fbpx
维基百科

拼音ɡài注音ㄍㄞˋ;英語:Calcium),是一種化學元素化學符號Ca原子序數为20,原子量40.078 u。作为碱土金属,钙的化學活性頗高,暴露于空气下就会形成深色的氧化物和氮化物。它的物理和化學性質與其較重的同族元素(Ba)和(Sr)相似。它是地殼中第五豐富的元素,占地殼總質量3%[3],也是地殼中第三豐富的金屬,僅次於。地球上最常見的鈣化合物是存在于石灰岩和早期海洋生物的化石殘骸的碳酸鈣石膏硬石膏螢石磷灰石也是鈣的來源。钙的名稱源自拉丁語 calx,意为石灰

钙   20Ca
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)




外觀
银白色


鈣的原子光譜
概況
名稱·符號·序數钙(Calcium)·Ca·20
元素類別碱土金属
·週期·2 ·4·s
標準原子質量40.078(4)
电子排布[Ar] 4s2
2, 8, 8, 2
歷史
發現汉弗里·戴维(1808年)
分離漢弗里·戴維(1808年)
物理性質
物態固态
密度(接近室温
1.55 g·cm−3
熔点時液體密度1.378 g·cm−3
熔点1115 K,842 °C,1548 °F
沸點1757 K,1484 °C,2703 °F
熔化热8.54 kJ·mol−1
汽化热154.7 kJ·mol−1
比熱容25.929 J·mol−1·K−1
蒸氣壓
壓/Pa 1 10 100 1 k 10 k 100 k
溫/K 864 956 1071 1227 1443 1755
原子性質
氧化态+2, +1[1]
(強鹼性
电负性1.00(鲍林标度)
电离能第一:589.8 kJ·mol−1

第二:1145.4 kJ·mol−1
第三:4912.4 kJ·mol−1

更多
原子半径197 pm
共价半径176±10 pm
范德华半径231 pm
雜項
晶体结构面心立方
磁序抗磁性
磁化率+40.0×10−6 cm3/mol[2]
電阻率(20 °C)33.6 n Ω·m
熱導率201 W·m−1·K−1
膨脹係數(25 °C)22.3 µm·m−1·K−1
聲速(細棒)(20 °C)3810 m·s−1
杨氏模量20 GPa
剪切模量7.4 GPa
体积模量17 GPa
泊松比0.31
莫氏硬度1.75
布氏硬度167 MPa
CAS号7440-70-2
同位素
主条目:钙的同位素
同位素 丰度 半衰期 (t1/2) 衰變
方式 能量MeV 產物
40Ca 96.941% >5.9×1021 β+β+ 0.194 40Ar
41Ca 微量 1.03×105 ε - 41K
42Ca 0.647% 穩定,帶22粒中子
43Ca 0.135% 穩定,帶23粒中子
44Ca 2.086% 穩定,帶24粒中子
45Ca 人造 162.7 天 β 0.258 45Sc
46Ca 0.004% >2.8×1015 ββ 0.988 46Ti
47Ca 人造 4.536 天 β 0.694, 1.99 47Sc
γ 1.297 -
48Ca 0.187% 4.3×1019 ββ 4.274 48Ti
β (未觀察到) 0.0058 48Sc

雖然在很久以前就已經發現許多鈣的化合物,但是在十七世紀後才開始對這些化合物的性質有更深一層的了解。单质鈣直到1808年才由命名這個元素的漢弗里·戴維藉由電解其氧化物分離出來。鈣化合物有廣泛的工業應用:钙补充剂英语calcium supplementation、在造紙工業中作為漂白劑的使用、水泥和絕緣體的原料以及用于製作肥皂。另一方面,純鈣因為反应性高而用处不多。少量的純鈣用于制造合金,鈣鉛合金也可以做汽車電池。

鈣是人體內第五豐富的元素,也是最豐富的金屬元素。[4]作為電解質,鈣離子在生物體及細胞內的化學反應中扮演重要的角色。鈣離子是第二信使系統的一份子,也是神經元释放的神經遞質之一。它參與肌肉收縮的過程,也是各種酵素輔因子[4]细胞外的鈣離子则負責維持細胞膜內外的電位差,合成蛋白质,並在成骨作用中扮演關鍵角色。[4][5]

性质

归类

钙是有延展性的银色金属(有时描述为浅黄色),性质和更重的碱土金属非常相似。一个钙原子有二十个电子,电子排布为 [Ar]4s2。和其它碱土金属一样,钙在最外层的s轨道里有两个价电子,极易在化学反应中失去它们,产生有稳定的惰性气体电子层结构的二价阳离子。[6]

由于CaX2标准摩尔生成焓远高于CaX,CaX2晶格能也远大于CaX,因此钙化合物也多以二价离子化合物存在。 [6]

碱土金属中,的物理和化学性质相似,不过二者与同族的钙、相比差别较大,性质分别更像,且有贫金属的性质,这使得某些地区对“碱土金属”的传统定义会把它们排除在外。[7]

物理性质

钙的熔点是842 °C,沸点是1494 °C,这些值比相邻周期的镁和锶都高。它的晶体结构和锶一样是面心立方晶系,超过450 °C时会转变成和镁一样的六方最密堆积结构。钙的密度为1.55 g/cm3,是所有碱土金属中最小的。[6]

钙比硬,但仍然可以用刀切割。虽然按体积计算的话,钙的导电性比差,但由于其密度非常低,按质量计算的话钙的导电性就会比铜和铝好。[8]尽管钙因为会和空气中的氧气反应,在大多数作为导体的应用中不可用,但有人已考虑将其用于太空。[9]

化学性质

钙的化学性质与碱土金属中的锶、钡相似。举个例子,钙和水反应生成氢氧化钙和氢气的速度比镁快,但比锶慢。它也会和空气中的氧气氮气反应,形成氧化钙氮化钙的混合物。[10]细碎的钙会在空气中自发燃烧,形成氮化物。大块的钙的反应性较低,会和空气中的水蒸气反应,但在湿度低于30%下可以无限期保存。[11]

  
钙在空气中的缓慢氧化[12]

除了简单氧化物CaO以外,钙的过氧化物 CaO2可以由金属钙被高压氧气直接氧化而成,而且有证据表明黄色的超氧化物 Ca(O2)2存在。[13][14]

钙单质与其氧化物会直接与水发生反应,得到氢氧化钙 Ca(OH)2,其是一种强碱,碱性弱于锶、钡和碱金属的氢氧化物。[15]

 
钙、锶、钡单质及其氧化物会与水剧烈反应,而铍和镁与水的反应十分缓慢[16]

钙的四种二卤化物都是已知的,[17]无水氯化钙可用作干燥剂,氟化钙是制取HFF2的原料[18]。 大多数碱土金属的盐类都难溶于水,碳酸钙(CaCO3)和硫酸钙(CaSO4)都是常见的矿物组成。[19]

 
钙的碳酸盐在受热时(1173 K)分解[20]

像锶和钡,以及碱金属和二价的镧系元素一样,金属钙可溶于液氨,形成深蓝色溶液。[6]

由于Ca2+离子较大,所以它的配位数也较高,在像是CaZn13金属间化合物中甚至能达到24。[21]钙会和含氧的螯合剂EDTA多磷酸盐英语polyphosphate形成螯合物,这个性质可用于分析化学和在硬水中除去钙离子。在没有空间位阻影响的情况下,越小的碱土金属阳离子形成的配合物越稳定,但当与多齿配体螯合形成大环化合物时,该趋势则相反。[19][22]

虽然同族的镁可以形成很多常用的有机镁化合物,有机钙化合物却因为更难制造且反应性更强而较少被使用。不过,最近有人已将它们作为可能的催化剂研究。[23][24][25][26][27]由于Yb2+(102 pm)和Ca2+(100 pm)的离子半径相似,有机钙化合物的性质更像有机镱化合物。[28]

大部分有机钙化合物都只能在低温下合成,而在这些化合物中使用大位阻基团可以增加稳定性。举个例子,二茂钙 Ca(C5H5)2只能由钙和二茂汞或是环戊二烯反应而成,而将C5H5基团替换成更大的C5(CH3)5增加了化合物的溶解度、挥发性和动力学稳定性。[28]

 
存在于水合氯化钙中的[Ca(H2O)6]2+聚合物的结构,显示钙配合物通常有高配位数

同位素

天然钙有五种稳定同位素40Ca、42Ca、43Ca、44Ca和46Ca)和半衰期长到可以看作稳定的48Ca(半衰期4.3 × 1019年)的混合物。钙是第一种有六个天然同位素的元素。[10]

在这六种同位素中,40Ca最常见,占了天然钙的96.941%。它是硅燃烧过程中产生的,也是质子数和中子数相等的稳定同位素中最重的。此外,原生同位素英语primordial nuclide40K的衰变也使40Ca的数量不断增加。40Ca捕获一个α粒子会产生不稳定的44Ti,后者迅速发生两次电子捕获,生成稳定的44Ca。它是第二常见的钙同位素,占了2.806%。[29][30]

剩下的四种同位素42Ca、43Ca、46Ca和48Ca较为稀有,它们在天然钙的含量都不足1%。钙较轻的四种同位素是氧燃烧过程和硅燃烧过程的主要产物,而剩下的两种重同位素则需要通过中子捕获产生。46Ca主要在“热”s-过程中,短寿的45Ca捕获一个中子而成的,而48Ca则是Ia超新星r-过程产生的。[29][30]

