fbpx
维基百科

量子生物学

量子生物学是利用量子理论来研究生命科学[1]的一门学科。该学科包含利用量子力学研究生物过程和分子动态结构。利用量子生物学研究量子水平的分子动态结构和能量转移,如果所得结果与宏观的生物学现象相吻合且很难用其他学科的研究重复,则这一研究结果较为可信[2]

量子生物化学和光合过程的量子研究已得到了可核查的重要的结果。尤其是光合作用中,对于俘获光子后发生的分步的、对质子的量子式释放,利用量子生物学的理论,已获得显著的研究进展(相关理论涉及到较为复杂的光系统II)。此外,实验和理论的发现都支持酶促反应中包含量子穿隧机制。将能量转化为化学能(可用于化学转化)的生物学过程在实质上都是量子力学过程。这些过程包含化学反应、光俘获、电子激发态的形成、激发能的转移和化学过程(如光合作用及细胞呼吸)中电子及质子(离子)的转移[3]。量子生物学以量子力学效应为根据,借助数学计算,对生物学相互作用进行模拟[4]奧地利出生的量子物理学家数理生物学家埃尔温·薛定谔早在1946年就提出了用量子理论研究遗传系统的需求,理论生物学家罗伯特·罗森在1961年接着给出了一份详细、正式的研究量子遗传学的办法。在这方面的一个仍未解决的存在争议的问题是:量子效应生物系统中的非平凡/通用角色(即不受限于分子性质)究竟是什么?[5][6][7]然而,新近关于转录的研究与转录酶对于相干态双链DNA的量子信息处理是一致的[8][9]

研究内容 编辑

相关量子过程被研究的生物学现象主要包括对辐射的频率特异性吸收(出现在光合作用[10]视觉系统等内)[11]化学能机械能的转化[12]动物磁感應[13]及许多细胞过程中的布朗马达[14]。该领域还在积极地研究磁场鸟类导航的量子分析[15]并可能为许多生物体昼夜节律生理节律)的研究提供线索[16]

最近的研究已经确定了在光合作用的光收获阶段,不同的色素的激发态之间的量子相干性纠缠[17][18]尽管这一阶段的光合作用效率非常高,但是目前仍不清楚这些量子效应究竟如何,或者是否是生物学上相关的。[19]

参见 编辑

  • 时间生物学
  • 昼夜节律
  • 精神-肉体的量子问题英语Consciousness causes collapse
  • 全脑理论英语Holonomic brain theory
  • 心理科学基金会英语Mind Science Foundation
  • 罗杰·彭罗斯
  • 钱百敦
  • Alberte Pullman英语Alberte Pullman
  • Bernard Pullman英语Bernard Pullman
  • 史都華·哈默洛夫
  • Karl Pribram英语Karl H. Pribram
  • Evan Harris Walker英语Evan Harris Walker
  • 量子进化论英语Quantum evolution (alternative)
  • 量子化学电脑程序
  • 生命的量子方面英语Quantum Aspects of Life》(Quantum Aspects of Life
  • 生命是什么》(What Is Life?

参考资料 编辑

  • W.G. Cooper, "Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states." BioSystems, 97, pp. 73–89, 2009.
  • W.G. Cooper, "Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited bacteriophage T4." Biochem. Genet. 47, 892, 2009; doi:10.1007/s10528-009-9293-8.
  • Derek Abbott, Julio Gea-Banacloche, Paul C. W. Davies, Stuart Hameroff, Anton Zeilinger, Jens Eisert, Howard M. Wiseman, Sergey M. Bezrukov, and Hans Frauenfelder, "Plenary debate: quantum effects in biology―trivial or not?" Fluctuation and Noise Letters, 8(1), pp. C5-C26, 2008.
  • F. H. Thaheld, "An interdisciplinary approach to certain fundamental issues in the fields of physics and biology: towards a unified theory" BioSystems, 80, pp. 41–56, 2005.
  • J. Gilmore and R. H. McKenzie, "Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent," Journal of Physics: Condensed Matter, 17(10), pp. 1735–1746, 2005.
  • S. Hameroff and J. Tuszynski, "Quantum states in proteins and protein assemblies: the essence of life?" Proc. SPIE Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II, Eds. D. Abbott, S.M. Bezrukov, A. Der, and A. Sánchez, 5467, pp. 27–41, Canary Islands, 2004. p
  • P.C.W. Davies, "Does quantum mechanics play a non-trivial role in life?" BioSystems, 78, pp. 69–79, 2004.
  • A. F. Rocha, E. Massad and F. A. B. Coutinho, "Can the human brain do quantum computing?" Medical Hypotheses, 63, pp. 895–899, 2004.
  • A. U. Igamberdiev, "Quantum computation, non-demolition measurements, and reflective control in living systems," BioSystems, 77, pp. 47–56, 2004.
  • S. R. Hameroff, "A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation," BioSystems, 77, pp. 119–136, 2004.
  • Z.-X. Liang and J. P. Klinman, "Structural bases of hydrogen tunneling in enzymes: progress and puzzles," Current Opinion in Structural Biology, 14, pp. 468–655, 2004.
  • P.C.W. Davies, "Emergent biological principles and the computational properties of the universe," Complexity, 10(2), pp. 11–15, 2004.
  • Erwin Schrodinger. What is Life ?,

