fbpx
维基百科

居里-外斯定律

居禮-外斯定律居里定律的修正公式,用來補足該公式的不足。當一物質的溫度大於居里溫度()時,其磁化率與溫度的關係式為:

其中:

是該物質的居禮常數
是絕對溫度,單位為
是該物質的居禮溫度,單位為

根據該定律,當時,磁化率為無窮大。而當低於此溫度時,鐵磁性物質將會自發磁化

基本概念

一個磁性物質的磁化向量(或稱磁化強度)代表單位體積該物質的磁矩強度。而磁矩可能由原子內的電子運動或者是自旋所產生。而淨磁化向量可能由外加磁場誘導產生,甚至可能不需要施加外加磁場也能產生磁化向量(例如足夠低溫狀態下的鐵),其中後者被稱之為自發磁化

而其他與鐵擁有同樣性質的物質,如磁鐵礦,被稱之為鐵磁性物質。鐵磁性物質在足夠低的溫度下將會不須施加外部磁場也會產生磁性,而該臨界溫度稱之為居禮溫度

局限性

有许多材料的磁化特性在居里点附近显现出明显的敏感性,而由于居里-韦斯定律基于平均场近似而无法描述这种现象。

注释

  1. ^ Hall 1994,第205–206頁
  2. ^ Levy 1968,第201–202頁

参考资料

居里, 外斯定律, 此條目需要擴充, 2017年6月22日, 请協助改善这篇條目, 更進一步的信息可能會在討論頁或扩充请求中找到, 请在擴充條目後將此模板移除, 此條目目前正依照en, curie, weiss, law上的内容进行翻译, 2019年5月5日, 如果您擅长翻译, 並清楚本條目的領域, 欢迎协助翻譯, 改善或校对本條目, 此外, 长期闲置, 未翻譯或影響閱讀的内容可能会被移除, 居禮, 外斯定律為居里定律的修正公式, 用來補足該公式的不足, 當一物質的溫度大於居里溫度, displaystyle, 其. 此條目需要擴充 2017年6月22日 请協助改善这篇條目 更進一步的信息可能會在討論頁或扩充请求中找到 请在擴充條目後將此模板移除 此條目目前正依照en Curie weiss law上的内容进行翻译 2019年5月5日 如果您擅长翻译 並清楚本條目的領域 欢迎协助翻譯 改善或校对本條目 此外 长期闲置 未翻譯或影響閱讀的内容可能会被移除 居禮 外斯定律為居里定律的修正公式 用來補足該公式的不足 當一物質的溫度大於居里溫度 T c displaystyle T c 時 其磁化率x displaystyle chi 與溫度T displaystyle T 的關係式為 x C T T c displaystyle chi frac C T T c 其中 C displaystyle C 是該物質的居禮常數 T displaystyle T 是絕對溫度 單位為K displaystyle K T c displaystyle T c 是該物質的居禮溫度 單位為K displaystyle K 根據該定律 當T T c displaystyle T T c 時 磁化率為無窮大 而當低於此溫度時 鐵磁性物質將會自發磁化 目录 1 基本概念 2 局限性 3 Classical approaches to magnetic susceptibility and Bohr van Leeuwen theorem 4 Density matrix approach to magnetic susceptibility 5 Explanation of para and diamagnetism using perturbation theory 6 Adding spin spin interaction in the Hamiltonian Ising model 7 Modification of Curie Law due to Weiss field 8 参见 9 注释 10 参考资料基本概念 编辑一個磁性物質的磁化向量 或稱磁化強度 代表單位體積該物質的磁矩強度 而磁矩可能由原子內的電子運動或者是自旋所產生 而淨磁化向量可能由外加磁場誘導產生 甚至可能不需要施加外加磁場也能產生磁化向量 例如足夠低溫狀態下的鐵 其中後者被稱之為自發磁化 而其他與鐵擁有同樣性質的物質 如鎳與磁鐵礦 被稱之為鐵磁性物質 鐵磁性物質在足夠低的溫度下將會不須施加外部磁場也會產生磁性 而該臨界溫度稱之為居禮溫度 局限性 编辑有许多材料的磁化特性在居里点附近显现出明显的敏感性 而由于居里 韦斯定律基于平均场近似而无法描述这种现象 已隱藏部分未翻譯内容 歡迎參與翻譯 In many materials the Curie Weiss law fails to describe the susceptibility in the immediate vicinity of the Curie point since it is based on a mean field approximation Instead there is a critical behavior of the form x 1 T T c g displaystyle chi sim frac 1 T T c gamma with the critical exponent g However at temperatures T Tc the expression of the Curie Weiss law still holds true but with Tc replaced by a temperature 8 that is somewhat higher than the actual Curie temperature Some authors call 8 the Weiss constant to distinguish it from the temperature of the actual Curie point Classical approaches to magnetic susceptibility and Bohr van Leeuwen theorem 编辑 According to Bohr van Leeuwen theorem when statistical mechanics and classical mechanics are applied consistently the thermal average of the magnetization is always zero Magnetism cannot be explained without quantum mechanics However we list some classical approaches to it as they are easy to understand and relate to even though they are incorrect The magnetic moment of a free atom is due to the orbital angular momentum and spin of its electrons and nucleus When the atoms are such that their shells are completely filled they do not have any net magnetic dipole moment in the absence of external magnetic field When present such field distorts the trajectories classical concept of the electrons so that the applied field could be opposed as predicted by the Lenz s law In other words the net magnetic dipole induced by the external field is in the opposite direction and such materials are repelled by it These are called diamagnetic materials Sometimes an atom has a net magnetic dipole moment even in the absence of an external magnetic field The contributions of the individual electrons and nucleus to the total angular momentum do not cancel each other This happens when the shells of the atoms are