育阶段中两个细胞组成的胚胎可以融合成一个细胞,从而获得纯合子胚胎;斑马鱼与人类和哺乳类模型在毒理测试方面显著相近,并且展现出类似于哺乳动物睡眠行为的昼夜节律。[27]然而,斑马鱼不是一个完全理想的实验模型,其在别的科研领域也有不适用之处,例如其不存在标准的饮食[28],又比如在一些有关人类疾病的基因方面,斑马鱼和哺乳类存在细小但很重大的差异。[29][30]

再生能力

斑马鱼在幼鱼阶段能够再生其鳍、皮肤、心脏、体侧线毛细胞以及大脑。[31][32]在2011年,英国心脏基金会英语British Heart Foundation广告宣传以公布其将这项能力应用于人体的企划,以期筹措5,000万英镑。[33][34]

斑马鱼也被发现可在创伤后再生感光细胞视网膜神经。目前研究显示,这是由米勒细胞英语Muller glia(Muller glia)的去分化与增殖介导的。[35]研究人员不断截断背上以及腹面上的尾鳍,并且分析其再生以观测其突变。已经发现,组蛋白去甲基化酶英语Histone methylation在截肢部位出现,使得斑马鱼的细胞重新活跃为可再生的类似于干细胞的状态。[36]2012年,澳洲科学家发布的一项研究表明,斑马鱼使用一种被称为成纤维细胞生长因子的特异的蛋白质以确保其脊髓可以痊愈而无胶质瘢痕英语glial scar[4]此外,斑马鱼后侧体侧线毛细胞被发现可以在创伤后或者发育中断后再生。[32][37]对其再生期间基因表达的研究使得若干重要的信号通路得以被识别出来,例如Wnt信号通路成纤维细胞生长因子等。[37][38]

研究包括神经退行性疾病、行动失调、精神疾病、耳聋等在内的神经系统疾病时,研究人员使用斑马鱼来理解遗传学缺陷如何引起人脑、脊椎、感应器功能上的异常。科研人员也通过此途径深入了解人体错综复杂的肌肉与骨骼疾病,例如肌肉萎縮症等。[39]斑马鱼研究的另一焦点在于理解刺猬信号通路(一种生物信号)如何影响细胞生长乃至引起一系列的癌症。

遗传特性

基因表达

由于斑马鱼的生命周期较短、可控性强,故常被用作遗传学研究的模型动物。基因敲落和用反義嗎啉基进行修改RNA剪接是常用的反向遗传学英语reverse genetics技术。人工合成的高分子嗎啉基寡核苷酸(MO)包含与DNA、RNA相同的核苷;通过与互补序列结合,他们可以减少特定基因的表达或者阻碍其它RNA上进行的过程。嗎啉基寡核苷酸(MO)可以在32细胞阶段后注入胚胎内的某个细胞,使得这一细胞所分裂出的细胞都出现在某个基因上的表达减弱;不过,大分子可以任意透膜通行早期胚胎(小于32细胞)中的细胞中,进行扩散。[40][41]使用嗎啉基的指南描述了合理控制策略。[42]嗎啉基常以500pL剂量直接通过显微注射注入1~2细胞阶段的斑马鱼胚胎中,使之可以与多数细胞融合。[43]

斑马鱼基因敲除的难点在于:基因组在完成輻鰭魚肉鳍鱼的分化之后的基因复制中,由于同源基因互补,同源基因中其中之一很难不被表达。[44]尽管斑马鱼的基因組很复杂,市面上还是不少有供研究基因表达谱以分析基因表达的国际化的商业平台的,并且还推荐使用ChIP-on-chip英语ChIP-on-chip技术的规范。[45]

基因组测序

维康桑格研究所在2001年启动斑马鱼基因组测序项目。蒂宾根参考样品系的基因组序列可以在美国国家生物技术信息中心(NCBI)的斑马鱼基因组 (页面存档备份,存于互联网档案馆)上获得。斑马鱼参考基因组被注是Ensembl项目 (页面存档备份,存于互联网档案馆)的一部分,由基因组参考联合会英语Genome Reference Consortium(Genome Reference Consortium)所维护。[46]

2009年,印度德里基因组和整合生物学研究所英语Institute of Genomics and Integrative Biology(Institute of Genomics and Integrative Biology)宣布了一种野生品系斑马鱼的基因组测序,其包含大约17亿对碱基。[47][48]野生型斑马鱼的基因组测序差异倍数为39。与参照基因组的比较分析发现了超过500万单核酸突变和超过160万插入或剪切突变。共1.4GB超过26,000个蛋白质编码基因的斑马鱼参照基因组序列由Kerstin Howe等人于2013年发布。[49]

线粒体DNA

在2001年10月,美國奧克拉荷馬大學研究人员公开了斑马鱼的完整线粒体DNA序列。[50]这一序列包含16,596个碱基对,与其它鱼类差别不超过100个碱基对,仅仅比金鱼(双名法Carassius auratus)的长18个碱基对,比鲤鱼(双名法:Cyprinus carpio)的长21个碱基对。其线粒体基因含量与基因顺序与常见的脊椎动物线粒体DNA相同,包含13种蛋白质编码基因和1个包含重链复制起点的非编码控制区。其中间发现有,共5个的1组tRNA基因和类似脊椎动物轻链复制起点的序列。因为从碱基对变化的角度很难得出有关适应性的结论,所以很难得出进化上的结论[50]

色素基因

1999年,nacre变异在斑马鱼体内的哺乳类同源基因MITF传输因子中被识别出来。[51]人体MITF英语MITF的变异会导致眼部缺陷和色素缺失,这一症状是瓦登伯革氏症候群的一种。2005年12月,对golden品系的研究认为一种被称为SLC24A5英语SLC24A5溶质载体蛋白编码基因导致了其不同寻常的体色,这种蛋白似乎在黑色素形成过程中是必要的,并且通过马琳代(Morpholino)敲除,其这一功能被确认。随后,与人体直系同源的基因在实验中被识别出来:一个单碱基对差异被发现能够大大影响肤色,使得浅肤色的欧洲裔人种与黑肤色的非裔人种被区分开来,但这一实验并未对人做实验,而是采用了比较基因组学这一新领域的研究方法。[52]带有nacre突变的斑马鱼与带roy orbison (roy)突变的斑马鱼交配可以得到没有黑素细胞和虹细胞的斑马鱼,这些得到的斑马鱼在成年期也是透明的,一律有着带颜色的眼睛和半透明的皮肤。[7]

转基因

转基因是一种研究斑马鱼基因的功能的常见手段。通过使用Tol2转位子体系的方法,构建转基因品种斑马鱼尤其容易。[53]

透明体色

2008年,美國波士頓兒童醫院的研究人员开发了一种新的斑马鱼品系Casper。这种品系的成鱼体色透明。[7]这能够方便对细胞活动、循环系统遠端轉移等现象的细致观察。由于人和斑马鱼有许多基因功能是相同的Casper品种被寄予加深人类对如白血病等癌症在内的人类疾病研究的厚望。[7]在2013年1月,日本科学家转基因透明斑马鱼品系得到可以在高强度脑活动时放出可见发光的品系,使得斑马鱼对外界刺激的反应可以被记录精确到特定的大脑发光区域。[8]

环境监测

2007年1月,复旦大学研究人员修改了斑马鱼的基因,使得其能够用于探测水体中的雌激素污染,这一污染被认为与男性不育有关。研究人员克隆了对雌激素敏感的基因,将之注入斑马鱼的受精卵中,得到的转基因鱼会在感知污染时变绿。[6]

RNA剪接

2015年,美國布朗大学的研究人员发现,10%的斑马鱼基因并不依赖于U2AF2英语U2AF2蛋白质来启动RNA剪接。这些基因在每个内含子的尾端有着AC和TG碱基对的重复序列。在3'剪接位置(3' splicing site,简称3'ss)上,腺嘌呤(A)和胞嘧啶(C)交替重复 ;在5'剪接位置(5' splicing site,简称5'ss)上,互补的胸腺嘧啶(T)和鳥嘌呤(G)同样交替重复。研究人员发现,斑马鱼对U2AF2蛋白的依赖比人类更小,而这一蛋白对RNA剪接的发生是必需的。这种在内含子周围重复碱基对以改变RNA核酸二级结构的模式在真骨类中曾发现过,但在四足類中未曾发现过。这表明四足類中的某一进化可能导致了人类与斑马鱼在对U2AF2依赖程度的差异。[54]

近交衰退

近亲交配后,幼鱼会显现近交衰退的不良后果。近交衰退主要由有害隐性基因的表达产生的。[55]对于斑马鱼而言,在较为紧张的环境(例如人为因素造成的紧张)中,近交衰退被认为会更加严重。由化学药剂克霉唑(一种咪唑类抗真菌类药物,用于农业、兽医、医疗)诱导的斑马鱼环境压力感受会加剧近亲繁殖在关键生育特性上的影响。[56]胚胎有效率在近亲杂交的鱼中大大减小,并且雄鱼产生后代有减少趋势。

医学研究方向

癌症

斑马鱼被用来生产包括黑色素瘤白血病胰腺癌肝細胞癌等癌症研究时使用的转基因模型。[57][58]表达突变的BRAF或NRAS癌基因的斑马鱼模型在置于缺乏肿瘤抑制蛋白(p53)的背景下会得上黑色素瘤。在组织学上,这些肿瘤高度类似于人类疾病,是可移植入人体的,并且展现了大范围的基因组变化。BRAF基因黑色素瘤模型鱼被用来作两种筛选的平台,这一方法公布于2011年3月的《自然》上。在另外一项研究中,这一模型被用来理解人类黑色素瘤中扩增和过表达的基因的功能作用。[59]SETDB1基因能在斑马鱼体内显著地加速肿瘤生成,从而显示了其作为致癌基因的性质。这一点尤为重要,因为目前已知SETDB1参与了表观遗传调控,而表观遗传调控越发地被认为是肿瘤细胞生物学的核心。

在别的研究中,研究人员使用化学筛查,来针对起源神經脊细胞中的遗传程序进行靶向治疗。[60]这项研究显示,一种叫做来氟米特(leflunomide)的的小分子抑制DHODH蛋白可以阻止神經脊干细胞的发育,通过干涉转录延伸英语Transcription_(biology)#Elongation能够避免这一发育最终所导致的黑色素瘤的发生。因为这一过程会针对性识别黑色素瘤而非其它单一的遗传变异,来氟米特可能在人类黑色素瘤治疗方面有所利用价值。[61]

心血管疾病

在心血管研究领域,斑马鱼被用来模拟凝血血管新生、心脏衰竭和先天性心臟病[62]

免疫系统

研究急性炎症中,研究人员已经建立了炎症研究的斑马鱼模型以及相关处理机制,使得研究人员能对炎症的遗传控制机制进行细化研究,并且有可能以此识别有潜力的新药物。[63]

斑马鱼在研究脊椎动物的固有免疫方面是广泛使用的模式生物(固有免疫能够在受精后28~30小时内进行吞噬作用,吞噬作用是免疫反应的重要一环)。[64]与之对比,适应性免疫(也称特异性免疫、获得性免疫、后天性免疫)在受精后至少四周才能在功能上达到成熟状态。[65]

传染病

由于人类和斑马鱼的免疫系统保守性较强、相对一致性高,许多人类传染病可以在斑马鱼上模拟。[66][67][68][69]斑马鱼透明的早期胚胎被用于深入研究活体成像和分析宿主和病原体之间的互动。[70][71][72][73]科学家已经建立了用于模拟一大批细菌、病毒、寄生虫类病原体的斑马鱼模型,例如用于结核病研究的斑马鱼模型已经为分支杆菌的致病机制研究提供了深入研究的平台。[74][75][76][77]此外,也已经发展出使用斑马鱼感染模型进行高通量微抗生素药物筛查的自动化技术。[78][79]

修复视网膜损伤

 
在光学显微镜下斑马鱼视网膜的发育(斑马鱼胚胎发育的第1.5日到3.5日,大约每隔12小时一张图片)