Cambridge, 1946.

  • C. W. Smith, "Quanta and coherence effects in water and living systems," The Journal of Alternative and Complementary Medicine, 10(1), pp. 69–78, 2004.
  • L. Hackermuller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, and M. Arndt, "Wave nature of biomolecules and fluorofullerenes," Physical Review Letters, 91(9), 090408, 2003.
  • O. Nariz, M. Arndt, and A. Zeilinger, "Quantum interference experiments with large molecules," American Journal of Physics, 71(4), pp. 319–325, 2003.
  • S. Axelsson, "Perspectives on handedness, life and physics," Medical Hypotheses, 61(2), pp. 267–274, 2003.
  • S. R. Hameroff, A. Nip, M. Porter, and J. Tuszynski, "Conduction pathways in microtubules, biological quantum computation, and consciousness," BioSystems, 64, pp. 146–168, 2002.
  • V. Helms, "Electronic excitations of biomolecules studied by quantum chemistry," Current Opinion in Structural Biology, 12, pp. 169–175, 2002.
  • S. M. Hitchcock, "Photosynthetic quantum computers," arXiv:quant-ph/0108087, 2001.
  • V. Gogonea, D. Suarez, A. van der Vaart and K. M. Merz, "New developments in applying quantum mechanics to proteins," Current Opinion in Structural Biology, 11, pp. 217–223, 2001.
  • M. Kameyama, "Quantum cellular biology: a curious example of a cat," Medical Hypotheses, 57(3), pp. 358–360, 2001.
  • M. Tegmark, "Why the brain is probably not a quantum computer," Information Sciences, 128, pp. 155–179, 2000.
  • K. Matsuno, "Is there a biology of quantum information? ," BioSystems, 55, pp. 39–46, 2000.
  • M. Tegmark, "The importance of quantum decoherence in brain processes," Physical Review E, 61(4), pp. 4194–4206, 2000.
  • H. S. Green, "Measurement and the observer," Chapter 8 in Information Theory and Quantum Physics: Physical Foundations for Understanding the Conscious Process, Springer, pp. 172–209, 2000.
  • E. Bieberich, "Probing quantum coherence in a biological system by means of DNA amplification," BioSystems, 57, pp. 109–124, 2000.
  • A. Kohen and J. Klinman, "Hydrogen tunneling in biology," Chemistry and Biology, 6, pp. R191-R198, 1999.
  • W. J. Meggs, "Biological homing: hypothesis for a quantum effect that leads to the existence of life," Medical Hypotheses, 51, pp. 503–506, 1998.
  • M. Tegmark, "Does the universe in fact contain almost no information?" Foundations of Physics Letters, 9(1), pp. 25–42, 1996.
  • S. Hameroff and R. Penrose, "Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness," Mathematics and Computers in Simulation, 40, pp. 453–480, 1996.
  • D. V. Nanopoulos, "Theory of brain function, quantum mechanics and superstrings," arXiv: hep-ph/950374, 1995.