not fully filled up Hund s Rule A collection of such atoms however may not have any net magnetic moment as these dipoles are not aligned An external magnetic field may serve to align them to some extent and develop a net magnetic moment per volume Such alignment is temperature dependent as thermal agitation acts to disorient the dipoles Such materials are called paramagnetic In some materials the atoms with net magnetic dipole moments can interact with each other to align themselves even in the absence of any external magnetic field when the thermal agitation is low enough Alignment could be parallel ferromagnetism or anti parallel In case of anti parallel the dipole moments may or may not cancel each other antiferromagnetism ferrimagnetism Density matrix approach to magnetic susceptibility 编辑 We take a very simple situation in which each atom can be approximated as a two state system The thermal energy is so low that the atom is in ground state In this ground state the atom is assumed to have no net orbital angular momentum but only one unpaired electron to give it a spin of half In the presence of an external magnetic field the ground state will split into two states having energy difference proportional to the applied field The spin of the unpaired electron is parallel to the field in the higher energy state and anti parallel in the lower one A density matrix r displaystyle rho is a matrix that describes a quantum system in a mixed state a statistical ensemble of several quantum states here several similar 2 state atoms This should be contrasted with a single state vector that describes a quantum system in a pure state The expectation value of a measurement A displaystyle A over the ensemble is A T r A r displaystyle langle A rangle Tr A rho In terms of a complete set of states i displaystyle i rangle one can write r i j r i j i j displaystyle rho sum ij rho ij i rangle langle j Von Neumann s equation tells us how the density matrix evolves with time i ℏ d d t r t H r t displaystyle i hbar frac d dt rho t H rho t In equilibrium one has H r 0 displaystyle H rho 0 and the allowed density matrices are f H displaystyle f H The canonical ensemble has r exp H T Z displaystyle rho exp H T Z where Z T r exp H T displaystyle Z Tr exp H T For the 2 state system we can write H g ℏ B s 3 displaystyle H gamma hbar B sigma 3 Here g displaystyle gamma is the gyromagnetic ratio Hence Z 2 cosh g ℏ B 2 T displaystyle Z 2 cosh gamma hbar B 2T and r B T 1 2 cosh g ℏ B 2 T exp g ℏ B 2 T 0 0 exp g ℏ B 2 T displaystyle rho B T frac 1 2 cosh gamma hbar B 2T begin pmatrix exp gamma hbar B 2T amp 0 0 amp exp gamma hbar B 2T end pmatrix From which J x J y 0 J z ℏ 2 tanh g ℏ B 2 T displaystyle langle J x rangle langle J y rangle 0 langle J z rangle frac hbar 2 tanh gamma hbar B 2T Explanation of para and diamagnetism using perturbation theory 编辑 In the presence of a uniform external magnetic field B displaystyle B along the z direction the Hamiltonian of the atom changes by D H a J z B b B 2 i x i 2 y i 2 displaystyle Delta H alpha J z B beta B 2 sum i x i 2 y i 2 where a b displaystyle alpha beta are positive real numbers which are independent of which atom we are looking at but depends on the mass and the charge of the electron i displaystyle i corresponds to individual electrons of the atom We apply second order perturbation theory to this situation This is justified by the fact that even for highest presently attainable field strengths the shifts in the energy level due to D H displaystyle Delta H is quite small w r t atomic excitation energies Degeneracy of the original Hamiltonian is handled by choosing a basis which diagonalizes D H displaystyle Delta H in the degenerate subspaces Let n displaystyle n rangle be