在分别多出六个和八个中子的核素中,46Ca和48Ca是其中最轻的“稳定”核素。虽然48Ca的中子很多,但它的质子数20和中子数28都是幻数,所以非常稳定。它β衰变48Sc的过程因为自旋的严重失配而受到很大阻碍:48Ca的自旋为0,而48Sc的自旋为6+,所以衰变被角动量的转化所禁止。因此,48Ca的衰变方式是双β衰变48Ti,它也是已知会双β衰变的同位素里最轻的。[31][32]

46Ca理论上也可以双β衰变成46Ti,但这个过程仍未被观察到。最轻也最常见的40Ca的质子数和中子数也都是幻数,理论上可以双电子捕获英语double electron capture40Ar,但这也一样仍未被观察到。40Ca和46Ca的半衰期下限分别为5.9 × 1021年和2.8 × 1015年。[31]

除开几乎稳定的48Ca以外,钙最稳定的放射性同位素41Ca。它通过电子捕获衰变成41K,半衰期约为十万年。自然界中存在痕量的41Ca,它们是由40Ca中子活化而成的。[30]

其它从35Ca到60Ca的放射性钙同位素也是已知的,它们都比41Ca更短寿。在这之中最稳定的是45Ca(半衰期163天)和47Ca(半衰期4.54天)。比42Ca轻的钙同位素会正β衰变成钾的同位素,而比44Ca的钙同位素会负β衰变的同位素。不过当这些同位素逼近原子核滴线时,质子发射中子发射会变成它们的主要衰变方式。[31]

历史

 
石灰泥英语lime plaster制成的安加扎勒雕像

虽然在很久以前就已经发现许多钙的化合物,但是在十七世纪后才开始对这些化合物的性质有更深一层的了解。[33]早在公元前7000年,石灰就被用作建材[34]雕像的熟石膏英语lime plaster[35]第一个石灰窑英语lime kiln可以追溯到公元前2500年,于美索不达米亚哈法耶英语Khafajah被发现。[36][37]

石膏(CaSO4·2H2O)是胡夫金字塔的建材,也是图坦卡蒙陵墓中熟石膏的材料。古罗马人则通过使用加热石灰岩(CaCO3)产生的石灰砂浆英语lime mortar作为建材。钙的名称“calcium”源自拉丁文“calx”,意为石灰。[33]

维特鲁威注意到煅烧石灰岩产生的石灰会比原本的石灰岩轻,并把这个现象归咎于水的沸腾。1755年,约瑟夫·布拉克证明这是因为煅烧过程会释放二氧化碳气体,而它并没有被古罗马人发现到。[38]

钙和同族的镁、锶和钡都是由汉弗里·戴维在1808年分离的。继约恩斯·贝尔塞柳斯和马格努斯·马丁·阿夫·庞廷电解的工作后,戴维通过将金属氧化物与氧化汞的混合物放在板上作为阳极,阴极则是部分浸入汞中的铂丝。之后,他通过电解产生钙汞齐和镁汞齐,然后蒸馏掉汞得到金属钙和镁。[33][39]不过,纯钙不能通过这种方法大量制备,直到一个多世纪后才发现了一种在商业上可行的生产方法。[38]

存在和生产

 

钙是地球地壳中第五丰富的元素,也是第三丰富的金属,仅次于[33]它也是月陆中第四丰富的元素。[11]碳酸钙沉积岩作为以前的海洋生物的化石残骸,以两种形式遍布地球表面,分别为三方晶系方解石(更常见)和正交晶系霞石(在温带海域中形成)。珊瑚贝壳珍珠的主要成分都是碳酸钙。除了方解石和霞石,其它重要的钙矿包括石膏(CaSO4·2H2O)、硬石膏(CaSO4)、萤石(CaF2)和磷灰石([Ca5(PO4)3F])。[33]

钙的主要生产者是中国(每年约10000至12000)、俄罗斯(每年约6000至8000吨)和美国(每年约2000至4000吨),加拿大法国也是次要生产国。2005年,全球钙产量约为24000吨,其中大约一半被美国使用。[9]

俄罗斯和中国仍然使用戴维的电解方法来生产钙,但用了熔融氯化钙代替氧化钙。[9]因为钙的反应性低于锶或钡,所以和空气反应产生的氧化物-氮化物层是稳定的,可以车床加工。[40]在美国和加拿大,钙则是由铝在高温下还原石灰而成的。[9]

地球化学循环

钙循环英语Calcium cycle提供了地质构造运动英语Tectonics气候碳循环之间的联系。山脉的隆起会使花岗岩等含钙岩石经受化学风化作用,并将Ca2+离子释放到地表水中。这些离子之后会被运输到海洋,和海水溶解的CO2反应生成石灰石CaCO
3
),沉降到海底并合并到新的岩石中。海水溶解的CO2碳酸根碳酸氢根都属于“溶解无机碳”(DIC)。[41]

实际反应要更复杂,涉及CO2和水在海水pH下反应而成的碳酸氢根离子(HCO
3
):

Ca2+
+ 2HCO
3
CaCO
3
(s) + CO
2
+ H
2
O

在海水的pH下,大部分溶解的CO2都会立刻变成HCO
3
。该反应导致一分子CO2从海洋或大气净传输到岩石圈[42]反应的结果是化学风化释放的每个Ca2+离子最终会从地表(大气、海洋、土壤和生物体)中去除一个CO2分子,并将其储存到碳酸盐矿物中停留数亿年。因此,岩石中钙的风化作用会清除海洋和大气中的CO2,对气候产生强烈的长期影响。[41][43]

用途

由于其对氧和化学亲和性很强,金属钙最大的用处是炼钢[44]。它的氧化物和硫化物一旦形成,就会以夹杂物的形式从钢中浮出,处理后这些夹杂物就会分散在整个钢中并变成小球状,从而提高了可铸性、清洁度和机械性能。钙也可以生产无需维护的汽车蓄电池,在这些蓄电池中使用了0.1 % 钙合金来代替常用的铅合金[45],减少了失水量和自放电量。[46]由于存在膨胀和开裂的风险,有时还会将加入这些合金中。钙铅合金也用于铸造。[46]钙还用于强化用于轴承的铝合金,控制铸铁中的石墨以及去除铅中的杂质。[40]金属钙还存在于一些沟渠清洁剂中,它遇水产生的热和氢氧化钙可以皂化脂肪和液化阻塞下水道的蛋白质(例如头发中的角蛋白)。[47]

除了炼钢,钙的反应性还可以用于从高纯氩气中去除氮气,也是氮气和氧气的吸气剂英语getter。它也用于在的生产中充当还原剂。钙也可以用来储存氢气,因为它与氢气反应形成氢化钙固体,氢气可以很容易地从其中重新放出。[40]

据报道,钙同位素在形成矿物时观察到类似“分馏”的现象。1997年,Skulan和DePaolo观察到[48]钙矿中的钙同位素略比矿物溶液中的钙同位素轻,这一研究成为了医学和古海洋学中类似应用的基础。因此在骨骼被钙化的动物中,软组织的钙同位素丰度可以反映骨骼矿物质形成和溶解的相对速率。[49]

在人体中,尿液中钙同位素丰度的变化已被证明与骨矿物质平衡的变化有关。当骨头形成的速率比固体被吸收的速率快时,软组织的44Ca/40Ca比例会增加,反之亦然。因为这种关系,测量尿液或血液的钙同位素可能有助于早期检测骨质疏松等代谢性骨病。[49]

类似的系统也存在于海水中。当矿物沉淀去除Ca2+的速率超过新的钙流向海洋的速率时,海水的44Ca/40Ca的比例趋于上升。1997年,Skulan和DePaolo提出了海水44Ca/40Ca随地质时间变化的第一个证据,以及对这些变化的理论解释。最近的论文证实了这一观察结果,表明海水中的Ca2+浓度不是恒定的,并且海洋在钙输入和输出方面从未处于“稳定状态”。这个发现具有重要的气候学意义,因为海洋的钙循环与碳循环密切相关。[50][51]

很多钙化合物用于食品、药品和医药等用处。人们会通过添加乳酸钙英语Calcium lactate焦磷酸钙磷酸钙来补充食物中的钙和磷,而磷酸钙也用作牙膏的抛光剂和抗酸药乳糖酸钙是用作药物的悬浮剂的白色粉末,磷酸二氢钙在烘培中可用作膨松剂亚硫酸钙在造纸中用作漂白剂和消毒剂,硅酸钙是橡胶的强化剂,而乙酸钙用于制造肥皂和合成树脂。[46]

钙列于世界卫生组织基本药物标准清单当中。[52]

食物来源

富含钙的食物包括如优格起司乳制品沙丁鱼三文鱼大豆制品、羽衣甘蓝补充了钙谷物片[5]

由于担心大量摄入钙导致的长期副作用(如动脉钙化和肾结石),美国国家医学院(IOM)和欧洲食品安全局(EFSA)都对钙设了可耐受最高摄入量(ULs)。美国国家医学院定的值是9–18岁不超过3克/日,19–50岁不超过2.5克/日,51岁以上不超过2克/日。[53]欧洲食品安全局定的值对所有成年人都是2.5克/日,但因为儿童和青少年的信息不足而没有确定他们的可耐受最高摄入量。[54]

對人體的影響

美国国家医学院制定的钙的推荐膳食摄入量[55]
年龄 每天的钙摄入量(毫克)
1–3岁 700
4–8岁 1000
9–18岁 1300
19–50岁 1000
>51岁 1000
孕期 1000
哺乳期 1000
 
全球成年人的钙摄入量(毫克/日)[56]
  <400
  400–500
  500–600
  600–700
  700–800
  800–900
  900–1000
  >1000