斑马鱼的另一显著特征在于其拥有四种视锥细胞,除人体内拥有的红色、绿色、蓝色敏感视锥细胞外,拥有紫外线敏感细胞。斑马鱼因此可以看见非常广的色谱。故斑马鱼也被用于研究视网膜的发育,尤其是视锥细胞如何在视网膜中形成镶嵌方面。斑马鱼和一些真骨类鱼类以其视网膜上高度精密的视锥细胞镶嵌排列备受科学家关注。[80]

这一对斑马鱼视网膜特性的研究也已经延展至人类的视网膜医学研究。2007年,伦敦大学学院的研究人员培养出一种成年斑马鱼幹細胞,这些干细胞在斑马鱼和哺乳动物的眼睛中被发现,且最终会发育成视网膜神经。这些细胞可以注射进入眼部,用于治疗损坏视网膜神经的疾病,此类疾病涵盖大部分眼疾,包括黃斑部退化青光眼糖尿病相关失明等。研究人员研究了人眼中的Müller细胞,其研究对象年龄从18个月大到91岁。研究中,科研人员能够将这些细胞培养为所有种类的视网膜神经细胞。研究团队在实验室可以轻松地培育这些细胞,并且还将培育出的干细胞移植进入大鼠视网膜中对周围的神经进行观察,研究人员称这些干细胞试图以与在人体内相同的方式发育。[81]

药物研发

如同在许多进行中的研究项目所演示的那样,斑马鱼模型使得研究者不仅能够识别除引发人类疾病的基因,也可以用来在药物开发项目中开发新的治疗药剂。[82]斑马鱼胚胎是一种快速、性价比高且可靠的致畸检验模型。[83]使用斑马鱼进行药物筛查可以识别具有生物学疗效的新的化合物种类,或者发现已知药物的新用途。例如一种常用的抑制剂(瑞舒伐他汀)通过斑马鱼试验发现可以抑制前列腺癌的生长。[84]迄今为止,已经进行过65项小分子筛查,其中至少一项已经进行临床试验。[85]在这些筛查中,许多技术难度仍待解决,例如:药物吸收率在不同组织或者器官是不同的,这一不同导致药物的实际有效浓度(即其对特定部位的暴露量)无法从其水溶液浓度推算;个体动物之间的天然差异等。[85]但对于理解药效而言,药物的暴露产生了药效,因此了解药物在体内的暴露量是至关重要的。同时,将斑马鱼身上的实验结果解读为对人类等高等脊椎动物有效的结果需要在知悉药物浓度和药效之间的关系基础上,这一基础可由药物代谢动力学药物效应动力学方面分析产生。迄今,只有对于对乙酰氨基酚的斑马鱼幼体模型已经建立了上述所言的人体和药物相互作用的模型。[86]但在斑马鱼身上进行药理学分析前景仍是广阔的。[87]

参见

  • 日本林蛙(可由基因编辑得到半透明体色)
  • 淡水水族鱼类名录英语List of freshwater aquarium fish species
  • 斑马鱼盒英语ZebraBox(用来装放斑马鱼的容器)
  • 黑腹果蝇(科研用果蝇)
  • 青鱂(科研用鱼类)

外部链接

  • (British Association of Zebrafish Husbandry)
  • 斑马鱼信息网 (页面存档备份,存于互联网档案馆) (The Zebrafish Information Network,简称ZFIN)
  • 斑马鱼国际资源中心 (页面存档备份,存于互联网档案馆)(The Zebrafish International Resource Center,简称ZIRC)
  • 中国国家斑马鱼资源中心 (页面存档备份,存于互联网档案馆)(China Zebrafish Resource Center,简称CZRC)
  • 鱼类图谱:斑马鱼社区基因组浏览器 Archive.is的存檔,存档日期2012-12-18 (FishMap: The Zebrafish Community Genomics Browser)
  • Danios.info承办
  • 斑马鱼基因组 (页面存档备份,存于互联网档案馆) 通过 Ensembl
  • FishforScience.com (页面存档备份,存于互联网档案馆) – 斑马鱼科研
  • FishForPharma (页面存档备份,存于互联网档案馆
  • 斑马鱼繁殖 (页面存档备份,存于互联网档案馆)(Breeding Zebrafish)

英国桑格研究中心英语Wellcome Trust Sanger Institute承办:

  • 斑马鱼基因组测序计划 (页面存档备份,存于互联网档案馆)(The Zebrafish Genome Sequencing Project)
  • 桑格中心斑马鱼突变资源 (页面存档备份,存于互联网档案馆)(Sanger Institute Zebrafish Mutation Resource)

基因组学与整合生物学研究中心英语Institute of Genomics and Integrative Biology(Institute of Genomics and Integrative Biology,简称IGIB)承办:

  • 基因组测序倡议 (页面存档备份,存于互联网档案馆)(Genome sequencing initiative)
  • 网上斑马鱼基因组百科beta预览版 (页面存档备份,存于互联网档案馆)(WebHome Zebrafish GenomeWiki Beta Preview)