such a basis for the state of the atom rather the electrons in the atom Let D E n displaystyle Delta E n be the change in energy in n displaystyle n rangle So we get D E n n D H n m E m E n n D H m 2 E n E m displaystyle Delta E n langle n Delta H n rangle sum m E m neq E n frac langle n Delta H m rangle 2 E n E m In our case we can ignore B 3 displaystyle B 3 and higher order terms We get D E n a B n J z n a 2 B 2 m E m E n n J z m 2 E n E m b B 2 i n x i 2 y i 2 n displaystyle Delta E n alpha B langle n J z n rangle alpha 2 B 2 sum m E m neq E n frac langle n J z m rangle 2 E n E m beta B 2 sum i langle n x i 2 y i 2 n rangle In case of diamagnetic material the first two terms are absent as they don t have any angular momentum in their ground state In case of paramagnetic material all the three terms contribute Adding spin spin interaction in the Hamiltonian Ising model 编辑 So far we have assumed that the atoms do not interact with each other Even though this is a reasonable assumption in case of diamagnetic and paramagnetic substances this assumption fails in case of ferromagnetism where the spins of the atom try to align with each other to the extent permitted by the thermal agitation In this case we have to consider the Hamiltonian of the ensemble of the atom Such a Hamiltonian will contain all the terms described above for individual atoms and terms corresponding to the interaction among the pairs of atom Ising model is one of the simplest approximation of such pairwise interaction H pairs 1 2 R R S R S R J R R displaystyle H text pairs frac 1 2 sum R R S R cdot S R J R R Here the two atoms of a pair are at R R displaystyle R R Their interaction J displaystyle J is determined by their distance vector R R displaystyle R R In order to simplify calculation it is often assumed that interaction happens between neighboring atoms only and J displaystyle J is a constant The effect of such interaction is often approximated as a mean field and in our case the Weiss field Modification of Curie Law due to Weiss field 编辑 The Curie Weiss Law is an adapted version of Curie s Law which for a paramagnetic material may be written in SI units as 1 x M H M m 0 B C T displaystyle chi frac M H frac M mu 0 B frac C T Here µ0 is the permeability of free space M the magnetization magnetic moment per unit volume B µ0H is the magnetic field and C the material specific Curie constant C m 0 m B 2 3 k B N g 2 J J 1 displaystyle C frac mu 0 mu B 2 3k B Ng 2 J J 1 where kB is Boltzmann s constant N the number of magnetic atoms or molecules per unit volume g the Lande g factor mB the Bohr magneton J the angular momentum quantum number 2 For the Curie Weiss Law the total magnetic field is B lM where l is the Weiss molecular field constant and then x M m 0 B displaystyle chi frac M mu 0 B M m 0 B l M C T displaystyle frac M mu 0 B lambda M frac C T which can be rearranged to get x C T C l m 0 displaystyle chi frac C T frac C lambda mu 0 which is the Curie Weiss Law x C T T c displaystyle chi frac C T T c where the Curie Temperature TC is T C C l m 0 displaystyle T C frac C lambda mu 0 参见 编辑 Curie s law Paramagnetism Pierre Curie Pierre Ernest Weiss Exchange interaction注释 编辑 Hall 1994 第205 206頁 Levy 1968 第201 202頁参考资料 编辑Kittel Charles Introduction to solid state physics 7th New York u a Wiley 1996 ISBN 978 0471111818 Hall H E Hook J R Solid state physics 2nd Chichester Wiley 1994 ISBN 0471928054 Levy Robert A Principles of Solid State Physics Academic Press 1968 ISBN 978 0124457508 Neil Ashcroft David Mermin Solid State Physics 1976 http theory tifr res in sgupta courses qm2013 hand5 pdf 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 居里 外斯定律 amp oldid 67883765, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。