功能

钙是人体大量需要的生命元素[4][5]Ca2+离子起到电解质的作用,对肌肉、循环和消化系统的健康至关重要。此外,钙对于骨骼的构建是必不可少的,而且还参与了血细胞的合成。钙也调节肌肉收缩、神经传导和血液的凝固。Ca2+离子可以和很多有机化合物(尤其是蛋白质)形成稳定的配合物,因此它才能发挥这种作用。钙化合物的溶解度的范围很大,使骨骼得以形成。[4][57]

结合

钙离子和蛋白质的结合方式有三种:第一种方式是和谷氨酸天冬氨酸羰基结合,第二种方式是和磷酸化丝氨酸酪氨酸苏氨酸结合,第三种方式则是和γ-羧基化的氨基酸螯合胰蛋白酶是一种消化酶,它使用第一种结合方式;而骨钙蛋白是一种骨基质蛋白,它使用第三种结合方式。[58]

一些像是骨桥蛋白骨涎蛋白等骨基质蛋白同时使用第一种和第二种结合方式。和钙结合是酶常见的激活方式,其它一些酶的激活方式则是与结合了钙的酶结合。钙还与细胞膜磷脂层结合,锚定与细胞表面相关的蛋白质。[58]

营养

钙是复合维生素的常见成分,[4]但在里面的是哪种钙化合物可能会影响其生物利用度。柠檬酸钙、苹果酸钙和乳酸钙的生物利用度都很高,而草酸钙的生物利用度较低。其它可用的钙化合物包括碳酸钙柠檬酸苹果酸钙英语calcium citrate malate葡萄糖酸钙[4]摄入的钙有约三分之一会以游离离子的形式被肠道吸收,然后由肾脏调节血浆钙水平。[4]

骨骼的形成和血清的激素调节

甲状旁腺激素维生素D都可以通过允许和增强钙离子沉积来促进骨骼的形成,从而在不影响骨量或矿物质含量的情况下实现快速骨转换。[4]当血浆钙水平下降时,细胞表面受体会被激活并分泌甲状旁腺激素,然后通过从肾、肠和骨细胞中提取钙来刺激钙进入血浆。甲状旁腺激素的骨形成作用会被降钙素拮抗,其分泌随着血浆钙水平的增加而增加。[58]

血清钙水平异常

过量摄入钙会导致高血钙症,不过因为肠道对钙的吸收效率相当低,高血钙症更可能是因为甲状旁腺激素(PTH)分泌过多或维生素D摄入过多引起的,它们都有利于钙的吸收。所有这些情况都会导致过量的钙沉积在心脏、血管或肾脏中。高血钙症的症状包括厌食、恶心、呕吐、记忆力减退、精神错乱、肌肉无力、排尿增多、脱水和代谢性骨病。[58]

长期高血钙症通常会导致软组织的钙化,并造成严重的后果。钙化会导致血管壁丧失弹性和血流中断,进而产生易损斑块英语Vulnerable plaque血栓。相反的,钙或维生素D摄入不足会导致低血钙症,常由甲状旁腺激素分泌不足或细胞内的PTH受体有缺陷引起。低血钙症的症状包括神经肌肉兴奋,这可能会导致手足强直英语tetany和心脏组织传导性的破坏。[58]

骨病

由于骨骼的发育需要钙,所以很多骨病都可以追溯到骨骼组织中的有机基质或羟基磷灰石的结构。骨质疏松是每单位体积骨骼中矿物质含量的减少,可以通过补充钙、维生素D和双膦酸盐英语Bisphosphonate来治疗。[4][5]钙、维生素D和磷酸盐摄入不足会导致骨质软化[58]

危险性

 
危险性
GHS危险性符号
 
GHS提示词 Danger
H-术语 H261
P-术语 P231+232
NFPA 704
 
3
0
1
 
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

金属钙会与水和酸剧烈反应,所以接触人体中的水份后会造成严重的腐蚀。[59]吞下金属钙会严重腐蚀口腔、食道和胃,甚至可能致命。[47]长期接触钙会不会产生明显的不利影响仍不明确。[59]