参考资料

  1. ^ Vishwanath, W. Danio rerio. The IUCN Red List of Threatened Species (IUCN). 2010, 2010: e.T166487A6219667 [15 January 2018]. doi:10.2305/IUCN.UK.2010-4.RLTS.T166487A6219667.en. (原始内容于2018-09-22). 
  2. ^ 2.0 2.1 The Zebrafish Book. ZFIN. [July 3, 2013]. (原始内容于2020-11-08).  引用错误:带有name属性“The Zebrafish Book”的<ref>标签用不同内容定义了多次
  3. ^ Froese, R. & Pauly, D. (eds.) (2007). Danio rerio. FishBase. Version 2007-03.
  4. ^ 4.0 4.1 Goldshmit, Yona; Sztal, Tamar E.; Jusuf, Patricia R.; Hall, Thomas E.; Nguyen-Chi, Mai; Currie, Peter D. Fgf-Dependent Glial Cell Bridges Facilitate Spinal Cord Regeneration in Zebrafish. The Journal of Neuroscience. 2012, 32 (22): 7477–92. PMID 22649227. doi:10.1523/JNEUROSCI.0758-12.2012. 简明摘要 – Sci-News.com (June 1, 2012). 
  5. ^ 5.0 5.1 5.2 5.3 Parichy, D M. Evolution of danio pigment pattern development. Heredity. 2006, 97 (3): 200–10. PMID 16835593. doi:10.1038/sj.hdy.6800867. 
  6. ^ 6.0 6.1 "Fudan scientists turn fish into estrogen alerts" (页面存档备份,存于互联网档案馆). Xinhua. January 12, 2007. Retrieved November 15, 2012.
  7. ^ 7.0 7.1 7.2 7.3 White, Richard Mark; Sessa, Anna; Burke, Christopher; Bowman, Teresa; Leblanc, Jocelyn; Ceol, Craig; Bourque, Caitlin; Dovey, Michael; et al. Transparent Adult Zebrafish as a Tool for in Vivo Transplantation Analysis. Cell Stem Cell. 2008, 2 (2): 183–9. PMC 2292119 . PMID 18371439. doi:10.1016/j.stem.2007.11.002. 简明摘要 – LiveScience (February 6, 2008). 
  8. ^ 8.0 8.1 Researchers Capture A Zebrafish's Thought Process On Video. Popular Science. January 31, 2013 [February 4, 2013]. (原始内容于2016-10-03). 
  9. ^ Mayden, Richard L.; Tang, Kevin L.; Conway, Kevin W.; Freyhof, Jörg; Chamberlain, Sarah; Haskins, Miranda; Schneider, Leah; Sudkamp, Mitchell; et al. Phylogenetic relationships of Danio within the order Cypriniformes: A framework for comparative and evolutionary studies of a model species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. 2007, 308B (5): 642–54. PMID 17554749. doi:10.1002/jez.b.21175. 
  10. ^ 10.0 10.1 . Nonindigenous Aquatic Species. United States Geological Survey. June 14, 2013 [July 3, 2013]. (原始内容存档于2009-08-04). 
  11. ^ 11.0 11.1 11.2 11.3 Spence, Rowena; Gerlach, Gabriele; Lawrence, Christian; Smith, Carl. The behaviour and ecology of the zebrafish, Danio rerio. Biological Reviews. 2007, 83 (1): 13–34. PMID 18093234. doi:10.1111/j.1469-185X.2007.00030.x. 
  12. ^ Gerhard, G. S.; Kauffman, E. J.; Wang, X; Stewart, R; Moore, J. L.; Kasales, C. J.; Demidenko, E; Cheng, K. C. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp. Gerontol. (NCBI). 2002, 37 (8–9): 1055–68. PMID 12213556. doi:10.1016/s0531-5565(02)00088-8. 
  13. ^ K. Kenneth Hisaoka; Helen I. Battle. The normal developmental stages of the zebrafish, brachydanio rerio (hamilton-buchanan). Journal of Morphology. 6 Feb 2005, 102 (2): 311 – 327 [2009-03-21]. doi=10.1002/jmor.1051020205.  [永久失效連結]
  14. ^ 14.0 14.1 Dockser, Amy. Birds Do It, Bees Do It, Even Zebrafish Do It—Just Too Little. 华尔街日报. January 13, 2012 [February 11, 2012]. (原始内容于2021-01-15). 
  15. ^ Watanabe, Masakatsu; Iwashita, Motoko; Ishii, Masaru; Kurachi, Yoshihisa; Kawakami, Atsushi; Kondo, Shigeru; Okada, Norihiro. Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Reports. 2006, 7 (9): 893–7. PMC 1559663 . PMID 16845369. doi:10.1038/sj.embor.7400757. 
  16. ^ Mills, Dick. Eyewitness Handbook: Aquarium Fish. Harper Collins. 1993. ISBN 0-7322-5012-9. [页码请求]
  17. ^ ZFIN. ZFIN. [July 22, 2012]. (原始内容于2021-03-18). 
  18. ^ Gerhard, Glenn S.; Cheng, Keith C. A call to fins! Zebrafish as a gerontological model. Aging Cell. 2002, 1 (2): 104–11. PMID 12882339. doi:10.1046/j.1474-9728.2002.00012.x. 
  19. ^ Westerfield, Monte. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio). University of Oregon Press. 2007. [失效連結]
  20. ^ . University of Oregon. [September 23, 2015]. (原始内容存档于2015年9月29日). 
  21. ^ Xiang, Jing; Yang, Hongbo; Che, Chao; Zou, Haixia; Yang, Hanshuo; Wei, Yuquan; Quan, Junmin; Zhang, Hui; et al. Isalan, Mark , 编. Identifying Tumor Cell Growth Inhibitors by Combinatorial Chemistry and Zebrafish Assays. PLoS ONE. 2009, 4 (2): e4361. Bibcode:2009PLoSO...4.4361X. PMC 2633036 . PMID 19194508. doi:10.1371/journal.pone.0004361. 
  22. ^ Hill, A. J.; Teraoka, H; Heideman, W; Peterson, RE. Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity. Toxicological Sciences英语Toxicological Sciences. 2005, 86 (1): 6–19. PMID 15703261. doi:10.1093/toxsci/kfi110. 
  23. ^ Bugel, S.M.; Tanguay, R.L.; Planchart, A. Zebrafish: A marvel of high-throughput biology for 21(st) century toxicology. Current Environmental Health Reports. 2015, 1 (4): 341–352. PMC 4321749 . PMID 25678986. doi:10.1007/s40572-014-0029-5. 
  24. ^ Major, Robert J.; Poss, Kenneth D. Zebrafish heart regeneration as a model for cardiac tissue repair. Drug Discovery Today: Disease Models. 2007, 4 (4): 219–25. PMC 2597874 . PMID 19081827. doi:10.1016/j.ddmod.2007.09.002. 
  25. ^ . Voice of America. 19 May 2010 [21 June 2013]. (原始内容存档于2014-12-06). 
  26. ^ Dahm, Ralf. The Zebrafish Exposed. American Scientist. 2006, 94 (5): 446–53 [2018-02-04]. doi:10.1511/2006.61.446. (原始内容于2017-04-18). 
  27. ^ Jones, Rachel. Let Sleeping Zebrafish Lie: A New Model for Sleep Studies. PLoS Biology. 2007, 5 (10): e281. PMC 2020498 . PMID 20076649. doi:10.1371/journal.pbio.0050281. 
  28. ^ Penglase, Sam; Moren, Mari; Hamre, Kristin. Lab animals: Standardize the diet for zebrafish model. Nature: Correspondence. 2012, 491 (7424): 333 [2018-02-04]. Bibcode:2012Natur.491..333P. doi:10.1038/491333a. (原始内容于2016-10-18). 
  29. ^ Jurynec, Michael J.; Xia, Ruohong; Mackrill, John J.; Gunther, Derrick; Crawford, Thomas; Flanigan, Kevin M.; Abramson, Jonathan J.; Howard, Michael T.; Grunwald, David Jonah. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proceedings of the National Academy of Sciences of the United States of America. 2008-08-26, 105 (34): 12485–12490. Bibcode:2008PNAS..10512485J. ISSN 1091-6490. PMC 2527938 . PMID 18713863. doi:10.1073/pnas.0806015105. 
  30. ^ Rederstorff, Mathieu; Castets, Perrine; Arbogast, Sandrine; Lainé, Jeanne; Vassilopoulos, Stéphane; Beuvin, Maud; Dubourg, Odile; Vignaud, Alban; Ferry, Arnaud; Krol, Alain; Allamand, Valérie; Guicheney, Pascale; Ferreiro, Ana; Lescure, Alain. Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy. PLoS ONE. 2011, 6 (8): e23094. Bibcode:2011PLoSO...623094R. PMC 3152547 . PMID 21858002. doi:10.1371/journal.pone.0023094. 
  31. ^ Wade, Nicholas. Research Offers Clue Into How Hearts Can Regenerate in Some Species. The New York Times. March 24, 2010 [2018-02-04]. (原始内容于2020-11-09). 
  32. ^ 32.0 32.1 Lush, Mark E.; Piotrowski, Tatjana. Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics. 2013, 243 (10): 1187–1202. PMC 4177345 . PMID 25045019. doi:10.1002/dvdy.24167. 
  33. ^ Mending Broken Hearts (2011) British Heart Foundation TV ad. British Heart Foundation英语British Heart Foundation via YouTube. January 31, 2011 [November 15, 2012]. (原始内容于2017-04-10). 
  34. ^ . Bhf.org.uk. February 16, 2007 [November 15, 2012]. (原始内容存档于10 March 2012). 
  35. ^ Bernardos, Rebecca L.; Barthel, Linda K.; Meyers, Jason R.; Raymond, Pamela A. Late-Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells. Journal of Neuroscience. 2007, 27 (26): 7028–40. PMID 17596452. doi:10.1523/JNEUROSCI.1624-07.2007. 
  36. ^ Stewart, Scott; Tsun, Zhi-Yang; Izpisua Belmonte, Juan Carlos. A histone demethylase is necessary for regeneration in zebrafish. Proceedings of the National Academy of Sciences. 2009, 106 (47): 19889–94. Bibcode:2009PNAS..10619889S. JSTOR 25593294. PMC 2785262 . PMID 19897725. doi:10.1073/pnas.0904132106. 简明摘要 – Science Daily (November 2, 2009). 
  37. ^ 37.0 37.1 Head, J.R.; Gacioch, L.; Pennisi; Meyers, J.R. Activation of canonical Wnt/B-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line. Developmental Dynamics. 2013, 242 (7): 832–846. PMID 23606225. doi:10.1002/dvdy.23973. 
  38. ^ Steiner, A.B.; et al. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line. Proceedings of the National Academy of Sciences of the United States of America. 2014, 111 (14): 1392–1401. Bibcode:2014PNAS..111E1393S. PMC 3986164 . PMID 24706895. doi:10.1073/pnas.1318692111. 
  39. ^ The zebrafish as a model for muscular dystrophy and congenital myopathy. Human Molecular Genetics. August 8, 2003 [March 6, 2013]. (原始内容于2015-09-09). 
  40. ^ Kimmel, Charles B.; Law, Robert D. Cell lineage of zebrafish blastomeres. Developmental Biology. 1985, 108 (1): 78–85. PMID 3972182. doi:10.1016/0012-1606(85)90010-7. 
  41. ^ Kimmel, Charles B.; Law, Robert D. Cell lineage of zebrafish blastomeres. Developmental Biology. 1985, 108 (1): 94–101. PMID 3972184. doi:10.1016/0012-1606(85)90012-0. 
  42. ^ Stainier, DYR; Raz, E; Lawson, ND; Ekker, SC; Burdine, RD; Eisen, JS; Ingham, PW; Schulte-Merker, S; Yelon, D; Weinstein, BM; Mullins, MC; Wilson, SW; Ramakrishnan, L; Amacher, SL; Neuhauss, SCF; Meng, A; Mochizuki, N; Panula, P; Moens, CB. Guidelines for morpholino use in zebrafish. PLoS Genetics. 2017, 13 (10): e1007000. PMID 29049395. doi:10.1371/journal.pgen.1007000. 
  43. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762901/
  44. ^ In Vivo Testing of MicroRNA-Mediated Gene Knockdown in Zebrafish. Journal of Biomedicine and Biotechnology. Hindawi. 2012 [July 3, 2013]. (原始内容于2019-11-30). 
  45. ^ Tan, P. K.; Downey, T. J.; Spitznagel Jr, E. L.; Xu, P; Fu, D; Dimitrov, D. S.; Lempicki, R. A.; Raaka, B. M.; Cam, M. C. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. (NCBI). 2003, 31 (19): 5676–84. PMC 206463 . PMID 14500831. doi:10.1093/nar/gkg763. 
  46. ^ Genome Reference Consortium. GRC. [October 23, 2012]. (原始内容于2016-10-05). 
  47. ^ "Decoding the Genome Mystery" (页面存档备份,存于互联网档案馆). Indian Express. July 5, 2009. Retrieved February 5, 2013.
  48. ^ FishMap Zv8 (页面存档备份,存于互联网档案馆). Institute of Genomics and Integrative Biology英语Institute of Genomics and Integrative Biology (IGIB). Retrieved June 7, 2012.
  49. ^ Howe, Kerstin; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013, 496 (7446): 498–503 [2018-02-04]. Bibcode:2013Natur.496..498H. PMC 3703927 . PMID 23594743. doi:10.1038/nature12111. (原始内容于2014-03-08). 
  50. ^ 50.0 50.1 Broughton, Richard E.; Milam, Jami E.; Roe, Bruce A. The Complete Sequence of the Zebrafish (Danio rerio) Mitochondrial Genome and Evolutionary Patterns in Vertebrate Mitochondrial DNA. Genome Research. 2001, 11 (11): 1958–67 [2018-02-04]. PMC 311132 . PMID 11691861. doi:10.1101/gr.156801 (不活跃 2017-10-25). (原始内容于2019-09-13). 
  51. ^ Lister, J.A.; Robertson, C.P.; Lepage, T.; Johnson, S.L.; Raible, D.W. nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development. Sep 1999, 126 (17): 3757–3767. PMID 10433906. 
  52. ^ Lamason, R. L.; Mohideen, MA; Mest, JR; Wong, AC; Norton, HL; Aros, MC; Jurynec, MJ; Mao, X; et al. SLC24A5, a Putative Cation Exchanger, Affects Pigmentation in Zebrafish and Humans. Science. 2005, 310 (5755): 1782–6. Bibcode:2005Sci...310.1782L. PMID 16357253. doi:10.1126/science.1116238. 
  53. ^ Kawakami, Koichi; Takeda, Hisashi; Kawakami, Noriko; Kobayashi, Makoto; Matsuda, Naoto; Mishina, Masayoshi. A Transposon-Mediated Gene Trap Approach Identifies Developmentally Regulated Genes in Zebrafish. Developmental Cell. 2004, 7 (1): 133–44. PMID 15239961. doi:10.1016/j.devcel.2004.06.005. 
  54. ^ Lin, Chien-Ling; Taggart, Allison J.; Lim, Kian Huat; Cygan, Kamil J.; Ferraris, Luciana; Creton, Robert; Huang, Yen-Tsung; Fairbrother, William G. RNA structure replaces the need for U2AF2 in splicing. Genome Research. 13 November 2015, 26 (1): 12–23. PMC 4691745 . PMID 26566657. doi:10.1101/gr.181008.114. 
  55. ^ Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10 (11): 783–96. PMID 19834483. doi:10.1038/nrg2664. 
  56. ^ Bickley LK, Brown AR, Hosken DJ, Hamilton PB, Le Page G, Paull GC, Owen SF, Tyler CR. Interactive effects of inbreeding and endocrine disruption on reproduction in a model laboratory fish. Evol Appl. 2013, 6 (2): 279–89. PMC 3689353 . PMID 23798977. doi:10.1111/j.1752-4571.2012.00288.x. 
  57. ^ Liu, S; Leach, S. D. Zebrafish models for cancer. Annu. Rev. Pathol. 2011, 6: 71–93. PMID 21261518. doi:10.1146/annurev-pathol-011110-130330. 
  58. ^ Zebrafish model of human melanoma reveals new cancer gene. Science Daily. March 23, 2011 [April 28, 2014]. (原始内容于2019-12-10). 
  59. ^ Ceol, Craig J.; Houvras, Yariv; Jane-Valbuena, Judit; Bilodeau, Steve; Orlando, David A.; Battisti, Valentine; Fritsch, Lauriane; Lin, William M.; et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature. 2011, 471 (7339): 513–7. Bibcode:2011Natur.471..513C. PMC 3348545 . PMID 21430779. doi:10.1038/nature09806. 
  60. ^ White, Richard Mark; Cech, Jennifer; Ratanasirintrawoot, Sutheera; Lin, Charles Y.; Rahl, Peter B.; Burke, Christopher J.; Langdon, Erin; Tomlinson, Matthew L.; et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011, 471 (7339): 518–22. Bibcode:2011Natur.471..518W. PMC 3759979 . PMID 21430780. doi:10.1038/nature09882. 
  61. ^ Arthritis Drug Could Help Beat Melanoma Skin Cancer, Study Finds. Science Daily. March 24, 2011 [November 15, 2012]. (原始内容于2019-12-10). 
  62. ^ Drummond, I. A. Kidney development and disease in the zebrafish. J. Am. Soc. Nephrol. (NCBI). 2005, 16 (2): 299–304. PMID 15647335. doi:10.1681/ASN.2004090754. 
  63. ^ . Fish For Science. [November 15, 2012]. (原始内容存档于2013年1月9日). 
  64. ^ Guyader, Dorothée Le; Redd, Michael J.; Colucci-Guyon, Emma; Murayama, Emi; Kissa, Karima; Briolat, Valérie; Mordelet, Elodie; Zapata, Agustin; Shinomiya, Hiroto. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood. 2008-01-01, 111 (1): 132–141 [2018-02-13]. ISSN 0006-4971. PMID 17875807. doi:10.1182/blood-2007-06-095398. (原始内容于2019-09-11) (英语). 
  65. ^ Novoa, Beatriz; Figueras, Antonio. Lambris, John D.; Hajishengallis, George , 编. Current Topics in Innate Immunity II. Advances in Experimental Medicine and Biology. Springer New York. 2012-01-01: 253–275 [2018-02-13]. ISBN 9781461401056. doi:10.1007/978-1-4614-0106-3_15. (原始内容于2020-08-09) (英语). 
  66. ^ Meeker, Nathan D.; Trede Nikolaus, S. Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol. 2008, 32 (7): 745–757. PMID 18222541. doi:10.1016/j.dci.2007.11.011. 
  67. ^ Renshaw, S.A.; Trede, N.S. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech. 2012, 5 (1): 38–47. PMC 3255542 . PMID 22228790. doi:10.1242/dmm.007138. 
  68. ^ Meijer, A.H.; Spaink, H.P. Host–pathogen interactions made transparent with the zebrafish model. Curr Drug Targets. 2011, 12 (7): 1000–1017. PMC 3319919 . PMID 21366518. doi:10.2174/138945011795677809. 
  69. ^ Van der Vaart, M; Spaink, HP; Meijer, AH. Pathogen recognition and activation of the innate immune response in zebra fish. Adv Hematol. 2012, 2012: 159807. PMC 3395205 . PMID 22811714. doi:10.1155/2012/159807. 
  70. ^ Benard, EL; Van Der Sar, AM; Ellett, F; Lieschke, GJ; Spaink, HP; Meijer, AH. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp. 2012, (61). PMC 3415172 . PMID 22453760. doi:10.3791/3781. 
  71. ^ Meijer, AH; van der Vaart, M; Spaink, HP. Real-time imaging and genetic dissection of host-microbe interactions in zebrafish. Cell Microbiol. 2013, 16 (1): 39–49. PMID 24188444. doi:10.1111/cmi.12236. 
  72. ^ Torraca, V; Masud, S; Spaink, HP; Meijer, AH. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech. Jul 2014, 7 (7): 785–97. PMC 4073269 . PMID 24973749. doi:10.1242/dmm.015594. 
  73. ^ Levraud, JP; Palha, N; Langevin, C; Boudinot, P. Through the looking glass: witnessing host-virus interplay in zebrafish. Trends Microbiol. Sep 2014, 22 (9): 490–7. PMID 24865811. doi:10.1016/j.tim.2014.04.014. 
  74. ^ Ramakrishnan, L. Looking within the zebrafish to understand the tuberculous granuloma. Adv Exp Med Biol. Advances in Experimental Medicine and Biology. 2013, 783: 251–66. ISBN 978-1-4614-6110-4. PMID 23468113. doi:10.1007/978-1-4614-6111-1_13. 
  75. ^ Ramakrishnan, L. The zebrafish guide to tuberculosis immunity and treatment. Cold Spring Harb Symp Quant Biol. 2013, 78: 179–92. PMID 24643219. doi:10.1101/sqb.2013.78.023283. 
  76. ^ Cronan, MR; Tobin, DM. Fit for consumption: zebrafish as a model for tuberculosis. Dis Model Mech. Jul 2014, 7 (7): 777–84. PMC 4073268 . PMID 24973748. doi:10.1242/dmm.016089. 
  77. ^ Meijer, AH. Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol. 2015, 38 (2): 261–73. PMC 4779130 . PMID 26324465. doi:10.1007/s00281-015-0522-4. 
  78. ^ Spaink, HP; Cui, C; Wiweger, MI; Jansen, HJ; Veneman, WJ; Marín-Juez, R; de Sonneville, J; Ordas, A; Torraca, V; van der Ent, W; Leenders, WP; Meijer, AH; Snaar-Jagalska, BE; Dirks, RP. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods. Aug 2013, 62 (3): 246–54. PMID 23769806. doi:10.1016/j.ymeth.2013.06.002. 
  79. ^ Veneman, WJ; Marín-Juez, R; de Sonneville, J; Ordas, A; Jong-Raadsen, S; Meijer, AH; Spaink, HP. Establishment and optimization of a high throughput setup to study Staphylococcus epidermidis and Mycobacterium marinum infection as a model for drug discovery. J Vis Exp. Jun 2014, 88 (88): e51649. PMC 4206090 . PMID 24998295. doi:10.3791/51649. 
  80. ^ Allison, W. Ted; Barthel, Linda K.; Skebo, Kristina M.; Takechi, Masaki; Kawamura, Shoji; Raymond, Pamela A. Ontogeny of cone photoreceptor mosaics in zebrafish. The Journal of Comparative Neurology. 2010, 518 (20): 4182–95. PMC 3376642 . PMID 20878782. doi:10.1002/cne.22447. 
  81. ^ Lawrence, Jean M.; Singhal, Shweta; Bhatia, Bhairavi; Keegan, David J.; Reh, Thomas A.; Luthert, Philip J.; Khaw, Peng T.; Limb, Gloria Astrid. MIO-M1 Cells and Similar Müller Glial Cell Lines Derived from Adult Human Retina Exhibit Neural Stem Cell Characteristics. Stem Cells. 2007, 25 (8): 2033–43. PMID 17525239. doi:10.1634/stemcells.2006-0724. 简明摘要 – The China Post (August 3, 2007). 
  82. ^ Fish for Science. University of Sheffield. 2011 [March 19, 2011]. (原始内容于2020-11-12). 
  83. ^ Brannen, Kimberly C.; Panzica-Kelly, Julieta M.; Danberry, Tracy L.; Augustine-Rauch, Karen A. Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Research Part B: Developmental and Reproductive Toxicology. 2010, 89 (1): 66–77. PMID 20166227. doi:10.1002/bdrb.20223. 
  84. ^ Rennekamp, Andrew J; Peterson, Randall T. 15 years of zebrafish chemical screening. Current Opinion in Chemical Biology. Omics. 2015-02-01, 24: 58–70. PMC 4339096 . PMID 25461724. doi:10.1016/j.cbpa.2014.10.025. 
  85. ^ 85.0 85.1 MacRae, Calum A.; Peterson, Randall T. Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery. 2015, 14 (10): 721–731. doi:10.1038/nrd4627. 
  86. ^ Kantae, Vasudev; Krekels, Elke HJ; Ordas, Anita; González, Oskar; Van Wijk, Rob C; Harms, Amy C; Racz, Peter I; Van der Graaf, Piet H; Spaink, Herman P; Hankemeier, Thomas. Pharmacokinetic Modeling of Paracetamol Uptake and Clearance in Zebrafish Larvae: Expanding the Allometric Scale in Vertebrates with Five Orders of Magnitude. Zebrafish. 2016, 13 (6): 504–510. PMC 5124745 . PMID 27632065. doi:10.1089/zeb.2016.1313. 
  87. ^ Van Wijk, Rob C; Krekels, Elke HJ; Hankemeier, Thomas; Spaink, Herman P; Van der Graaf, Piet H. Systems pharmacology of hepatic metabolism in zebrafish larvae. Drug Discovery Today Disease Models. 2017, 22: 27–34 [2018-02-13]. doi:10.1016/j.ddmod.2017.04.003. (原始内容于2021-07-15). 