注释 编辑

  1. ^ Tae-Chang Kim, Eric Chaisson. Science, Education and Future Generations. Taylor & Francis Ltd. 1999: 26. ISBN 978-9057005381. 
  2. ^ Ian Brown, Zengliang Yu, Thiraphat Vilaithong. Introduction to Ion Beam Biotechnology. Springer-Verlag New York Inc. 2005: 97. ISBN 978-0387255316. 
  3. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/ (页面存档备份,存于互联网档案馆
  4. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm (页面存档备份,存于互联网档案馆) Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
  5. ^ H.M. Wiseman, J. Eisert Nontrivial quantum effects in biology: A skeptical physicists' view arXiv:0705.1232v2 [physics.gen-ph]
  6. ^ Davies PC.Does quantum mechanics play a non-trivial role in life? Biosystems. 2004 Dec;78(1-3):69-79.
  7. ^ Ogryzko VV. Erwin Schrödinger, Francis Crick and epigenetic stability.Biol Direct. 2008 Apr 17;3:15.[1] (页面存档备份,存于互联网档案馆[2] (页面存档备份,存于互联网档案馆
  8. ^ Cooper WG.Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states. BioSystems. 2009 Aug; 97:73-89.doi:10.1016/j.biosystems.2009.04.010
  9. ^ Cooper WG. Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4. Biochem. Genet. 2009 Oct; doi:10.1007/s10528-009-9293-8
  10. ^ Quantum Secrets of Photosynthesis Revealed. [2010-07-19]. (原始内容于2017-10-22). 
  11. ^ Garab, G. Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers. 1999. ISBN 978-0792355472. 
  12. ^ Levine, Raphael D. Molecular Reaction Dynamics. Cambridge University Press. 2005: 16–18. ISBN 978-0521842761. 
  13. ^ Binhi, Vladimir N. Magnetobiology: Underlying Physical Problems. Academic Press. 2002: 14–16. ISBN 978-0121000714. 
  14. ^ Harald Krug, Harald Brune, Gunter Schmid, Ulrich Simon, Viola Vogel, Daniel Wyrwa, Holger Ernst, Armin Grunwald, Werner Grunwald, Heinrich Hofmann. Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. 2006: 197–240. ISBN 978-3540328193. 
  15. ^ http://rodgers.org.uk/research/ (页面存档备份,存于互联网档案馆) Chris Rodgers, The Spin Chemistry of Bird Navigation 2005
  16. ^ http://www.sciencedaily.com/releases/2007/08/070827174303.htm (页面存档备份,存于互联网档案馆Math Model For Circadian Rhythm Created, ScienceDaily, August 30, 2007
  17. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics. 2010, 6 (6): 462–467. Bibcode:2010NatPh...6..462S. arXiv:0905.3787 . doi:10.1038/nphys1652. 
  18. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC; et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.. Nature. 2007, 446 (7137): 782–6 [2014-02-23]. Bibcode:2007Natur.446..782E. PMID 17429397. doi:10.1038/nature05678. (原始内容于2017-06-17). 
  19. ^ Scholes GS. Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?. Journal of Physical Chemistry Letters. 2010, 1: 2–8. doi:10.1021/jz900062f. 

扩展阅读 编辑

  • Atomistic approaches in modern biology : from quantum chemistry to molecular simulations by Markus Reiher; L Bertini. Berlin ; New York : Springer, 2007. ISBN 978-3-540-38082-5
  • Molecular structure and dynamics in biology. by Roman Osman; Guiliano Alagona; Caterina Ghio; International Society for Quantum Biology and Pharmacology.Wiley, 1999. OCLC: 82140679
  • Theoretical chemistry in biology : from molecular structure to functional mechanisms. by Peter Kollman; Harel Weinstein John Wiley and Sons, 1998. OCLC: 80429626

外部链接 编辑

  • Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign (页面存档备份,存于互联网档案馆
  • 量子力学解释光合作用效率 (页面存档备份,存于互联网档案馆