参考文献

  1. ^ Krieck, Sven; Görls, Helmar; Westerhausen, Matthias. Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes. Journal of the American Chemical Society. 2010, 132 (35): 100818110534020. PMID 20718434. doi:10.1021/ja105534w. 
  2. ^ Weast, Robert. CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. 1984: E110. ISBN 0-8493-0464-4. 
  3. ^ 柯清水 編著. 【新世紀化工化學辭典】 The new century dictionary of chemical engineering and chemistry. 第一版. 正文書局. 2000: 355. ISBN 957-40-0253-5. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 . Linus Pauling Institute, Oregon State University, Corvallis, Oregon. 1 September 2017 [31 August 2019]. (原始内容存档于2020-06-16). 
  5. ^ 5.0 5.1 5.2 5.3 . Office of Dietary Supplements, US National Institutes of Health. 9 July 2019 [31 August 2019]. (原始内容存档于2018-03-17). 
  6. ^ 6.0 6.1 6.2 6.3 Greenwood & Earnshaw 2016,第112-13頁.
  7. ^ Parish, R. V. The Metallic Elements. London: Longman. 1977: 34. ISBN 978-0-582-44278-8. 
  8. ^ Ropp, Richard C. . 2012: 12–15 [2022-07-09]. ISBN 978-0-444-59553-9. (原始内容存档于2021-04-27). 
  9. ^ 9.0 9.1 9.2 9.3 Hluchan & Pomerantz 2006,第484頁.
  10. ^ 10.0 10.1 C. R. Hammond The elements (pp. 4–35) in Lide, D. R. (编), CRC Handbook of Chemistry and Physics 86th, Boca Raton (FL): CRC Press, 2005, ISBN 0-8493-0486-5 
  11. ^ 11.0 11.1 Hluchan & Pomerantz 2006,第483頁.
  12. ^ 北京师范大学无机化学教研室 等.《无机化学》 下册,第651頁.
  13. ^ Greenwood & Earnshaw 2016,第119頁.
  14. ^ Nils-Gösta Vannerberg. F. Albert Cotton , 编. Peroxides, Superoxides, and Ozonides of the Metals of Groups Ia, IIa, and IIb. Progress in Inorganic Chemistry 4. International Journal of Quantum Chemistry. 01 Jan. 1962. doi:10.1002/9780470166055.ch3. 
  15. ^ Greenwood & Earnshaw 2016,第121頁.
  16. ^ 武汉大学 等校.《无机化学》 下册,第796頁.
  17. ^ Greenwood & Earnshaw 2016,第117頁.
  18. ^ 北京师范大学无机化学教研室 等.《无机化学》 下册,第662頁.
  19. ^ 19.0 19.1 Greenwood & Earnshaw 2016,第122-15頁.
  20. ^ 北京师范大学无机化学教研室 等.《无机化学》 下册,第661頁.
  21. ^ Greenwood & Earnshaw 2016,第115頁.
  22. ^ Cynthia K. Schauer; Oren P. Anderson. Highly polydentate ligands. 5. Structures of alkaline-earth complexes of the calcium-selective ligand EGTA4- (H4EGTA = 3,12-Bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioic acid). Inorganic Chemistry. 1988, 27 (18): 3118–3130. doi:10.1021/ic00291a015. 
  23. ^ Harder, S.; Feil, F.; Knoll, K. Novel Calcium Half-Sandwich Complexes for the Living and Stereoselective Polymerization of Styrene. Angew. Chem. Int. Ed. 2001, 40 (22): 4261–64. PMID 29712082. doi:10.1002/1521-3773(20011119)40:22<4261::AID-ANIE4261>3.0.CO;2-J. 
  24. ^ Crimmin, Mark R.; Casely, Ian J.; Hill, Michael S. Calcium-Mediated Intramolecular Hydroamination Catalysis. Journal of the American Chemical Society. 2005, 127 (7): 2042–43. PMID 15713071. doi:10.1021/ja043576n. 
  25. ^ Jenter, Jelena; Köppe, Ralf; Roesky, Peter W. 2,5-Bis{N-(2,6-diisopropylphenyl)iminomethyl}pyrrolyl Complexes of the Heavy Alkaline Earth Metals: Synthesis, Structures, and Hydroamination Catalysis. Organometallics. 2011, 30 (6): 1404–13. doi:10.1021/om100937c. 
  26. ^ Arrowsmith, Merle; Crimmin, Mark R.; Barrett, Anthony G. M.; Hill, Michael S.; Kociok-Köhn, Gabriele; Procopiou, Panayiotis A. Cation Charge Density and Precatalyst Selection in Group 2-Catalyzed Aminoalkene Hydroamination. Organometallics. 2011, 30 (6): 1493–1506. doi:10.1021/om101063m. 
  27. ^ Penafiel, J.; Maron, L.; Harder, S. Early Main Group Metal Catalysis: How Important is the Metal?. Angew. Chem. Int. Ed. 2014, 54 (1): 201–06. PMID 25376952. doi:10.1002/anie.201408814. 
  28. ^ 28.0 28.1 Greenwood & Earnshaw 2016,第136-37頁.
  29. ^ 29.0 29.1 Cameron, A. G. W. (PDF). Space Science Reviews. 1973, 15 (1): 121–46 [2022-07-10]. Bibcode:1973SSRv...15..121C. S2CID 120201972. doi:10.1007/BF00172440. (原始内容 (PDF)存档于2016-12-28). 
  30. ^ 30.0 30.1 30.2 Clayton, Donald. Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. Cambridge University Press. 2003: 184–98. ISBN 9780521530835. 
  31. ^ 31.0 31.1 31.2 Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. The NUBASE2016 evaluation of nuclear properties (PDF). Chinese Physics C. 2017, 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001. 
  32. ^ Arnold, R.; et al. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector. Physical Review D. 2016, 93 (11): 112008. Bibcode:2016PhRvD..93k2008A. S2CID 55485404. arXiv:1604.01710 . doi:10.1103/PhysRevD.93.112008. 
  33. ^ 33.0 33.1 33.2 33.3 33.4 Greenwood & Earnshaw 2016,第108頁.
  34. ^ Miller, M. Michael. (PDF). United States Geological Survey. [2012-03-06]. (原始内容 (PDF)存档于2011-11-12). 
  35. ^ Garfinkel, Yosef. Burnt Lime Products and Social Implications in the Pre-Pottery Neolithic B Villages of the Near East. Paléorient. 1987, 13 (1): 69–76. JSTOR 41492234. doi:10.3406/paleo.1987.4417. 
  36. ^ Williams, Richard. Lime Kilns and Lime Burning. 2004: 4. ISBN 978-0-7478-0596-0. 
  37. ^ Oates, J. A. H. . 2008 [2022-07-11]. ISBN 978-3-527-61201-7. (原始内容存档于2022-07-18). 
  38. ^ 38.0 38.1 Weeks, Mary Elvira; Leichester, Henry M. Discovery of the Elements. Easton, PA: Journal of Chemical Education. 1968: 505–10. ISBN 978-0-7661-3872-8. LCCN 68-15217. 
  39. ^ Davy, H. . Philosophical Transactions of the Royal Society of London. 1808, 98: 333–70 [2022-07-11]. Bibcode:1808RSPT...98..333D. doi:10.1098/rstl.1808.0023 . (原始内容存档于2021-03-22). 
  40. ^ 40.0 40.1 40.2 Greenwood & Earnshaw 2016,第110頁.
  41. ^ 41.0 41.1 Berner, Robert. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature. 2003, 426 (6964): 323–26. Bibcode:2003Natur.426..323B. PMID 14628061. S2CID 4420185. doi:10.1038/nature02131. 
  42. ^ Zeebe. . National Council for Science and the Environment. 2006 [2010-03-13]. (原始内容存档于2011-09-03). 
  43. ^ Walker, James C. G.; Hays, P. B.; Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research: Oceans. 1981-10-20, 86 (C10): 9776–82. Bibcode:1981JGR....86.9776W. ISSN 2156-2202. doi:10.1029/JC086iC10p09776 (英语). 
  44. ^ 黄淑媛; 罗钢; 杨健; 徐刚军; 周军军; 郑庆. 氧含量对超低碳钢炼钢连铸过程夹杂物演变的影响. 炼钢. 2021, 37 (4): 38–48. 
  45. ^ Lakshmi, C. S.; Manders, J. E.; Rice, D. M. Structure and properties of lead–calcium–tin alloys for battery grids. J. Power Sources. 1998, 73 (1): 23–29. ISSN 0378-7753. doi:10.1016/S0378-7753(98)00018-4. 
  46. ^ 46.0 46.1 46.2 Hluchan & Pomerantz 2006,第485-87頁.
  47. ^ 47.0 47.1 Rumack BH. POISINDEX. Information System Micromedex, Inc., Englewood, CO, 2010; CCIS Volume 143. Hall AH and Rumack BH (Eds)
  48. ^ Skulan, J.; Depaolo, D. J.; Owens, T. L. Biological control of calcium isotopic abundances in the global calcium cycle. Geochimica et Cosmochimica Acta. June 1997, 61 (12): 2505–10. Bibcode:1997GeCoA..61.2505S. doi:10.1016/S0016-7037(97)00047-1. 
  49. ^ 49.0 49.1 Skulan, J.; Bullen, T.; Anbar, A. D.; Puzas, J. E.; Shackelford, L.; Leblanc, A.; Smith, S. M. Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clinical Chemistry. 2007, 53 (6): 1155–58. PMID 17463176. doi:10.1373/clinchem.2006.080143 . 
  50. ^ Fantle, M.; Depaolo, D. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim Cosmochim Acta. 2007, 71 (10): 2524–46. Bibcode:2007GeCoA..71.2524F. doi:10.1016/j.gca.2007.03.006. 
  51. ^ Griffith, Elizabeth M.; Paytan, Adina; Caldeira, Ken; Bullen, Thomas; Thomas, Ellen. A Dynamic marine calcium cycle during the past 28 million years. Science. 2008, 322 (12): 1671–74. Bibcode:2008Sci...322.1671G. PMID 19074345. S2CID 206515318. doi:10.1126/science.1163614. 
  52. ^ World Health Organization. World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. 2019. hdl:10665/325771 . WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO. 
  53. ^ Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D Calcium; Ross, A. C.; Taylor, C. L.; Yaktine, A. L.; Del Valle, H. B. ch 6. Tolerable Upper Intake Levels. . Washington, D.C: National Academies Press. 2011: 403–56 [2022-07-12]. ISBN 978-0-309-16394-1. PMID 21796828. doi:10.17226/13050. (原始内容存档于2019-08-31). 
  54. ^ (PDF), European Food Safety Authority, 2006 [2022-07-12], (原始内容 (PDF)存档于2016-03-16) 
  55. ^ Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D Calcium; Ross, A. C.; Taylor, C. L.; Yaktine, A. L.; Del Valle, H. B. ch. 5. Dietary Reference Intakes. . Washington, D.C: National Academies Press. 2011: 345–402 [2022-07-13]. ISBN 978-0-309-16394-1. PMID 21796828. doi:10.17226/13050. (原始内容存档于2019-12-07). 
  56. ^ Balk EM, Adam GP, Langberg VN, Earley A, Clark P, Ebeling PR, Mithal A, Rizzoli R, Zerbini CA, Pierroz DD, Dawson-Hughes B. Global dietary calcium intake among adults: a systematic review. Osteoporosis International. December 2017, 28 (12): 3315–24. PMC 5684325 . PMID 29026938. doi:10.1007/s00198-017-4230-x. 
  57. ^ Sosa Torres, Martha; Kroneck, Peter M.H; "Introduction: From Rocks to Living Cells" pp. 1–32 in "Metals, Microbes and Minerals: The Biogeochemical Side of Life" (2021) pp. xiv + 341. Walter de Gruyter, Berlin. Editors Kroneck, Peter M.H. and Sosa Torres, Martha. doi:10.1515/9783110589771-001
  58. ^ 58.0 58.1 58.2 58.3 58.4 58.5 Hluchan & Pomerantz 2006,第489-94頁.
  59. ^ 59.0 59.1 Hluchan & Pomerantz 2006,第487-89頁.

扩展阅读

  • Greenwood, Norman Neill; Earnshaw, Alan. Chemistry of the elements. 2016. ISBN 978-0-7506-3365-9. OCLC 1040112384 (英语). 
  • Hluchan, Stephen E.; Pomerantz, Kenneth, Calcium and Calcium Alloys, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2006-04-15, doi:10.1002/14356007.a04_515.pub2 
  • 北京师范大学无机化学教研室 等 (编). 《无机化学》 下册. 北京: 高等教育出版社. 2003. ISBN 978-7-04-011583-3. 
  • 武汉大学 等校 (编). 《无机化学》 下册. 北京: 高等教育出版社. 2011. ISBN 978-7-04-004880-3. 

外部連結

  • 元素钙在洛斯阿拉莫斯国家实验室的介紹(英文)
  • EnvironmentalChemistry.com —— 钙(英文)
  • 元素钙在The Periodic Table of Videos(諾丁漢大學)的介紹(英文)
  • 元素钙在Peter van der Krogt elements site的介紹(英文)
  • WebElements.com – 钙(英文)