拓展阅读

  • Lambert, Derek J. Freshwater Aquarium Fish. Edison, New Jersey: Chartwell Books. 1997: 19. ISBN 0-7858-0867-1. 
  • Sharpe, Shirlie. Zebra Danio. Your Guide to Freshwater Aquariums. [December 15, 2004]. (原始内容于2016-12-07). 
  • Kocher, Thomas D.; Jeffery, WR; Parichy, DM; Peichel, CL; Streelman, JT; Thorgaard, GH. Fish Models for Studying Adaptive Evolution and Speciation. Zebrafish. 2005, 2 (3): 147–56. PMID 18248189. doi:10.1089/zeb.2005.2.147. 
  • Bradbury, Jane. Small Fish, Big Science. PLoS Biology. 2004, 2 (5): e148. PMC 406403 . PMID 15138510. doi:10.1371/journal.pbio.0020148. 
  • Westerfield, M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio) 5th. Eugene, OR: University of Oregon Press. 2007. 
  • Guttridge, Nicky. Targeted gene modification can rewrite zebrafish DNA. Nature. 2012. doi:10.1038/nature.2012.11463. 
  • A Point Of View: Fly, Fish, Mouse and Worm. BBC. June 14, 2013 [June 15, 2013]. (原始内容于2020-11-25). 

斑馬魚, 注意, 本页有unihan新版汉字, 這些字符可能會错误显示, 詳见unicode扩展汉字, 又名藍, 印度, 斑馬鿕, 藍條魚, 花條魚, 印度魚, 是一种热带淡水鱼, 為輻鰭魚綱鯉形目鯉科的其中一種, 原生於喜馬拉雅地區, 是一种受欢迎的观赏性鱼类, 同时, 其在科研领域也是一种重要的有脊椎模式生物, 尤其是在生物体再生能力的研究方面, 并且有多种基因编辑后的转基因人工培育种, 斑马鱼在被重新被划归为鿕屬, danio, 之前, 曾被归类为短鿕属, brachydanio, 因而在科研文献中被长期称为. 注意 本页有Unihan新版汉字 鿕 這些字符可能會错误显示 詳见Unicode扩展汉字 斑馬魚 又名藍斑馬魚 印度斑馬魚 斑馬鿕 藍條魚 花條魚 印度魚 是一种热带淡水鱼 為輻鰭魚綱鯉形目鯉科的其中一種 3 原生於喜馬拉雅地區 是一种受欢迎的观赏性鱼类 同时 其在科研领域也是一种重要的有脊椎模式生物 尤其是在生物体再生能力的研究方面 4 并且有多种基因编辑后的转基因人工培育种 斑马鱼在被重新被划归为鿕屬 Danio 之前 曾被归类为短鿕属 Brachydanio 因而在科研文献中被长期称为Brachydanio rerio 而非如今的Danio rerio 2 5 6 7 8 斑馬魚一只成年雌性斑马鱼保护状况无危 IUCN 3 1 1 科学分类界 动物界 Animalia门 脊索动物门 Chordata纲 辐鳍鱼綱 Actinopteri目 鲤形目 Cypriniformes科 鯉科 Cyprinidae属 鿕属 Danio种 斑馬魚 D rerio二名法Danio rerio F Hamilton 1822 異名Barilius rerioHamilton 1822 Brachydanio frankeiMeinken 1963 Brachydanio rerioHamilton 1822 Cyprinus chapalioHamilton 1822 Cyprinus rerioHamilton 1822 Danio frankeiMeinken 1963 Danio lineatusDay 1868 Nuria rerioHamilton 1822 Perilampus striatusMcClelland 1839 2 目录 1 分布 2 特徵 3 生態 4 生殖发育 5 品种分类 5 1 转基因品种 5 2 野生品种 5 3 杂交品种 6 养殖要求 6 1 水族养殖 6 2 喂食情况 7 科研特性 7 1 作为模式生物的特性 7 2 再生能力 7 3 遗传特性 7 3 1 基因表达 7 3 2 基因组测序 7 3 3 线粒体DNA 7 3 4 色素基因 7 3 5 转基因 7 3 6 透明体色 7 3 7 环境监测 7 3 8 RNA剪接 7 4 近交衰退 8 医学研究方向 8 1 癌症 8 2 心血管疾病 8 3 免疫系统 8 4 传染病 8 5 修复视网膜损伤 8 6 药物研发 9 参见 10 外部链接 11 参考资料 12 拓展阅读分布 编辑斑马鱼原生于喜马拉雅地区东南部的溪流中 9 见於孟加拉 印度 巴基斯坦 緬甸 尼泊爾等国 10 本種類出现在东印度的恒河流域 常栖息于溪流 运河 水沟 池塘 缓流或静滞水体 如稻田等 11 斑马鱼是美國 日本 斯里蘭卡 菲律賓 模里西斯等地的外来物种 可能是被故意放生或是从养鱼场逃离而引入野外环境中 10 特徵 编辑體色為銀色或金色 侧面覆蓋著五条橫紋 這些橫紋從頭部延伸至尾鰭的後端 臀鰭和尾鰭上同樣也有這種條紋 这些条纹与斑马条纹观感有同处 因而得名 背部呈淺橄欖黃 外形侧看为纺锤状 身形扁而修细 口向前 雄性为鱼雷状 体一般长于雌性 金色条纹间有蓝色条纹 色偏红 雌性腹部更大 偏白 条带呈银色 成年雌性可于臀鳍起点前侧观察到小的生殖乳突 斑马鱼可以长到长达6 4厘米 但通常不会长于4厘米 其寿命为2 3年左右 理想条件下可以超过5年 11 12 生態 编辑本魚棲息在溪流 溝渠或靜止的水中 每2至3天可產卵一次 每次可產約200顆以上的卵 屬雜食性 以昆蟲 小型甲殼類等為食 性情溫和 喜群游 通常數尾成一群 無家庭觀念 生殖发育 编辑斑馬魚的发育分为6个阶段 卵裂期 囊胚期 原肠胚期 分裂期 成形期和孵化期 13 斑马鱼发育阶段 各阶段长度如图示比例 成年阶段除外 成年斑马鱼大致长到2 5厘米 斑马鱼的平均传代时间 generation time 为3个月 雄性斑马鱼需要在场等待排卵和產卵发生 随后雌性斑马鱼在每个卵块 clutch 中能够间隔2 3天产下几百枚卵 卵排出后 胚胎发育开始 如若没有精子 生长又在前几个细胞分裂后停止 受精卵几乎立刻变得透明 这一特性使得斑马鱼极大地方便了科研人员 使其适合科学研究 11 斑马鱼的胚胎发育身份迅速 受精36小时内先期物质就分化出了所有的器官 胚胎最早见于卵黄中 这时卵黄顶端出现一个巨大的细胞 见右侧 如0h时图 随后 这个细胞一分为二 见0 75h时图 再之后 细胞持续性分裂 直至形成上千个小细胞 见3 25h时图 大量的细胞随后迁移出卵黄的边缘 见8h时图 再随之开始形成一头一尾 见16h时图 尾生长并从卵细胞中分离出来 见24h时图 胚胎消耗作为养料来源的卵黄并逐渐成熟 卵黄逐渐收缩 见72h时图 过若干月后 成年斑马鱼进入生殖成熟期 见右图底端图 科研人员为促进斑马鱼产卵 往往在放置小水箱中放置 模拟河流的岸边 小水箱内置隔板 隔离雌雄 并下有栅格 防止成鱼吞食鱼卵 适时打开隔板 供其交配产卵 因其昼夜节律 斑马鱼早上产卵为佳 故早上打开为好 打开时抬高水箱底栅格 减小鱼的活动范围 方便其交配 可在水箱底部发现卵 透明者为受精卵 科研人员可以通过此方式在10分钟内收集大量鱼卵 14 雄性斑马鱼会对雌性身上诸如 好的斑纹 之类的显著标记更有反应 然而在集体中 雄性会和其能找到的雌性交配 在交配中吸引雌性的机制尚不清楚 交配环境中有植物 甚至是塑料植物 也会大大地促进产卵 14 品种分类 编辑转基因品种 编辑 斑馬魚是研究發育生物學的新興模式動物 斑馬魚由於具有飼育容易 胚胎透明 體外受精 突變種多 遺傳學工具成熟等諸多優點 近年來已成為研究脊椎動物發育與人類遺傳疾病的新興模式生物 與其他脊椎動物相較下 斑馬魚最大的優點就是具有多達6 000多種的遺傳突變種 這些突變種的建立大致上是利用X射線 ENU 或反轉錄病毒的感染造成基因組的突變 之後再經由多次的子代篩選所得 這些突變種的表徵包含如胚層分化 器官發育 生理調適與行為表現等多方面 所以可提供研究人員極佳的正向遺傳學材料來進行發育機制上的研究 另外在斑馬魚系統中也開發出阻斷基因功能的工具 嗎啉基 可快速以逆向遺傳學手法來驗證基因的功能 所以正向遺傳學與逆向遺傳學的巧妙利用 可以正確推導出斑馬魚遺傳發育途徑 也是目前斑馬魚成為研究人類疾病新興模式生物的主要原因 从2003年后期起 表达绿色 红色 黄色荧光蛋白的转基因品种斑马鱼在美国上市 表达荧光蛋白的斑马鱼也被商家称为 螢光魚 别的培养品种包括 golden sandy longfin leopard 等 其中leopard品种 之前被称为Danio frankei 是一种由于色素变异产生的带点状色彩的斑马鱼品种 15 Xanthochromism 英语 Xanthochromism 的普通斑马鱼品种与leopard品种 长鳍次种都已通过育种筛选获得并被用于水族鱼类交易 Xanthochromism是一种有关红色素被黄色素替代的带有特殊黄色 16 野生鱼群 leopard品种 带蓝点 人工培育种 带长鳍的leopard品种 人工培育种 斑馬魚苗野生品种 编辑 斑马鱼信息网 英语 Zebrafish Information Network ZFIN 提供了最新的目前已知野生型 wild type 简称WT 斑马鱼信息 17 AB AB AB C32 AB C32 AB TL AB TL AB Tuebingen AB TU C32 C32 Cologne KOLN Darjeeling DAR Ekkwill EKW HK AB HK AB HK Sing HK SING Hong Kong HK India IND Indonesia INDO Nadia NA RIKEN WT RW Singapore SING SJA SJA SJD SJD SJD C32 SJD C32 Tuebingen TU Tupfel long fin TL Tupfel long fin nacre TLN WIK WIK WIK AB WIK AB 杂交品种 编辑 不同鿕属品种之间的杂交品种可能仍具有生殖能力 例如D rerio 斑马鱼 与D nigrofasciatus的杂交品种 5 养殖要求 编辑水族养殖 编辑 為相當受歡迎的觀賞魚 飼養時以寬約60公分的水族箱為宜 斑马鱼适应性强 易于新手养殖 因其性格活泼 繁殖迅速 较为美观 价格便宜 易于获得而受欢迎 18 斑马鱼能6只以上成群游动 并且可以与水族箱中其它品种鱼类有互动 但它们易于感染卵旋虫病 英语 Oodinium 天鹅绒病 英语 velvet disease 微孢子蟲病 分枝杆菌病等疾病 成年斑马鱼会食鱼卵 保护鱼卵要通过将生殖区域隔离开来 斑马鱼也常被用来产生转基因品种 也是荧光鱼的第一代品种 水族养殖注 以下内容为大致意见 仅供参考 请谨慎阅读使用 原产地区 喜马拉雅地区 用水要求水质 硬度 5 12 GH 水质 pH 6 7适宜温度 22 24 C 最小水量 100升食性偏好 杂食 成年大小 5厘米生殖情况 卵生 栖息偏好 浅表层水域社群习性 群居行动 养殖难度 简单 喂食情况 编辑 斑马鱼属杂食性鱼类 主要食用浮游动物 浮游植物 昆虫 昆虫幼体等 但在食物条件不理想的情况下也会食用别的食物 例如蠕虫 甲壳类动物等 11 在實驗室中 斑马鱼苗通常用草履虫喂养 待其成長到一定大小後則餵食豐年蝦 成年的斑馬魚則是吃一般的魚飼料 19 科研特性 编辑 斑马鱼的色素細胞为科学家广泛研究的对象 此处表现出对背景的偽裝 图下方展示的是斑马鱼色素突变 突变种由插入诱变 英语 mutagenesis 基因产生 5 上方为野生型 与之对比 变异种不能很好地合成黑色素 故其黑素細胞缺乏黑色素 斑马鱼是一种常见且常用的科研模式生物 被用于研究脊椎动物的发育以及基因功能 由美国分子生物学家George Streisinger 英语 George Streisinger 及他在俄勒冈大学的同事在1970 80年代首先在实验室中使用作模式生物 George Streisinger所进行的斑马鱼克隆实验形成了最早一批成功的脊椎动物克隆体之一 20 斑马鱼在科研领域的重要性在成功的大规模先导性基因筛查 英语 genetic screen 中被凸显 这一实验常被称为Tubingen Boston筛查 the Tubingen Boston screens 该品种鱼目前已有特有的线上数据库 包括遗传学数据库 基因组学数据库 发育信息数据库 斑马鱼信息网 英语 Zebrafish Information Network Zebrafish Information Network 简称ZFIN 斑马鱼国际资源中心 The Zebrafish International Resource Center 简称ZIRC 储存了斑马鱼的遗传学信息 并由29 250对等位基因的信息对研究领域发布 斑马鱼也是少数几种被送上太空的鱼类 英语 Animals in space 之一 使用斑马鱼进行的研究已经在发育生物学 肿瘤学 21 毒理学 22 23 生殖医学 畸形学 遗传学 神经科学 环境科学 幹細胞 再生醫學 24 25 和进化理论 5 等领域取得进展 作为模式生物的特性 编辑 作为模式生物 斑马鱼在科研领域具有许多优势 其基因組已经被全部测序 並被充分了解 其发育行为容易理解 易于观察 便于测验 其胚胎发育迅速 胚胎相对较大 突出而且透明 还可以在母体外發育 26 此外 科研人员可以获得已经被研究成型的 带有特定特征的变异种 其它的好处包括 在早期发育阶段 斑马鱼胚胎大小几乎不变 便于染色之类的简单技术操作 其发育阶段中两个细胞组成的胚胎可以融合成一个细胞 从而获得纯合子胚胎 斑马鱼与人类和哺乳类模型在毒理测试方面显著相近 并且展现出类似于哺乳动物睡眠行为的昼夜节律 27 然而 斑马鱼不是一个完全理想的实验模型 其在别的科研领域也有不适用之处 例如其不存在标准的饮食 28 又比如在一些有关人类疾病的基因方面 斑马鱼和哺乳类存在细小但很重大的差异 29 30 再生能力 编辑 斑马鱼在幼鱼阶段能够再生其鳍 皮肤 心脏 体侧线的毛细胞以及大脑 31 32 在2011年 英国心脏基金会 英语 British Heart Foundation 广告宣传以公布其将这项能力应用于人体的企划 以期筹措5 000万英镑 33 34 斑马鱼也被发现可在创伤后再生感光细胞与视网膜神经 目前研究显示 这是由米勒细胞 英语 Muller glia Muller glia 的去分化与增殖介导的 35 研究人员不断截断背上以及腹面上的尾鳍 并且分析其再生以观测其突变 已经发现 组蛋白去甲基化酶 英语 Histone methylation 在截肢部位出现 使得斑马鱼的细胞重新活跃为可再生的类似于干细胞的状态 36 2012年 澳洲科学家发布的一项研究表明 斑马鱼使用一种被称为成纤维细胞生长因子的特异的蛋白质以确保其脊髓可以痊愈而无胶质瘢痕 英语 glial scar 4 此外 斑马鱼后侧体侧线的毛细胞被发现可以在创伤后或者发育中断后再生 32 37 对其再生期间基因表达的研究使得若干重要的信号通路得以被识别出来 例如Wnt信号通路和成纤维细胞生长因子等 37 38 研究包括神经退行性疾病 行动失调 精神疾病 耳聋等在内的神经系统疾病时 研究人员使用斑马鱼来理解遗传学缺陷如何引起人脑 脊椎 感应器功能上的异常 科研人员也通过此途径深入了解人体错综复杂的肌肉与骨骼疾病 例如肌肉萎縮症等 39 斑马鱼研究的另一焦点在于理解刺猬信号通路 一种生物信号 如何影响细胞生长乃至引起一系列的癌症 遗传特性 编辑 基因表达 编辑 由于斑马鱼的生命周期较短 可控性强 故常被用作遗传学研究的模型动物 基因敲落和用反義嗎啉基进行修改RNA剪接是常用的反向遗传学 英语 reverse genetics 技术 人工合成的高分子嗎啉基寡核苷酸 MO 包含与DNA RNA相同的核苷 通过与互补序列结合 他们可以减少特定基因的表达或者阻碍其它RNA上进行的过程 嗎啉基寡核苷酸 MO 可以在32细胞阶段后注入胚胎内的某个细胞 使得这一细胞所分裂出的细胞都出现在某个基因上的表达减弱 不过 大分子可以任意透膜通行早期胚胎 小于32细胞 中的细胞中 进行扩散 40 41 使用嗎啉基的指南描述了合理控制策略 42 嗎啉基常以500pL剂量直接通过显微注射注入1 2细胞阶段的斑马鱼胚胎中 使之可以与多数细胞融合 43 斑马鱼基因敲除的难点在于 基因组在完成輻鰭魚和肉鳍鱼的分化之后的基因复制中 由于同源基因互补 同源基因中其中之一很难不被表达 44 尽管斑马鱼的基因組很复杂 市面上还是不少有供研究基因表达谱以分析基因表达的国际化的商业平台的 并且还推荐使用ChIP on chip 英语 ChIP on chip 技术的规范 45 基因组测序 编辑 维康桑格研究所在2001年启动斑马鱼基因组测序项目 蒂宾根参考样品系的基因组序列可以在美国国家生物技术信息中心 NCBI 的斑马鱼基因组 页面存档备份 存于互联网档案馆 上获得 斑马鱼参考基因组被注是Ensembl项目 页面存档备份 存于互联网档案馆 的一部分 由基因组参考联合会 英语 Genome Reference Consortium Genome Reference Consortium 所维护 46 2009年 印度德里的基因组和整合生物学研究所 英语 Institute of Genomics and Integrative Biology Institute of Genomics and Integrative Biology 宣布了一种野生品系斑马鱼的基因组测序 其包含大约17亿对碱基 47 48 野生型斑马鱼的基因组测序差异倍数为39 与参照基因组的比较分析发现了超过500万单核酸突变和超过160万插入或剪切突变 共1 4GB超过26 000个蛋白质编码基因的斑马鱼参照基因组序列由Kerstin Howe等人于2013年发布 49 线粒体DNA 编辑 在2001年10月 美國奧克拉荷馬大學研究人员公开了斑马鱼的完整线粒体DNA序列 50 这一序列包含16 596个碱基对 与其它鱼类差别不超过100个碱基对 仅仅比金鱼 双名法 Carassius auratus 的长18个碱基对 比鲤鱼 双名法 Cyprinus carpio 的长21个碱基对 其线粒体基因含量与基因顺序与常见的脊椎动物线粒体DNA相同 包含13种蛋白质编码基因和1个包含重链复制起点的非编码控制区 其中间发现有 共5个的1组tRNA基因和类似脊椎动物轻链复制起点的序列 因为从碱基对变化的角度很难得出有关适应性的结论 所以很难得出进化上的结论 50 色素基因 编辑 1999年 nacre变异在斑马鱼体内的哺乳类同源基因MITF传输因子中被识别出来 51 人体MITF 英语 MITF 的变异会导致眼部缺陷和色素缺失 这一症状是瓦登伯革氏症候群的一种 2005年12月 对golden品系的研究认为一种被称为SLC24A5 英语 SLC24A5 的溶质载体蛋白编码基因导致了其不同寻常的体色 这种蛋白似乎在黑色素形成过程中是必要的 并且通过马琳代 Morpholino 敲除 其这一功能被确认 随后 与人体直系同源的 基因在实验中被识别出来 一个单碱基对差异被发现能够大大影响肤色 使得浅肤色的欧洲裔人种与黑肤色的非裔人种被区分开来 但这一实验并未对人做实验 而是采用了比较基因组学这一新领域的研究方法 52 带有nacre突变的斑马鱼与带roy orbison roy 突变的斑马鱼交配可以得到没有黑素细胞和虹细胞的斑马鱼 这些得到的斑马鱼在成年期也是透明的 一律有着带颜色的眼睛和半透明的皮肤 7 转基因 编辑 