此條目介紹的是化学元素, 关于與營養學相關, 生物體內的礦物質, 请见, 拼音, ɡài, 注音, ㄍㄞˋ, 英語, calcium, 是一種化學元素, 化學符號为ca, 原子序數为20, 原子量為7001400780000000000, 作为碱土金属, 的化學活性頗高, 暴露于空气下就会形成深色的氧化物和氮化物, 它的物理和化學性質與其較重的同族元素鋇, 和鍶, 相似, 它是地殼中第五豐富的元素, 占地殼總質量3, 也是地殼中第三豐富的金屬, 僅次於鐵和鋁, 地球上最常見的鈣化合物是存在于石灰岩和早期海洋生物的化. 此條目介紹的是化学元素 关于與營養學相關 生物體內的礦物質 请见 钙质 钙 拼音 ɡai 注音 ㄍㄞˋ 英語 Calcium 是一種化學元素 化學符號为Ca 原子序數为20 原子量為7001400780000000000 40 078 u 作为碱土金属 钙的化學活性頗高 暴露于空气下就会形成深色的氧化物和氮化物 它的物理和化學性質與其較重的同族元素鋇 Ba 和鍶 Sr 相似 它是地殼中第五豐富的元素 占地殼總質量3 3 也是地殼中第三豐富的金屬 僅次於鐵和鋁 地球上最常見的鈣化合物是存在于石灰岩和早期海洋生物的化石殘骸的碳酸鈣 石膏 硬石膏 螢石和磷灰石也是鈣的來源 钙的名稱源自拉丁語 calx 意为石灰 钙 20Ca氫 非金屬 氦 惰性氣體 鋰 鹼金屬 鈹 鹼土金屬 硼 類金屬 碳 非金屬 氮 非金屬 氧 非金屬 氟 鹵素 氖 惰性氣體 鈉 鹼金屬 鎂 鹼土金屬 鋁 貧金屬 矽 類金屬 磷 非金屬 硫 非金屬 氯 鹵素 氬 惰性氣體 鉀 鹼金屬 鈣 鹼土金屬 鈧 過渡金屬 鈦 過渡金屬 釩 過渡金屬 鉻 過渡金屬 錳 過渡金屬 鐵 過渡金屬 鈷 過渡金屬 鎳 過渡金屬 銅 過渡金屬 鋅 過渡金屬 鎵 貧金屬 鍺 類金屬 砷 類金屬 硒 非金屬 溴 鹵素 氪 惰性氣體 銣 鹼金屬 鍶 鹼土金屬 釔 過渡金屬 鋯 過渡金屬 鈮 過渡金屬 鉬 過渡金屬 鎝 過渡金屬 釕 過渡金屬 銠 過渡金屬 鈀 過渡金屬 銀 過渡金屬 鎘 過渡金屬 銦 貧金屬 錫 貧金屬 銻 類金屬 碲 類金屬 碘 鹵素 氙 惰性氣體 銫 鹼金屬 鋇 鹼土金屬 鑭 鑭系元素 鈰 鑭系元素 鐠 鑭系元素 釹 鑭系元素 鉕 鑭系元素 釤 鑭系元素 銪 鑭系元素 釓 鑭系元素 鋱 鑭系元素 鏑 鑭系元素 鈥 鑭系元素 鉺 鑭系元素 銩 鑭系元素 鐿 鑭系元素 鎦 鑭系元素 鉿 過渡金屬 鉭 過渡金屬 鎢 過渡金屬 錸 過渡金屬 鋨 過渡金屬 銥 過渡金屬 鉑 過渡金屬 金 過渡金屬 汞 過渡金屬 鉈 貧金屬 鉛 貧金屬 鉍 貧金屬 釙 貧金屬 砈 類金屬 氡 惰性氣體 鍅 鹼金屬 鐳 鹼土金屬 錒 錒系元素 釷 錒系元素 鏷 錒系元素 鈾 錒系元素 錼 錒系元素 鈽 錒系元素 鋂 錒系元素 鋦 錒系元素 鉳 錒系元素 鉲 錒系元素 鑀 錒系元素 鐨 錒系元素 鍆 錒系元素 鍩 錒系元素 鐒 錒系元素 鑪 過渡金屬 𨧀 過渡金屬 𨭎 過渡金屬 𨨏 過渡金屬 𨭆 過渡金屬 䥑 預測為過渡金屬 鐽 預測為過渡金屬 錀 預測為過渡金屬 鎶 過渡金屬 鉨 預測為貧金屬 鈇 貧金屬 鏌 預測為貧金屬 鉝 預測為貧金屬 鿬 預測為鹵素 鿫 預測為惰性氣體 镁 钙 锶钾 钙 钪外觀银白色鈣的原子光譜概況名稱 符號 序數钙 Calcium Ca 20元素類別碱土金属族 週期 區2 4 s標準原子質量40 078 4 电子排布 Ar 4s22 8 8 2歷史發現汉弗里 戴维 1808年 分離漢弗里 戴維 1808年 物理性質物態固态密度 接近室温 1 55 g cm 3熔点時液體密度1 378 g cm 3熔点1115 K 842 C 1548 F沸點1757 K 1484 C 2703 F熔化热8 54 kJ mol 1汽化热154 7 kJ mol 1比熱容25 929 J mol 1 K 1蒸氣壓壓 Pa 1 10 100 1 k 10 k 100 k溫 K 864 956 1071 1227 1443 1755原子性質氧化态 2 1 1 強鹼性 电负性1 00 鲍林标度 电离能第一 589 8 kJ mol 1第二 1145 4 kJ mol 1 第三 4912 4 kJ mol 1 更多 原子半径197 pm共价半径176 10 pm范德华半径231 pm雜項晶体结构面心立方磁序抗磁性磁化率6995399999999999999 40 0 10 6 cm3 mol 2 電阻率 20 C 33 6 n W m熱導率201 W m 1 K 1膨脹係數 25 C 22 3 µm m 1 K 1聲速 細棒 20 C 3810 m s 1杨氏模量20 GPa剪切模量7 4 GPa体积模量17 GPa泊松比0 31莫氏硬度1 75布氏硬度167 MPaCAS号7440 70 2同位素主条目 钙的同位素同位素 丰度 半衰期 t1 2 衰變方式 能量 MeV 產物40Ca 96 941 gt 5 9 1021 年 b b 0 194 40Ar41Ca 微量 1 03 105 年 e 41K42Ca 0 647 穩定 帶22粒中子43Ca 0 135 穩定 帶23粒中子44Ca 2 086 穩定 帶24粒中子45Ca 人造 162 7 天 b 0 258 45Sc46Ca 0 004 gt 2 8 1015 年 b b 0 988 46Ti47Ca 人造 4 536 天 b 0 694 1 99 47Scg 1 297 48Ca 0 187 4 3 1019年 b b 4 274 48Tib 未觀察到 0 0058 48Sc雖然在很久以前就已經發現許多鈣的化合物 但是在十七世紀後才開始對這些化合物的性質有更深一層的了解 单质鈣直到1808年才由命名這個元素的漢弗里 戴維藉由電解其氧化物分離出來 鈣化合物有廣泛的工業應用 钙补充剂 英语 calcium supplementation 在造紙工業中作為漂白劑的使用 水泥和絕緣體的原料以及用于製作肥皂 另一方面 純鈣因為反应性高而用处不多 少量的純鈣用于制造合金 鈣鉛合金也可以做汽車電池 鈣是人體內第五豐富的元素 也是最豐富的金屬元素 4 作為電解質 鈣離子在生物體及細胞內的化學反應中扮演重要的角色 鈣離子是第二信使系統的一份子 也是神經元释放的神經遞質之一 它參與肌肉收縮的過程 也是各種酵素的輔因子 4 细胞外的鈣離子则負責維持細胞膜內外的電位差 合成蛋白质 並在成骨作用中扮演關鍵角色 4 5 目录 1 性质 1 1 归类 1 2 物理性质 1 3 化学性质 1 4 同位素 2 历史 3 存在和生产 3 1 地球化学循环 4 用途 5 食物来源 6 對人體的影響 6 1 功能 6 2 结合 6 3 营养 6 4 骨骼的形成和血清的激素调节 6 5 血清钙水平异常 6 6 骨病 7 危险性 8 参考文献 9 扩展阅读 10 外部連結性质 编辑归类 编辑 钙是有延展性的银色金属 有时描述为浅黄色 性质和更重的碱土金属锶 钡和镭非常相似 一个钙原子有二十个电子 电子排布为 Ar 4s2 和其它碱土金属一样 钙在最外层的s轨道里有两个价电子 极易在化学反应中失去它们 产生有稳定的惰性气体电子层结构的二价阳离子 6 由于CaX2的标准摩尔生成焓远高于CaX CaX2的晶格能也远大于CaX 因此钙化合物也多以二价离子化合物存在 6 碱土金属中 铍和镁的物理和化学性质相似 不过二者与同族的钙 锶 钡相比差别较大 性质分别更像铝和锌 且有贫金属的性质 这使得某些地区对 碱土金属 的传统定义会把它们排除在外 7 物理性质 编辑 钙的熔点是842 C 沸点是1494 C 这些值比相邻周期的镁和锶都高 它的晶体结构和锶一样是面心立方晶系 超过450 C时会转变成和镁一样的六方最密堆积结构 钙的密度为1 55 g cm3 是所有碱土金属中最小的 6 钙比铅硬 但仍然可以用刀切割 虽然按体积计算的话 钙的导电性比铜和铝差 但由于其密度非常低 按质量计算的话钙的导电性就会比铜和铝好 8 尽管钙因为会和空气中的氧气反应 在大多数作为导体的应用中不可用 但有人已考虑将其用于太空 9 化学性质 编辑 钙的化学性质与碱土金属中的锶 钡相似 举个例子 钙和水反应生成氢氧化钙和氢气的速度比镁快 但比锶慢 它也会和空气中的氧气和氮气反应 形成氧化钙和氮化钙的混合物 10 细碎的钙会在空气中自发燃烧 形成氮化物 大块的钙的反应性较低 会和空气中的水蒸气反应 但在湿度低于30 下可以无限期保存 11 2 Ca O 2 2 CaO displaystyle ce 2Ca O2 gt 2CaO 3 Ca N 2 Ca 3 N 2 displaystyle ce 3Ca N2 gt Ca3N2 钙在空气中的缓慢氧化 12 除了简单氧化物CaO以外 钙的过氧化物 CaO2可以由金属钙被高压氧气直接氧化而成 而且有证据表明黄色的超氧化物 Ca O2 2存在 13 14 钙单质与其氧化物会直接与水发生反应 得到氢氧化钙 Ca OH 2 其是一种强碱 碱性弱于锶 钡和碱金属的氢氧化物 15 Ca 2 H 2 O Ca OH 2 H 2 displaystyle ce Ca 2H2O gt Ca OH 2 H2 钙 锶 钡单质及其氧化物会与水剧烈反应 而铍和镁与水的反应十分缓慢 16 钙的四种二卤化物都是已知的 17 无水氯化钙可用作干燥剂 氟化钙是制取HF和F2的原料 18 大多数碱土金属的盐类都难溶于水 碳酸钙 CaCO3 和硫酸钙 CaSO4 都是常见的矿物组成 19 CaCO 3 CaO CO 2 displaystyle ce CaCO3 gt CaO CO2 钙的碳酸盐在受热时 1173 K 分解 20 像锶和钡 以及碱金属和二价的镧系元素铕和镱一样 金属钙可溶于液氨 形成深蓝色溶液 6 由于Ca2 离子较大 所以它的配位数也较高 在像是CaZn13的金属间化合物中甚至能达到24 21 钙会和含氧的螯合剂如EDTA和多磷酸盐 英语 polyphosphate 形成螯合物 这个性质可用于分析化学和在硬水中除去钙离子 在没有空间位阻影响的情况下 越小的碱土金属阳离子形成的配合物越稳定 但当与多齿配体螯合形成大环化合物时 该趋势则相反 19 22 虽然同族的镁可以形成很多常用的有机镁化合物 有机钙化合物却因为更难制造且反应性更强而较少被使用 不过 最近有人已将它们作为可能的催化剂研究 23 24 25 26 27 由于Yb2 102 pm 和Ca2 100 pm 的离子半径相似 有机钙化合物的性质更像有机镱化合物 28 大部分有机钙化合物都只能在低温下合成 而在这些化合物中使用大位阻基团可以增加稳定性 举个例子 二茂钙 Ca C5H5 2只能由钙和二茂汞或是环戊二烯反应而成 而将C5H5基团替换成更大的C5 CH3 5增加了化合物的溶解度 挥发性和动力学稳定性 28 存在于水合氯化钙中的 Ca H2O 6 2 聚合物的结构 显示钙配合物通常有高配位数 同位素 编辑 主条目 鈣的同位素 天然钙有五种稳定同位素 40Ca 42Ca 43Ca 44Ca和46Ca 和半衰期长到可以看作稳定的48Ca 半衰期4 3 1019年 的混合物 钙是第一种有六个天然同位素的元素 10 在这六种同位素中 40Ca最常见 占了天然钙的96 941 它是硅燃烧过程中产生的 也是质子数和中子数相等的稳定同位素中最重的 此外 原生同位素 英语 primordial nuclide 40K的衰变也使40Ca的数量不断增加 40Ca捕获一个a粒子会产生不稳定的44Ti 后者迅速发生两次电子捕获 生成稳定的44Ca 它是第二常见的钙同位素 占了2 806 29 30 剩下的四种同位素42Ca 43Ca 46Ca和48Ca较为稀有 它们在天然钙的含量都不足1 钙较轻的四种同位素是氧燃烧过程和硅燃烧过程的主要产物 而剩下的两种重同位素则需要通过中子捕获产生 46Ca主要在 热 s 过程中 短寿的45Ca捕获一个中子而成的 而48Ca则是Ia超新星的r 过程产生的 29 30 在分别多出六个和八个中子的核素中 46Ca和48Ca是其中最轻的 稳定 核素 虽然48Ca的中子很多 但它的质子数20和中子数28都是幻数 所以非常稳定 它b衰变成48Sc的过程因为自旋的严重失配而受到很大阻碍 48Ca的自旋为0 而48Sc的自旋为6 所以衰变被角动量的转化所禁止 因此 48Ca的衰变方式是双b衰变成48Ti 它也是已知会双b衰变的同位素里最轻的 31 32 46Ca理论上也可以双b衰变成46Ti 但这个过程仍未被观察到 最轻也最常见的40Ca的质子数和中子数也都是幻数 理论上可以双电子捕获 英语 double electron capture 成40Ar 但这也一样仍未被观察到 40Ca和46Ca的半衰期下限分别为5 9 1021年和2 8 1015年 31 除开几乎稳定的48Ca以外 钙最稳定的放射性同位素是41Ca 它通过电子捕获衰变成41K 半衰期约为十万年 自然界中存在痕量的41Ca 它们是由40Ca中子活化而成的 30 其它从35Ca到60Ca的放射性钙同位素也是已知的 它们都比41Ca更短寿 在这之中最稳定的是45Ca 半衰期163天 和47Ca 半衰期4 54天 比42Ca轻的钙同位素会正b衰变成钾的同位素 而比44Ca的钙同位素会负b衰变成钪的同位素 不过当这些同位素逼近原子核滴线时 质子发射和中子发射会变成它们的主要衰变方式 31 历史 编辑 由石灰泥 英语 lime plaster 制成的安加扎勒雕像 虽然在很久以前就已经发现许多钙的化合物 但是在十七世纪后才开始对这些化合物的性质有更深一层的了解 33 早在公元前7000年 石灰就被用作建材 34 和雕像的熟石膏 英语 lime plaster 35 第一个石灰窑 英语 lime kiln 可以追溯到公元前2500年 于美索不达米亚的哈法耶 英语 Khafajah 被发现 36 37 石膏 CaSO4 2H2O 是胡夫金字塔的建材 也是图坦卡蒙陵墓中熟石膏的材料 古罗马人则通过使用加热石灰岩 CaCO3 产生的石灰砂浆 英语 lime mortar 作为建材 钙的名称 calcium 源自拉丁文 calx 意为石灰 33 维特鲁威注意到煅烧石灰岩产生的石灰会比原本的石灰岩轻 并把这个现象归咎于水的沸腾 1755年 约瑟夫 布拉克证明这是因为煅烧过程会释放二氧化碳气体 而它并没有被古罗马人发现到 38 钙和同族的镁 锶和钡都是由汉弗里 戴维在1808年分离的 继约恩斯 贝尔塞柳斯和马格努斯 马丁 阿夫 庞廷电解的工作后 戴维通过将金属氧化物与氧化汞的混合物放在铂板上作为阳极 阴极则是部分浸入汞中的铂丝 之后 他通过电解产生钙汞齐和镁汞齐 然后蒸馏掉汞得到金属钙和镁 33 39 不过 纯钙不能通过这种方法大量制备 直到一个多世纪后才发现了一种在商业上可行的生产方法 38 存在和生产 编辑 位于土耳其棉花堡的洞石梯田 钙是地球地壳中第五丰富的元素 也是第三丰富的金属 仅次于铝和铁 33 它也是月陆中第四丰富的元素 11 碳酸钙沉积岩作为以前的海洋生物的化石残骸 以两种形式遍布地球表面 分别为三方晶系的方解石 更常见 和正交晶系的霞石 在温带海域中形成 珊瑚 贝壳和珍珠的主要成分都是碳酸钙 除了方解石和霞石 其它重要的钙矿包括石膏 CaSO4 2H2O 硬石膏 CaSO4 萤石 CaF2 和磷灰石 Ca5 PO4 3F 33 钙的主要生产者是中国 每年约10000至12000吨 俄罗斯 每年约6000至8000吨 和美国 每年约2000至4000吨 加拿大和法国也是次要生产国 2005年 全球钙产量约为24000吨 其中大约一半被美国使用 9 俄罗斯和中国仍然使用戴维的电解方法来生产钙 但用了熔融氯化钙代替氧化钙 9 因为钙的反应性低于锶或钡 所以和空气反应产生的氧化物 氮化物层是稳定的 可以车床加工 40 在美国和加拿大 钙则是由铝在高温下还原石灰而成的 9 地球化学循环 编辑 主条目 碳酸盐 硅酸盐循环 英语 Carbonate silicate cycle 钙循环 英语 Calcium cycle 提供了地质构造运动 英语 Tectonics 气候和碳循环之间的联系 山脉的隆起会使花岗岩等含钙岩石经受化学风化作用 并将Ca2 离子释放到地表水中 这些离子之后会被运输到海洋 和海水溶解的CO2反应生成石灰石 CaCO3 沉降到海底并合并到新的岩石中 海水溶解的CO2 碳酸根和碳酸氢根都属于 溶解无机碳 DIC 41 实际反应要更复杂 涉及CO2和水在海水pH下反应而成的碳酸氢根离子 HCO 3 Ca2 2HCO 3 CaCO3 s CO2 H2 O在海水的pH下 大部分溶解的CO2都会立刻变成HCO 3 该反应导致一分子CO2从海洋或大气净传输到岩石圈 42 反应的结果是化学风化释放的每个Ca2 离子最终会从地表 大气 海洋 土壤和生物体 中去除一个CO2分子 并将其储存到碳酸盐矿物中停留数亿年 因此 岩石中钙的风化作用会清除海洋和大气中的CO2 对气候产生强烈的长期影响 41 43 用途 编辑参见 钙补充剂 英语 Calcium supplement 由于其对氧和硫的化学亲和性很强 金属钙最大的用处是炼钢 44 它的氧化物和硫化物一旦形成 就会以夹杂物的形式从钢中浮出 处理后这些夹杂物就会分散在整个钢中并变成小球状 从而提高了可铸性 清洁度和机械性能 钙也可以生产无需维护的汽车蓄电池 在这些蓄电池中使用了0 1 钙铅合金来代替常用的锑铅合金 45 减少了失水量和自放电量 46 由于存在膨胀和开裂的风险 有时还会将铝加入这些合金中 钙铅合金也用于铸造 46 钙还用于强化用于轴承的铝合金 控制铸铁中的石墨碳以及去除铅中的铋杂质 40 金属钙还存在于一些沟渠清洁剂中 它遇水产生的热和氢氧化钙可以皂化脂肪和液化阻塞下水道的蛋白质 例如头发中的角蛋白 47 除了炼钢 钙的反应性还可以用于从高纯氩气中去除氮气 也是氮气和氧气的吸气剂 英语 getter 它也用于在铬 锆 钍和铀的生产中充当还原剂 钙也可以用来储存氢气 因为它与氢气反应形成氢化钙固体 氢气可以很容易地从其中重新放出 40 据报道 钙同位素在形成矿物时观察到类似 分馏 的现象 1997年 Skulan和DePaolo观察到 48 钙矿中的钙同位素略比矿物溶液中的钙同位素轻 这一研究成为了医学和古海洋学中类似应用的基础 因此在骨骼被钙化的动物中 软组织的钙同位素丰度可以反映骨骼矿物质形成和溶解的相对速率 49 在人体中 尿液中钙同位素丰度的变化已被证明与骨矿物质平衡的变化有关 当骨头形成的速率比固体被吸收的速率快时 软组织的44Ca 40Ca比例会增加 反之亦然 因为这种关系 测量尿液或血液的钙同位素可能有助于早期检测骨质疏松等代谢性骨病 49 类似的系统也存在于海水中 当矿物沉淀去除Ca2 的速率超过新的钙流向海洋的速率时 海水的44Ca 40Ca的比例趋于上升 1997年 Skulan和DePaolo提出了海水44Ca 40Ca随地质时间变化的第一个证据 以及对这些变化的理论解释 最近的论文证实了这一观察结果 表明海水中的Ca2 浓度不是恒定的 并且海洋在钙输入和输出方面从未处于 稳定状态 这个发现具有重要的气候学意义 因为海洋的钙循环与碳循环密切相关 50 51 很多钙化合物用于食品 药品和医药等用处 人们会通过添加乳酸钙 英语 Calcium lactate 焦磷酸钙和磷酸钙来补充食物中的钙和磷 而磷酸钙也用作牙膏的抛光剂和抗酸药 乳糖酸钙是用作药物的悬浮剂的白色粉末 磷酸二氢钙在烘培中可用作膨松剂 亚硫酸钙在造纸中用作漂白剂和消毒剂 硅酸钙是橡胶的强化剂 而乙酸钙用于制造肥皂和合成树脂 46 钙列于世界卫生组织基本药物标准清单当中 52 食物来源 编辑富含钙的食物包括如优格和起司的乳制品 沙丁鱼 三文鱼 大豆制品 羽衣甘蓝和补充了钙的谷物片 5 由于担心大量摄入钙导致的长期副作用 如动脉钙化和肾结石 美国国家医学院 IOM 和欧洲食品安全局 EFSA 都对钙设了可耐受最高摄入量 ULs 美国国家医学院定的值是9 18岁不超过3克 日 19 50岁不超过2 5克 日 51岁以上不超过2克 日 53 欧洲食品安全局定的值对所有成年人都是2 5克 日 但因为儿童和青少年的信息不足而没有确定他们的可耐受最高摄入量 54 對人體的影響 编辑主条目 鈣營養 美国国家医学院制定的钙的推荐膳食摄入量 55 年龄 每天的钙摄入量 毫克 1 3岁 7004 8岁 10009 18岁 130019 50岁 1000 gt 51岁 1000孕期 1000哺乳期 1000 全球成年人的钙摄入量 毫克 日 56 lt 400 400 500 500 600 600 700 700 800 800 900 900 1000 gt 1000 功能 编辑 钙是人体大量需要的生命元素 4 5 Ca2 离子起到电解质的作用 对肌肉 循环和消化系统的健康至关重要 此外 钙对于骨骼的构建是必不可少的 而且还参与了血细胞的合成 钙也调节肌肉收缩 神经传导和血液的凝固 Ca2 离子可以和很多有机化合物 尤其是蛋白质 形成稳定的配合物 因此它才能发挥这种作用 钙化合物的溶解度的范围很大 使骨骼得以形成 4 57 结合 编辑 钙离子和蛋白质的结合方式有三种 第一种方式是和谷氨酸或天冬氨酸的羰基结合 第二种方式是和磷酸化的丝氨酸 酪氨酸或苏氨酸结合 第三种方式则是和g 羧基化的氨基酸螯合 胰蛋白酶是一种消化酶 它使用第一种结合方式 而骨钙蛋白是一种骨基质蛋白 它使用第三种结合方式 58 一些像是骨桥蛋白和骨涎蛋白等骨基质蛋白同时使用第一种和第二种结合方式 和钙结合是酶常见的激活方式 其它一些酶的激活方式则是与结合了钙的酶结合 钙还与细胞膜的磷脂层结合 锚定与细胞表面相关的蛋白质 58 营养 编辑 钙是复合维生素的常见成分 4 但在里面的是哪种钙化合物可能会影响其生物利用度 柠檬酸钙 苹果酸钙和乳酸钙的生物利用度都很高 而草酸钙的生物利用度较低 其它可用的钙化合物包括碳酸钙 柠檬酸苹果酸钙 英语 calcium citrate malate 和葡萄糖酸钙 4 摄入的钙有约三分之一会以游离离子的形式被肠道吸收 然后由肾脏调节血浆钙水平 4 骨骼的形成和血清的激素调节 编辑 甲状旁腺激素和维生素D都可以通过允许和增强钙离子沉积来促进骨骼的形成 从而在不影响骨量或矿物质含量的情况下实现快速骨转换 4 当血浆钙水平下降时 细胞表面受体会被激活并分泌甲状旁腺激素 然后通过从肾 肠和骨细胞中提取钙来刺激钙进入血浆 甲状旁腺激素的骨形成作用会被降钙素拮抗 其分泌随着血浆钙水平的增加而增加 58 血清钙水平异常 编辑 过量摄入钙会导致高血钙症 不过因为肠道对钙的吸收效率相当低 高血钙症更可能是因为甲状旁腺激素 PTH 分泌过多或维生素D摄入过多引起的 它们都有利于钙的吸收 所有这些情况都会导致过量的钙沉积在心脏 血管或肾脏中 高血钙症的症状包括厌食 恶心 呕吐 记忆力减退 精神错乱 肌肉无力 排尿增多 脱水和代谢性骨病 58 长期高血钙症通常会导致软组织的钙化 并造成严重的后果 钙化会导致血管壁丧失弹性和血流中断 进而产生易损斑块 英语 Vulnerable plaque 和血栓 相反的 钙或维生素D摄入不足会导致低血钙症 常由甲状旁腺激素分泌不足或细胞内的PTH受体有缺陷引起 低血钙症的症状包括神经肌肉兴奋 这可能会导致手足强直 英语 tetany 和心脏组织传导性的破坏 58 骨病 编辑 由于骨骼的发育需要钙 所以很多骨病都可以追溯到骨骼组织中的有机基质或羟基磷灰石的结构 骨质疏松是每单位体积骨骼中矿物质含量的减少 可以通过补充钙 维生素D和双膦酸盐 英语 Bisphosphonate 来治疗 4 5 钙 维生素D和磷酸盐摄入不足会导致骨质软化 58 危险性 编辑钙 危险性GHS危险性符号 GHS提示词 DangerH 