转基因是一种研究斑马鱼基因的功能的常见手段 通过使用Tol2转位子体系的方法 构建转基因品种斑马鱼尤其容易 53 透明体色 编辑 2008年 美國波士頓兒童醫院的研究人员开发了一种新的斑马鱼品系Casper 这种品系的成鱼体色透明 7 这能够方便对细胞活动 循环系统遠端轉移等现象的细致观察 由于人和斑马鱼有许多基因功能是相同的Casper品种被寄予加深人类对如白血病等癌症在内的人类疾病研究的厚望 7 在2013年1月 日本科学家转基因透明斑马鱼品系得到可以在高强度脑活动时放出可见发光的品系 使得斑马鱼对外界刺激的反应可以被记录精确到特定的大脑发光区域 8 环境监测 编辑 2007年1月 复旦大学研究人员修改了斑马鱼的基因 使得其能够用于探测水体中的雌激素污染 这一污染被认为与男性不育有关 研究人员克隆了对雌激素敏感的基因 将之注入斑马鱼的受精卵中 得到的转基因鱼会在感知污染时变绿 6 RNA剪接 编辑 2015年 美國布朗大学的研究人员发现 10 的斑马鱼基因并不依赖于U2AF2 英语 U2AF2 蛋白质来启动RNA剪接 这些基因在每个内含子的尾端有着AC和TG碱基对的重复序列 在3 剪接位置 3 splicing site 简称3 ss 上 腺嘌呤 A 和胞嘧啶 C 交替重复 在5 剪接位置 5 splicing site 简称5 ss 上 互补的胸腺嘧啶 T 和鳥嘌呤 G 同样交替重复 研究人员发现 斑马鱼对U2AF2蛋白的依赖比人类更小 而这一蛋白对RNA剪接的发生是必需的 这种在内含子周围重复碱基对以改变RNA核酸二级结构的模式在真骨类中曾发现过 但在四足類中未曾发现过 这表明四足類中的某一进化可能导致了人类与斑马鱼在对U2AF2依赖程度的差异 54 近交衰退 编辑 近亲交配后 幼鱼会显现近交衰退的不良后果 近交衰退主要由有害隐性基因的表达产生的 55 对于斑马鱼而言 在较为紧张的环境 例如人为因素造成的紧张 中 近交衰退被认为会更加严重 由化学药剂克霉唑 一种咪唑类抗真菌类药物 用于农业 兽医 医疗 诱导的斑马鱼环境压力感受会加剧近亲繁殖在关键生育特性上的影响 56 胚胎有效率在近亲杂交的鱼中大大减小 并且雄鱼产生后代有减少趋势 医学研究方向 编辑癌症 编辑 斑马鱼被用来生产包括黑色素瘤 白血病 胰腺癌和肝細胞癌等癌症研究时使用的转基因模型 57 58 表达突变的BRAF或NRAS癌基因的斑马鱼模型在置于缺乏肿瘤抑制蛋白 p53 的背景下会得上黑色素瘤 在组织学上 这些肿瘤高度类似于人类疾病 是可移植入人体的 并且展现了大范围的基因组变化 BRAF基因黑色素瘤模型鱼被用来作两种筛选的平台 这一方法公布于2011年3月的 自然 上 在另外一项研究中 这一模型被用来理解人类黑色素瘤中扩增和过表达的基因的功能作用 59 SETDB1基因能在斑马鱼体内显著地加速肿瘤生成 从而显示了其作为致癌基因的性质 这一点尤为重要 因为目前已知SETDB1参与了表观遗传调控 而表观遗传调控越发地被认为是肿瘤细胞生物学的核心 在别的研究中 研究人员使用化学筛查 来针对起源神經脊细胞中的遗传程序进行靶向治疗 60 这项研究显示 一种叫做来氟米特 leflunomide 的的小分子抑制DHODH蛋白可以阻止神經脊干细胞的发育 通过干涉转录延伸 英语 Transcription biology Elongation 能够避免这一发育最终所导致的黑色素瘤的发生 因为这一过程会针对性识别黑色素瘤而非其它单一的遗传变异 来氟米特可能在人类黑色素瘤治疗方面有所利用价值 61 心血管疾病 编辑 在心血管研究领域 斑马鱼被用来模拟凝血 血管新生 心脏衰竭和先天性心臟病 62 免疫系统 编辑 研究急性炎症中 研究人员已经建立了炎症研究的斑马鱼模型以及相关处理机制 使得研究人员能对炎症的遗传控制机制进行细化研究 并且有可能以此识别有潜力的新药物 63 斑马鱼在研究脊椎动物的固有免疫方面是广泛使用的模式生物 固有免疫能够在受精后28 30小时内进行吞噬作用 吞噬作用是免疫反应的重要一环 64 与之对比 适应性免疫 也称特异性免疫 获得性免疫 后天性免疫 在受精后至少四周才能在功能上达到成熟状态 65 传染病 编辑 由于人类和斑马鱼的免疫系统保守性较强 相对一致性高 许多人类传染病可以在斑马鱼上模拟 66 67 68 69 斑马鱼透明的早期胚胎被用于深入研究活体成像和分析宿主和病原体之间的互动 70 71 72 73 科学家已经建立了用于模拟一大批细菌 病毒 寄生虫类病原体的斑马鱼模型 例如用于结核病研究的斑马鱼模型已经为分支杆菌的致病机制研究提供了深入研究的平台 74 75 76 77 此外 也已经发展出使用斑马鱼感染模型进行高通量微抗生素药物筛查的自动化技术 78 79 修复视网膜损伤 编辑 在光学显微镜下斑马鱼视网膜的发育 斑马鱼胚胎发育的第1 5日到3 5日 大约每隔12小时一张图片 斑马鱼的另一显著特征在于其拥有四种视锥细胞 除人体内拥有的红色 绿色 蓝色敏感视锥细胞外 拥有紫外线敏感细胞 斑马鱼因此可以看见非常广的色谱 故斑马鱼也被用于研究视网膜的发育 尤其是视锥细胞如何在视网膜中形成镶嵌方面 斑马鱼和一些真骨类鱼类以其视网膜上高度精密的视锥细胞镶嵌排列备受科学家关注 80 这一对斑马鱼视网膜特性的研究也已经延展至人类的视网膜医学研究 2007年 伦敦大学学院的研究人员培养出一种成年斑马鱼幹細胞 这些干细胞在斑马鱼和哺乳动物的眼睛中被发现 且最终会发育成视网膜神经 这些细胞可以注射进入眼部 用于治疗损坏视网膜神经的疾病 此类疾病涵盖大部分眼疾 包括黃斑部退化 青光眼 糖尿病相关失明等 研究人员研究了人眼中的Muller细胞 其研究对象年龄从18个月大到91岁 研究中 科研人员能够将这些细胞培养为所有种类的视网膜神经细胞 研究团队在实验室可以轻松地培育这些细胞 并且还将培育出的干细胞移植进入大鼠视网膜中对周围的神经进行观察 研究人员称这些干细胞试图以与在人体内相同的方式发育 81 药物研发 编辑 如同在许多进行中的研究项目所演示的那样 斑马鱼模型使得研究者不仅能够识别除引发人类疾病的基因 也可以用来在药物开发项目中开发新的治疗药剂 82 斑马鱼胚胎是一种快速 性价比高且可靠的致畸检验模型 83 使用斑马鱼进行药物筛查可以识别具有生物学疗效的新的化合物种类 或者发现已知药物的新用途 例如一种常用的抑制剂 瑞舒伐他汀 通过斑马鱼试验发现可以抑制前列腺癌的生长 84 迄今为止 已经进行过65项小分子筛查 其中至少一项已经进行临床试验 85 在这些筛查中 许多技术难度仍待解决 例如 药物吸收率在不同组织或者器官是不同的 这一不同导致药物的实际有效浓度 即其对特定部位的暴露量 无法从其水溶液浓度推算 个体动物之间的天然差异等 85 但对于理解药效而言 药物的暴露产生了药效 因此了解药物在体内的暴露量是至关重要的 同时 将斑马鱼身上的实验结果解读为对人类等高等脊椎动物有效的结果需要在知悉药物浓度和药效之间的关系基础上 这一基础可由药物代谢动力学和药物效应动力学方面分析产生 迄今 只有对于对乙酰氨基酚的斑马鱼幼体模型已经建立了上述所言的人体和药物相互作用的模型 86 但在斑马鱼身上进行药理学分析前景仍是广阔的 87 参见 编辑日本林蛙 可由基因编辑得到半透明体色 淡水水族鱼类名录 英语 List of freshwater aquarium fish species 斑马鱼盒 英语 ZebraBox 用来装放斑马鱼的容器 黑腹果蝇 科研用果蝇 青鱂 科研用鱼类 外部链接 编辑维基共享资源中相关的多媒体资源 斑馬魚英国斑马鱼养殖协会 British Association of Zebrafish Husbandry 斑马鱼信息网 页面存档备份 存于互联网档案馆 The Zebrafish Information Network 简称ZFIN 斑马鱼国际资源中心 页面存档备份 存于互联网档案馆 The Zebrafish International Resource Center 简称ZIRC 中国国家斑马鱼资源中心 页面存档备份 存于互联网档案馆 China Zebrafish Resource Center 简称CZRC 鱼类图谱 斑马鱼社区基因组浏览器 Archive is的存檔 存档日期2012 12 18 FishMap The Zebrafish Community Genomics Browser Danio rerio Danios info承办 斑马鱼基因组 页面存档备份 存于互联网档案馆 通过 Ensembl FishforScience com 页面存档备份 存于互联网档案馆 斑马鱼科研 FishForPharma 页面存档备份 存于互联网档案馆 斑马鱼繁殖 页面存档备份 存于互联网档案馆 Breeding Zebrafish 英国桑格研究中心 英语 Wellcome Trust Sanger Institute 承办 斑马鱼基因组测序计划 页面存档备份 存于互联网档案馆 The Zebrafish Genome Sequencing Project 桑格中心斑马鱼突变资源 页面存档备份 存于互联网档案馆 Sanger Institute Zebrafish Mutation Resource 基因组学与整合生物学研究中心 英语 Institute of Genomics and Integrative Biology Institute of Genomics and Integrative Biology 简称IGIB 承办 基因组测序倡议 页面存档备份 存于互联网档案馆 Genome sequencing initiative 网上斑马鱼基因组百科beta预览版 页面存档备份 存于互联网档案馆 WebHome Zebrafish GenomeWiki Beta Preview 参考资料 编辑 Vishwanath W Danio rerio The IUCN Red List of Threatened Species IUCN 2010 2010 e T166487A6219667 15 January 2018 doi 10 2305 IUCN UK 2010 4 RLTS T166487A6219667 en 原始内容存档于2018 09 22 2 0 2 1 The Zebrafish Book ZFIN July 3 2013 原始内容存档于2020 11 08 引用错误 带有name属性 The Zebrafish Book 的 lt ref gt 标签用不同内容定义了多次 Froese R amp Pauly D eds 2007 Danio rerio FishBase Version 2007 03 4 0 4 1 Goldshmit Yona Sztal Tamar E Jusuf Patricia R Hall Thomas E Nguyen Chi Mai Currie Peter D Fgf Dependent Glial Cell Bridges Facilitate Spinal Cord Regeneration in Zebrafish The Journal of Neuroscience 2012 32 22 7477 92 PMID 22649227 doi 10 1523 JNEUROSCI 0758 12 2012 简明摘要 Sci News com June 1 2012 5 0 5 1 5 2 5 3 Parichy D M Evolution of danio pigment pattern development Heredity 2006 97 3 200 10 PMID 16835593 doi 10 1038 sj hdy 6800867 6 0 6 1 Fudan scientists turn fish into estrogen alerts 页面存档备份 存于互联网档案馆 Xinhua January 12 2007 Retrieved November 15 2012 7 0 7 1 7 2 7 3 White Richard Mark Sessa Anna Burke Christopher Bowman Teresa Leblanc Jocelyn Ceol Craig Bourque Caitlin Dovey Michael et al Transparent Adult Zebrafish as a Tool for in Vivo Transplantation Analysis Cell Stem Cell 2008 2 2 183 9 PMC 2292119 PMID 18371439 doi 10 1016 j stem 2007 11 002 简明摘要 LiveScience February 6 2008 8 0 8 1 Researchers Capture A Zebrafish s Thought Process On Video Popular Science January 31 2013 February 4 2013 原始内容存档于2016 10 03 Mayden Richard L Tang Kevin L Conway Kevin W Freyhof Jorg Chamberlain Sarah Haskins Miranda Schneider Leah Sudkamp Mitchell et al Phylogenetic relationships of Danio within the order Cypriniformes A framework for comparative and evolutionary studies of a model species Journal of Experimental Zoology Part B Molecular and Developmental Evolution 2007 308B 5 642 54 PMID 17554749 doi 10 1002 jez b 21175 10 0 10 1 Danio rerio Nonindigenous Aquatic Species United States Geological Survey June 14 2013 July 3 2013 原始内容存档于2009 08 04 11 0 11 1 11 2 11 3 Spence Rowena Gerlach Gabriele Lawrence Christian Smith Carl The behaviour and ecology of the zebrafish Danio rerio Biological Reviews 2007 83 1 13 34 PMID 18093234 doi 10 1111 j 1469 185X 2007 00030 x Gerhard G S Kauffman E J Wang X Stewart R Moore J L Kasales C J Demidenko E Cheng K C Life spans and senescent phenotypes in two strains of Zebrafish Danio rerio Exp Gerontol NCBI 2002 37 8 9 1055 68 PMID 12213556 doi 10 1016 s0531 5565 02 00088 8 K Kenneth Hisaoka Helen I Battle The normal developmental stages of the zebrafish brachydanio rerio hamilton buchanan Journal of Morphology 6 Feb 2005 102 2 311 327 2009 03 21 doi 10 1002 jmor 1051020205 引文使用过时参数coauthors 帮助 永久失效連結 14 0 14 1 Dockser Amy Birds Do It Bees Do It Even Zebrafish Do It Just Too Little 华尔街日报 January 13 2012 February 11 2012 原始内容存档于2021 01 15 Watanabe Masakatsu Iwashita Motoko Ishii Masaru Kurachi Yoshihisa Kawakami Atsushi Kondo Shigeru Okada Norihiro Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41 8 gene EMBO Reports 2006 7 9 893 7 PMC 1559663 PMID 16845369 doi 10 1038 sj embor 7400757 Mills Dick Eyewitness Handbook Aquarium Fish Harper Collins 1993 ISBN 0 7322 5012 9 页码请求 ZFIN ZFIN July 22 2012 原始内容存档于2021 03 18 Gerhard Glenn S Cheng Keith C A call to fins Zebrafish as a gerontological model Aging Cell 2002 1 2 104 11 PMID 12882339 doi 10 1046 j 1474 9728 2002 00012 x Westerfield Monte The Zebrafish Book A Guide for the Laboratory Use of Zebrafish Danio Rerio University of Oregon Press 2007 失效連結 In Memory of George Streisinger Founding Father of Zebrafish Developmental and Genetic Research University of Oregon September 23 2015 原始内容存档于2015年9月29日 Xiang Jing Yang Hongbo Che Chao Zou Haixia Yang Hanshuo Wei Yuquan Quan Junmin Zhang Hui et al Isalan Mark 编 Identifying Tumor Cell Growth Inhibitors by Combinatorial Chemistry and Zebrafish Assays PLoS ONE 2009 4 2 e4361 Bibcode 2009PLoSO 4 4361X PMC 2633036 PMID 19194508 doi 10 1371 journal pone 0004361 Hill A J Teraoka H Heideman W Peterson RE Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity Toxicological Sciences 英语 Toxicological Sciences 2005 86 1 6 19 PMID 15703261 doi 10 1093 toxsci kfi110 Bugel S M Tanguay R L Planchart A Zebrafish A marvel of high throughput biology for 21 st century toxicology Current Environmental Health Reports 2015 1 4 341 352 PMC 4321749 PMID 25678986 doi 10 1007 s40572 014 0029 5 Major Robert J Poss Kenneth D Zebrafish heart regeneration as a model for cardiac tissue repair Drug Discovery Today Disease Models 2007 4 4 219 25 PMC 2597874 PMID 19081827 doi 10 1016 j ddmod 2007 09 002 Adult Stem Cell Research Avoids Ethical Concerns Voice of America 19 May 2010 21 June 2013 原始内容存档于2014 12 06 Dahm Ralf The Zebrafish Exposed American Scientist 2006 94 5 446 53 2018 02 04 doi 10 1511 2006 61 446 原始内容存档于2017 04 18 Jones Rachel Let Sleeping Zebrafish Lie A New Model for Sleep Studies PLoS Biology 2007 5 10 e281 PMC 2020498 PMID 20076649 doi 10 1371 journal pbio 0050281 Penglase Sam Moren Mari Hamre Kristin Lab animals Standardize the diet for zebrafish model Nature Correspondence 2012 491 7424 333 2018 02 04 Bibcode 2012Natur 491 333P doi 10 1038 491333a 原始内容存档于2016 10 18 Jurynec Michael J Xia Ruohong Mackrill John J Gunther Derrick Crawford Thomas Flanigan Kevin M Abramson Jonathan J Howard Michael T Grunwald David Jonah Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle Proceedings of the National Academy of Sciences of the United States of America 2008 08 26 105 34 12485 12490 Bibcode 2008PNAS 10512485J ISSN 1091 6490 PMC 2527938 PMID 18713863 doi 10 1073 pnas 0806015105 Rederstorff Mathieu Castets Perrine Arbogast Sandrine Laine Jeanne Vassilopoulos Stephane Beuvin Maud Dubourg Odile Vignaud Alban Ferry Arnaud Krol Alain Allamand Valerie Guicheney Pascale Ferreiro Ana Lescure Alain Increased Muscle Stress Sensitivity Induced by Selenoprotein N Inactivation in Mouse A Mammalian Model for SEPN1 Related Myopathy PLoS ONE 2011 6 8 e23094 Bibcode 2011PLoSO 623094R PMC 3152547 PMID 21858002 doi 10 1371 journal pone 0023094 Wade Nicholas Research Offers Clue Into How Hearts Can Regenerate in Some Species The New York Times March 24 2010 2018 02 04 原始内容存档于2020 11 09 32 0 32 1 Lush Mark E Piotrowski Tatjana Sensory hair cell regeneration in the zebrafish lateral line Developmental Dynamics 2013 243 10 1187 1202 PMC 4177345 PMID 25045019 doi 10 1002 dvdy 24167 Mending Broken Hearts 2011 British Heart Foundation TV ad British Heart Foundation 英语 British Heart Foundation via YouTube January 31 2011 November 15 2012 原始内容存档于2017 04 10 British Heart Foundation The science behind the appeal Bhf org uk February 16 2007 November 15 2012 原始内容存档于10 March 2012 Bernardos Rebecca L Barthel Linda K Meyers Jason R Raymond Pamela A Late Stage Neuronal Progenitors in the Retina Are Radial Muller Glia That Function as Retinal Stem Cells Journal of Neuroscience 2007 27 26 7028 40 PMID 17596452 doi 10 1523 JNEUROSCI 1624 07 2007 Stewart Scott Tsun Zhi Yang Izpisua Belmonte Juan Carlos A histone demethylase is necessary for regeneration in zebrafish Proceedings of the National Academy of Sciences 2009 106 47 19889 94 Bibcode 2009PNAS 10619889S JSTOR 25593294 PMC 2785262 PMID 19897725 doi 10 1073 pnas 0904132106 简明摘要 Science Daily November 2 2009 37 0 37 1 Head J R Gacioch L Pennisi Meyers J R Activation of canonical Wnt B catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line Developmental Dynamics 2013 242 7 832 846 PMID 23606225 doi 10 1002 dvdy 23973 Steiner A B et al Dynamic gene expression by putative hair cell progenitors during regeneration in the zebrafish lateral line Proceedings of the National Academy of Sciences of the United States of America 2014 111 14 1392 1401 Bibcode 2014PNAS 111E1393S PMC 3986164 PMID 24706895 doi 10 1073 pnas 1318692111 引文格式1维护 显式使用等标签 link The zebrafish as a model for muscular dystrophy and congenital myopathy Human Molecular Genetics August 8 2003 March 6 2013 原始内容存档于2015 09 09 Kimmel Charles B Law Robert D Cell lineage of zebrafish blastomeres Developmental Biology 1985 108 1 78 85 PMID 3972182 doi 10 1016 0012 1606 85 90010 7 Kimmel Charles B Law Robert D Cell lineage of zebrafish blastomeres Developmental Biology 1985 108 1 94 101 PMID 3972184 doi 10 1016 0012 1606 85 90012 0 Stainier DYR Raz E Lawson ND Ekker SC Burdine RD Eisen JS Ingham PW Schulte Merker S Yelon D Weinstein BM Mullins MC Wilson SW Ramakrishnan L Amacher SL Neuhauss SCF Meng A Mochizuki N Panula P Moens CB Guidelines for morpholino use in zebrafish PLoS Genetics 2017 13 10 e1007000 PMID 29049395 doi 10 1371 journal pgen 1007000 https www ncbi nlm nih gov pmc articles PMC2762901 In Vivo Testing of MicroRNA Mediated Gene Knockdown in Zebrafish Journal of Biomedicine and Biotechnology Hindawi 2012 July 3 2013 原始内容存档于2019 11 30 Tan P K Downey T J Spitznagel Jr E L Xu P Fu D Dimitrov D S Lempicki R A Raaka B M Cam M C Evaluation of gene expression measurements from commercial microarray platforms Nucleic Acids Res NCBI 2003 31 19 5676 84 PMC 206463 PMID 14500831 doi 10 1093 nar gkg763 Genome Reference Consortium GRC October 23 2012 原始内容存档于2016 10 05 Decoding the Genome Mystery 页面存档备份 存于互联网档案馆 Indian Express July 5 2009 Retrieved February 5 2013 FishMap Zv8 页面存档备份 存于互联网档案馆 Institute of Genomics and Integrative Biology 英语 Institute of Genomics and Integrative Biology IGIB Retrieved June 7 2012 Howe Kerstin et al The zebrafish reference genome sequence and its relationship to the human genome Nature 2013 496 7446 498 503 2018 02 04 Bibcode 2013Natur 496 498H PMC 3703927 PMID 23594743 doi 10 1038 nature12111 原始内容存档于2014 03 08 引文格式1维护 显式使用等标签 link 50 0 50 1 Broughton Richard E Milam Jami E Roe Bruce A The Complete Sequence of the Zebrafish Danio rerio Mitochondrial Genome and Evolutionary Patterns in Vertebrate Mitochondrial DNA Genome Research 2001 11 11 1958 67 2018 02 04 PMC 311132 PMID 11691861 doi 10 1101 gr 156801 不活跃 2017 10 25 原始内容存档于2019 09 13 Lister J A Robertson C P Lepage T Johnson S L Raible D W nacre encodes a zebrafish microphthalmia related protein that regulates neural crest derived pigment cell fate Development Sep 1999 126 17 3757 3767 PMID 10433906 Lamason R L Mohideen MA Mest JR Wong AC Norton HL Aros MC Jurynec MJ Mao X et al SLC24A5 a Putative Cation Exchanger Affects Pigmentation in Zebrafish and Humans Science 2005 310 5755 1782 6 Bibcode 2005Sci 310 1782L PMID 16357253 doi 10 1126 science 1116238 Kawakami Koichi Takeda Hisashi Kawakami Noriko Kobayashi Makoto Matsuda Naoto Mishina Masayoshi A Transposon Mediated Gene Trap Approach Identifies Developmentally Regulated Genes in Zebrafish Developmental Cell 2004 7 1 133 44 PMID 15239961 doi 10 1016 j devcel 2004 06 005 Lin Chien Ling Taggart Allison J Lim Kian Huat Cygan Kamil J Ferraris Luciana Creton Robert Huang Yen Tsung Fairbrother William G RNA structure replaces the need for U2AF2 in splicing Genome Research 13 November 2015 26 1 12 23 PMC 4691745 PMID 26566657 doi 10 1101 gr 181008 114 Charlesworth D Willis JH The genetics of inbreeding depression Nat Rev Genet 2009 10 11 783 96 PMID 19834483 doi 10 1038 nrg2664 Bickley LK Brown AR Hosken DJ Hamilton PB Le Page G Paull GC Owen SF Tyler CR Interactive effects of inbreeding and endocrine disruption on reproduction in a model laboratory fish Evol Appl 2013 6 2 279 89 PMC 3689353 PMID 23798977 doi 10 1111 j 1752 4571 2012 