术语 H261P 术语 P231 232NFPA 704 3 0 1 若非注明 所有数据均出自标准状态 25 100 kPa 下 金属钙会与水和酸剧烈反应 所以接触人体中的水份后会造成严重的腐蚀 59 吞下金属钙会严重腐蚀口腔 食道和胃 甚至可能致命 47 长期接触钙会不会产生明显的不利影响仍不明确 59 参考文献 编辑 Krieck Sven Gorls Helmar Westerhausen Matthias Mechanistic Elucidation of the Formation of the Inverse Ca I Sandwich Complex thf 3Ca m C6H3 1 3 5 Ph3 Ca thf 3 and Stability of Aryl Substituted Phenylcalcium Complexes Journal of the American Chemical Society 2010 132 35 100818110534020 PMID 20718434 doi 10 1021 ja105534w Weast Robert CRC Handbook of Chemistry and Physics Boca Raton Florida Chemical Rubber Company Publishing 1984 E110 ISBN 0 8493 0464 4 柯清水 編著 新世紀化工化學辭典 The new century dictionary of chemical engineering and chemistry 第一版 正文書局 2000 355 ISBN 957 40 0253 5 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 Calcium Linus Pauling Institute Oregon State University Corvallis Oregon 1 September 2017 31 August 2019 原始内容存档于2020 06 16 5 0 5 1 5 2 5 3 Calcium Fact Sheet for Health Professionals Office of Dietary Supplements US National Institutes of Health 9 July 2019 31 August 2019 原始内容存档于2018 03 17 6 0 6 1 6 2 6 3 Greenwood amp Earnshaw 2016 第112 13頁 Parish R V The Metallic Elements London Longman 1977 34 ISBN 978 0 582 44278 8 Ropp Richard C Encyclopedia of the Alkaline Earth Compounds 2012 12 15 2022 07 09 ISBN 978 0 444 59553 9 原始内容存档于2021 04 27 9 0 9 1 9 2 9 3 Hluchan amp Pomerantz 2006 第484頁 10 0 10 1 C R Hammond The elements pp 4 35 in Lide D R 编 CRC Handbook of Chemistry and Physics 86th Boca Raton FL CRC Press 2005 ISBN 0 8493 0486 5 11 0 11 1 Hluchan amp Pomerantz 2006 第483頁 北京师范大学无机化学教研室 等 无机化学 下册 第651頁 sfn error no target CITEREF北京师范大学无机化学教研室 等 无机化学 下册 help Greenwood amp Earnshaw 2016 第119頁 Nils Gosta Vannerberg F Albert Cotton 编 Peroxides Superoxides and Ozonides of the Metals of Groups Ia IIa and IIb Progress in Inorganic Chemistry 4 International Journal of Quantum Chemistry 01 Jan 1962 doi 10 1002 9780470166055 ch3 请检查 date 中的日期值 帮助 Greenwood amp Earnshaw 2016 第121頁 武汉大学 等校 无机化学 下册 第796頁 sfn error no target CITEREF武汉大学 等校 无机化学 下册 help Greenwood amp Earnshaw 2016 第117頁 北京师范大学无机化学教研室 等 无机化学 下册 第662頁 sfn error no target CITEREF北京师范大学无机化学教研室 等 无机化学 下册 help 19 0 19 1 Greenwood amp Earnshaw 2016 第122 15頁 北京师范大学无机化学教研室 等 无机化学 下册 第661頁 sfn error no target CITEREF北京师范大学无机化学教研室 等 无机化学 下册 help Greenwood amp Earnshaw 2016 第115頁 Cynthia K Schauer Oren P Anderson Highly polydentate ligands 5 Structures of alkaline earth complexes of the calcium selective ligand EGTA4 H4EGTA 3 12 Bis carboxymethyl 6 9 dioxa 3 12 diazatetradecanedioic acid Inorganic Chemistry 1988 27 18 3118 3130 doi 10 1021 ic00291a015 Harder S Feil F Knoll K Novel Calcium Half Sandwich Complexes for the Living and Stereoselective Polymerization of Styrene Angew Chem Int Ed 2001 40 22 4261 64 PMID 29712082 doi 10 1002 1521 3773 20011119 40 22 lt 4261 AID ANIE4261 gt 3 0 CO 2 J Crimmin Mark R Casely Ian J Hill Michael S Calcium Mediated Intramolecular Hydroamination Catalysis Journal of the American Chemical Society 2005 127 7 2042 43 PMID 15713071 doi 10 1021 ja043576n Jenter Jelena Koppe Ralf Roesky Peter W 2 5 Bis N 2 6 diisopropylphenyl iminomethyl pyrrolyl Complexes of the Heavy Alkaline Earth Metals Synthesis Structures and Hydroamination Catalysis Organometallics 2011 30 6 1404 13 doi 10 1021 om100937c Arrowsmith Merle Crimmin Mark R Barrett Anthony G M Hill Michael S Kociok Kohn Gabriele Procopiou Panayiotis A Cation Charge Density and Precatalyst Selection in Group 2 Catalyzed Aminoalkene Hydroamination Organometallics 2011 30 6 1493 1506 doi 10 1021 om101063m Penafiel J Maron L Harder S Early Main Group Metal Catalysis How Important is the Metal Angew Chem Int Ed 2014 54 1 201 06 PMID 25376952 doi 10 1002 anie 201408814 28 0 28 1 Greenwood amp Earnshaw 2016 第136 37頁 29 0 29 1 Cameron A G W Abundance of the Elements in the Solar System PDF Space Science Reviews 1973 15 1 121 46 2022 07 10 Bibcode 1973SSRv 15 121C S2CID 120201972 doi 10 1007 BF00172440 原始内容 PDF 存档于2016 12 28 30 0 30 1 30 2 Clayton Donald Handbook of Isotopes in the Cosmos Hydrogen to Gallium Cambridge University Press 2003 184 98 ISBN 9780521530835 31 0 31 1 31 2 Audi G Kondev F G Wang M Huang W J Naimi S The NUBASE2016 evaluation of nuclear properties PDF Chinese Physics C 2017 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Arnold R et al Measurement of the double beta decay half life and search for the neutrinoless double beta decay of 48Ca with the NEMO 3 detector Physical Review D 2016 93 11 112008 Bibcode 2016PhRvD 93k2008A S2CID 55485404 arXiv 1604 01710 doi 10 1103 PhysRevD 93 112008 33 0 33 1 33 2 33 3 33 4 Greenwood amp Earnshaw 2016 第108頁 Miller M Michael Commodity report Lime PDF United States Geological Survey 2012 03 06 原始内容 PDF 存档于2011 11 12 Garfinkel Yosef Burnt Lime Products and Social Implications in the Pre Pottery Neolithic B Villages of the Near East Paleorient 1987 13 1 69 76 JSTOR 41492234 doi 10 3406 paleo 1987 4417 Williams Richard Lime Kilns and Lime Burning 2004 4 ISBN 978 0 7478 0596 0 Oates J A H Lime and