00288 x Liu S Leach S D Zebrafish models for cancer Annu Rev Pathol 2011 6 71 93 PMID 21261518 doi 10 1146 annurev pathol 011110 130330 Zebrafish model of human melanoma reveals new cancer gene Science Daily March 23 2011 April 28 2014 原始内容存档于2019 12 10 Ceol Craig J Houvras Yariv Jane Valbuena Judit Bilodeau Steve Orlando David A Battisti Valentine Fritsch Lauriane Lin William M et al The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset Nature 2011 471 7339 513 7 Bibcode 2011Natur 471 513C PMC 3348545 PMID 21430779 doi 10 1038 nature09806 White Richard Mark Cech Jennifer Ratanasirintrawoot Sutheera Lin Charles Y Rahl Peter B Burke Christopher J Langdon Erin Tomlinson Matthew L et al DHODH modulates transcriptional elongation in the neural crest and melanoma Nature 2011 471 7339 518 22 Bibcode 2011Natur 471 518W PMC 3759979 PMID 21430780 doi 10 1038 nature09882 Arthritis Drug Could Help Beat Melanoma Skin Cancer Study Finds Science Daily March 24 2011 November 15 2012 原始内容存档于2019 12 10 Drummond I A Kidney development and disease in the zebrafish J Am Soc Nephrol NCBI 2005 16 2 299 304 PMID 15647335 doi 10 1681 ASN 2004090754 Investigating inflammatory disease using zebrafish Fish For Science November 15 2012 原始内容存档于2013年1月9日 Guyader Dorothee Le Redd Michael J Colucci Guyon Emma Murayama Emi Kissa Karima Briolat Valerie Mordelet Elodie Zapata Agustin Shinomiya Hiroto Origins and unconventional behavior of neutrophils in developing zebrafish Blood 2008 01 01 111 1 132 141 2018 02 13 ISSN 0006 4971 PMID 17875807 doi 10 1182 blood 2007 06 095398 原始内容存档于2019 09 11 英语 Novoa Beatriz Figueras Antonio Lambris John D Hajishengallis George 编 Current Topics in Innate Immunity II Advances in Experimental Medicine and Biology Springer New York 2012 01 01 253 275 2018 02 13 ISBN 9781461401056 doi 10 1007 978 1 4614 0106 3 15 原始内容存档于2020 08 09 英语 Meeker Nathan D Trede Nikolaus S Immunology and zebrafish spawning new models of human disease Dev Comp Immunol 2008 32 7 745 757 PMID 18222541 doi 10 1016 j dci 2007 11 011 Renshaw S A Trede N S A model 450 million years in the making zebrafish and vertebrate immunity Dis Model Mech 2012 5 1 38 47 PMC 3255542 PMID 22228790 doi 10 1242 dmm 007138 Meijer A H Spaink H P Host pathogen interactions made transparent with the zebrafish model Curr Drug Targets 2011 12 7 1000 1017 PMC 3319919 PMID 21366518 doi 10 2174 138945011795677809 Van der Vaart M Spaink HP Meijer AH Pathogen recognition and activation of the innate immune response in zebra fish Adv Hematol 2012 2012 159807 PMC 3395205 PMID 22811714 doi 10 1155 2012 159807 Benard EL Van Der Sar AM Ellett F Lieschke GJ Spaink HP Meijer AH Infection of zebrafish embryos with intracellular bacterial pathogens J Vis Exp 2012 61 PMC 3415172 PMID 22453760 doi 10 3791 3781 Meijer AH van der Vaart M Spaink HP Real time imaging and genetic dissection of host microbe interactions in zebrafish Cell Microbiol 2013 16 1 39 49 PMID 24188444 doi 10 1111 cmi 12236 Torraca V Masud S Spaink HP Meijer AH Macrophage pathogen interactions in infectious diseases new therapeutic insights from the zebrafish host model Dis Model Mech Jul 2014 7 7 785 97 PMC 4073269 PMID 24973749 doi 10 1242 dmm 015594 Levraud JP Palha N Langevin C Boudinot P Through the looking glass witnessing host virus interplay in zebrafish Trends Microbiol Sep 2014 22 9 490 7 PMID 24865811 doi 10 1016 j tim 2014 04 014 Ramakrishnan L Looking within the zebrafish to understand the tuberculous granuloma Adv Exp Med Biol Advances in Experimental Medicine and Biology 2013 783 251 66 ISBN 978 1 4614 6110 4 PMID 23468113 doi 10 1007 978 1 4614 6111 1 13 Ramakrishnan L The zebrafish guide to tuberculosis immunity and treatment Cold Spring Harb Symp Quant Biol 2013 78 179 92 PMID 24643219 doi 10 1101 sqb 2013 78 023283 Cronan MR Tobin DM Fit for consumption zebrafish as a model for tuberculosis Dis Model Mech Jul 2014 7 7 777 84 PMC 4073268 PMID 24973748 doi 10 1242 dmm 016089 Meijer AH Protection and pathology in TB learning from the zebrafish model Semin Immunopathol 2015 38 2 261 73 PMC 4779130 PMID 26324465 doi 10 1007 s00281 015 0522 4 Spaink HP Cui C Wiweger MI Jansen HJ Veneman WJ Marin Juez R de Sonneville J Ordas A Torraca V van der Ent W Leenders WP Meijer AH Snaar Jagalska BE Dirks RP Robotic injection of zebrafish embryos for high throughput screening in disease models Methods Aug 2013 62 3 246 54 PMID 23769806 doi 10 1016 j ymeth 2013 06 002 Veneman WJ Marin Juez R de Sonneville J Ordas A Jong Raadsen S Meijer AH Spaink HP Establishment and optimization of a high throughput setup to study Staphylococcus epidermidis and Mycobacterium marinum infection as a model for drug discovery J Vis Exp Jun 2014 88 88 e51649 PMC 4206090 PMID 24998295 doi 10 3791 51649 Allison W Ted Barthel Linda K Skebo Kristina M Takechi Masaki Kawamura Shoji Raymond Pamela A Ontogeny of cone photoreceptor mosaics in zebrafish The Journal of Comparative Neurology 2010 518 20 4182 95 PMC 3376642 PMID 20878782 doi 10 1002 cne 22447 Lawrence Jean M Singhal Shweta Bhatia Bhairavi Keegan David J Reh Thomas A Luthert Philip J Khaw Peng T Limb Gloria Astrid MIO M1 Cells and Similar Muller Glial Cell Lines Derived from Adult Human Retina Exhibit Neural Stem Cell Characteristics Stem Cells 2007 25 8 2033 43 PMID 17525239 doi 10 1634 stemcells 2006 0724 简明摘要 The China Post August 3 2007 Fish for Science University of Sheffield 2011 March 19 2011 原始内容存档于2020 11 12 Brannen Kimberly C Panzica Kelly Julieta M Danberry Tracy L Augustine Rauch Karen A Development of a zebrafish embryo teratogenicity assay and quantitative prediction model Birth Defects Research Part B Developmental and Reproductive Toxicology 2010 89 1 66 77 PMID 20166227 doi 10 1002 bdrb 20223 Rennekamp Andrew J Peterson Randall T 15 years of zebrafish chemical screening Current Opinion in Chemical Biology Omics 2015 02 01 24 58 70 PMC 4339096 PMID 25461724 doi 10 1016 j cbpa 2014 10 025 85 0 85 1 MacRae Calum A Peterson Randall T Zebrafish as tools for drug discovery Nature Reviews Drug Discovery 2015 14 10 721 731 doi 10 1038 nrd4627 Kantae Vasudev Krekels Elke HJ Ordas Anita Gonzalez Oskar Van Wijk Rob C Harms Amy C Racz Peter I Van der Graaf Piet H Spaink Herman P Hankemeier Thomas Pharmacokinetic Modeling of Paracetamol Uptake and Clearance in Zebrafish Larvae Expanding the Allometric Scale in Vertebrates with Five Orders of Magnitude Zebrafish 2016 13 6 504 510 PMC 5124745 PMID 27632065 doi 10 1089 zeb 2016 1313 Van Wijk Rob C Krekels Elke HJ Hankemeier Thomas Spaink Herman P Van der Graaf Piet H Systems pharmacology of hepatic metabolism in zebrafish larvae Drug Discovery Today Disease Models 2017 22 27 34 2018 02 13 doi 10 1016 j ddmod 2017 04 003 原始内容存档于2021 07 15 拓展阅读 编辑Lambert Derek J Freshwater Aquarium Fish Edison New Jersey Chartwell Books 1997 19 ISBN 0 7858 0867 1 Sharpe Shirlie Zebra Danio Your Guide to Freshwater Aquariums December 15 2004 原始内容存档于2016 12 07 Kocher Thomas D Jeffery WR Parichy DM Peichel CL Streelman JT Thorgaard GH Fish Models for Studying Adaptive Evolution and Speciation Zebrafish 2005 2 3 147 56 PMID 18248189 doi 10 1089 zeb 2005 2 147 Bradbury Jane Small Fish Big Science PLoS Biology 2004 2 5 e148 PMC 406403 PMID 15138510 doi 10 1371 journal pbio 0020148 Westerfield M The zebrafish book A guide for the laboratory use of zebrafish Danio rerio 5th Eugene OR University of Oregon Press 2007 Guttridge Nicky Targeted gene modification can rewrite zebrafish DNA Nature 2012 doi 10 1038 nature 2012 11463 A Point Of View Fly Fish Mouse and Worm BBC June 14 2013 June 15 2013 原始内容存档于2020 11 25 取自 https zh wikipedia org w index php title 斑馬魚 amp oldid 77134214, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。