Limestone Chemistry and Technology Production and Uses 2008 2022 07 11 ISBN 978 3 527 61201 7 原始内容存档于2022 07 18 38 0 38 1 Weeks Mary Elvira Leichester Henry M Discovery of the Elements Easton PA Journal of Chemical Education 1968 505 10 ISBN 978 0 7661 3872 8 LCCN 68 15217 Davy H Electro chemical researches on the decomposition of the earths with observations on the metals obtained from the alkaline earths and on the amalgam procured from ammonia Philosophical Transactions of the Royal Society of London 1808 98 333 70 2022 07 11 Bibcode 1808RSPT 98 333D doi 10 1098 rstl 1808 0023 原始内容存档于2021 03 22 40 0 40 1 40 2 Greenwood amp Earnshaw 2016 第110頁 41 0 41 1 Berner Robert The long term carbon cycle fossil fuels and atmospheric composition Nature 2003 426 6964 323 26 Bibcode 2003Natur 426 323B PMID 14628061 S2CID 4420185 doi 10 1038 nature02131 Zeebe Marine carbonate chemistry National Council for Science and the Environment 2006 2010 03 13 原始内容存档于2011 09 03 Walker James C G Hays P B Kasting J F A negative feedback mechanism for the long term stabilization of Earth s surface temperature Journal of Geophysical Research Oceans 1981 10 20 86 C10 9776 82 Bibcode 1981JGR 86 9776W ISSN 2156 2202 doi 10 1029 JC086iC10p09776 英语 黄淑媛 罗钢 杨健 徐刚军 周军军 郑庆 氧含量对超低碳钢炼钢连铸过程夹杂物演变的影响 炼钢 2021 37 4 38 48 Lakshmi C S Manders J E Rice D M Structure and properties of lead calcium tin alloys for battery grids J Power Sources 1998 73 1 23 29 ISSN 0378 7753 doi 10 1016 S0378 7753 98 00018 4 46 0 46 1 46 2 Hluchan amp Pomerantz 2006 第485 87頁 47 0 47 1 Rumack BH POISINDEX Information System Micromedex Inc Englewood CO 2010 CCIS Volume 143 Hall AH and Rumack BH Eds Skulan J Depaolo D J Owens T L Biological control of calcium isotopic abundances in the global calcium cycle Geochimica et Cosmochimica Acta June 1997 61 12 2505 10 Bibcode 1997GeCoA 61 2505S doi 10 1016 S0016 7037 97 00047 1 49 0 49 1 Skulan J Bullen T Anbar A D Puzas J E Shackelford L Leblanc A Smith S M Natural calcium isotopic composition of urine as a marker of bone mineral balance Clinical Chemistry 2007 53 6 1155 58 PMID 17463176 doi 10 1373 clinchem 2006 080143 Fantle M Depaolo D Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A The Ca2 aq calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments Geochim Cosmochim Acta 2007 71 10 2524 46 Bibcode 2007GeCoA 71 2524F doi 10 1016 j gca 2007 03 006 Griffith Elizabeth M Paytan Adina Caldeira Ken Bullen Thomas Thomas Ellen A Dynamic marine calcium cycle during the past 28 million years Science 2008 322 12 1671 74 Bibcode 2008Sci 322 1671G PMID 19074345 S2CID 206515318 doi 10 1126 science 1163614 World Health Organization World Health Organization model list of essential medicines 21st list 2019 Geneva World Health Organization 2019 hdl 10665 325771 WHO MVP EMP IAU 2019 06 License CC BY NC SA 3 0 IGO Institute of Medicine US Committee to Review Dietary Reference Intakes for Vitamin D Calcium Ross A C Taylor C L Yaktine A L Del Valle H B ch 6 Tolerable Upper Intake Levels Dietary Reference Intakes for Calcium and Vitamin D Washington D C National Academies Press 2011 403 56 2022 07 12 ISBN 978 0 309 16394 1 PMID 21796828 doi 10 17226 13050 原始内容存档于2019 08 31 Tolerable Upper Intake Levels For Vitamins And Minerals PDF European Food Safety Authority 2006 2022 07 12 原始内容 PDF 存档于2016 03 16 Institute of Medicine US Committee to Review Dietary Reference Intakes for Vitamin D Calcium Ross A C Taylor C L Yaktine A L Del Valle H B ch 5 Dietary Reference Intakes Dietary Reference Intakes for Calcium and Vitamin D Washington D C National Academies Press 2011 345 402 2022 07 13 ISBN 978 0 309 16394 1 PMID 21796828 doi 10 17226 13050 原始内容存档于2019 12 07 Balk EM Adam GP Langberg VN Earley A Clark P Ebeling PR Mithal A Rizzoli R Zerbini CA Pierroz DD Dawson Hughes B Global dietary calcium intake among adults a systematic review Osteoporosis International December 2017 28 12 3315 24 PMC 5684325 PMID 29026938 doi 10 1007 s00198 017 4230 x Sosa Torres Martha Kroneck Peter M H Introduction From Rocks to Living Cells pp 1 32 in Metals Microbes and Minerals The Biogeochemical Side of Life 2021 pp xiv 341 Walter de Gruyter Berlin Editors Kroneck Peter M H and Sosa Torres Martha doi 10 1515 9783110589771 001 58 0 58 1 58 2 58 3 58 4 58 5 Hluchan amp Pomerantz 2006 第489 94頁 59 0 59 1 Hluchan amp Pomerantz 2006 第487 89頁 扩展阅读 编辑Greenwood Norman Neill Earnshaw Alan Chemistry of the elements 2016 ISBN 978 0 7506 3365 9 OCLC 1040112384 英语 Hluchan Stephen E Pomerantz Kenneth Calcium and Calcium Alloys Weinheim Germany Wiley VCH Verlag GmbH amp Co KGaA 2006 04 15 doi 10 1002 14356007 a04 515 pub2 北京师范大学无机化学教研室 等 编 无机化学 下册 北京 高等教育出版社 2003 ISBN 978 7 04 011583 3 武汉大学 等校 编 无机化学 下册 北京 高等教育出版社 2011 ISBN 978 7 04 004880 3 外部連結 编辑元素钙在洛斯阿拉莫斯国家实验室的介紹 英文 EnvironmentalChemistry com 钙 英文 元素钙在The Periodic Table of Videos 諾丁漢大學 的介紹 英文 元素钙在Peter van der Krogt elements site的介紹 英文 WebElements com 钙 英文 取自 https zh wikipedia org w index php title 钙 amp oldid 75370926, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。