量子生物学, 此條目需要精通或熟悉相关主题的编者参与及协助编辑, 2015年12月14日, 請邀請適合的人士改善本条目, 更多的細節與詳情請參见討論頁, 是利用量子理论来研究生命科学, 的一门学科, 该学科包含利用量子力学研究生物过程和分子动态结构, 利用研究量子水平的分子动态结构和能量转移, 如果所得结果与宏观的生物学现象相吻合且很难用其他学科的研究重复, 则这一研究结果较为可信, 量子生物化学和光合过程的量子研究已得到了可核查的重要的结果, 尤其是光合作用中, 对于俘获光子后发生的分步的, 对质子的量子式释放,. 此條目需要精通或熟悉相关主题的编者参与及协助编辑 2015年12月14日 請邀請適合的人士改善本条目 更多的細節與詳情請參见討論頁 量子生物学是利用量子理论来研究生命科学 1 的一门学科 该学科包含利用量子力学研究生物过程和分子动态结构 利用量子生物学研究量子水平的分子动态结构和能量转移 如果所得结果与宏观的生物学现象相吻合且很难用其他学科的研究重复 则这一研究结果较为可信 2 量子生物化学和光合过程的量子研究已得到了可核查的重要的结果 尤其是光合作用中 对于俘获光子后发生的分步的 对质子的量子式释放 利用量子生物学的理论 已获得显著的研究进展 相关理论涉及到较为复杂的光系统II 此外 实验和理论的发现都支持酶促反应中包含量子穿隧机制 将能量转化为化学能 可用于化学转化 的生物学过程在实质上都是量子力学过程 这些过程包含化学反应 光俘获 电子激发态的形成 激发能的转移和化学过程 如光合作用及细胞呼吸 中电子及质子 氢离子 的转移 3 量子生物学以量子力学效应为根据 借助数学计算 对生物学相互作用进行模拟 4 奧地利出生的量子物理学家和数理生物学家埃尔温 薛定谔早在1946年就提出了用量子理论研究遗传系统的需求 理论生物学家罗伯特 罗森在1961年接着给出了一份详细 正式的研究量子遗传学的办法 在这方面的一个仍未解决的存在争议的问题是 量子效应在生物系统中的非平凡 通用角色 即不受限于分子性质 究竟是什么 5 6 7 然而 新近关于转录的研究与转录酶对于相干态双链DNA的量子信息处理是一致的 8 9 目录 1 研究内容 2 参见 3 参考资料 4 注释 5 扩展阅读 6 外部链接研究内容 编辑相关量子过程被研究的生物学现象主要包括对辐射的频率特异性吸收 出现在光合作用 10 和视觉系统等内 11 化学能到机械能的转化 12 动物的磁感應 13 及许多细胞过程中的布朗马达 14 该领域还在积极地研究磁场及鸟类导航的量子分析 15 并可能为许多生物体的昼夜节律 生理节律 的研究提供线索 16 最近的研究已经确定了在光合作用的光收获阶段 不同的色素的激发态之间的量子相干性和纠缠 17 18 尽管这一阶段的光合作用效率非常高 但是目前仍不清楚这些量子效应究竟如何 或者是否是生物学上相关的 19 参见 编辑时间生物学 昼夜节律 精神 肉体的量子问题 英语 Consciousness causes collapse 全脑理论 英语 Holonomic brain theory 心理科学基金会 英语 Mind Science Foundation 罗杰 彭罗斯 钱百敦 Alberte Pullman 英语 Alberte Pullman Bernard Pullman 英语 Bernard Pullman 史都華 哈默洛夫 Karl Pribram 英语 Karl H Pribram Evan Harris Walker 英语 Evan Harris Walker 量子进化论 英语 Quantum evolution alternative 量子化学电脑程序 生命的量子方面 英语 Quantum Aspects of Life Quantum Aspects of Life 生命是什么 What Is Life 参考资料 编辑W G Cooper Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states BioSystems 97 pp 73 89 2009 W G Cooper Necessity of quantum coherence to account for the spectrum of time dependent mutations exhibited bacteriophage T4 Biochem Genet 47 892 2009 doi 10 1007 s10528 009 9293 8 Derek Abbott Julio Gea Banacloche Paul C W Davies Stuart Hameroff Anton Zeilinger Jens Eisert Howard M Wiseman Sergey M Bezrukov and Hans Frauenfelder Plenary debate quantum effects in biology trivial or not Fluctuation and Noise Letters 8 1 pp C5 C26 2008 F H Thaheld An interdisciplinary approach to certain fundamental issues in the fields of physics and biology towards a unified theory BioSystems 80 pp 41 56 2005 J Gilmore and R H McKenzie Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent Journal of Physics Condensed Matter 17 10 pp 1735 1746 2005 S Hameroff and J Tuszynski Quantum states in proteins and protein assemblies the essence of life Proc SPIE Fluctuations and Noise in Biological Biophysical and Biomedical Systems II Eds D Abbott S M Bezrukov A Der and A Sanchez 5467 pp 27 41 Canary Islands 2004 pP C W Davies Does quantum mechanics play a non trivial role in life BioSystems 78 pp 69 79 2004 A F Rocha E Massad and F A B Coutinho Can the human brain do quantum computing Medical Hypotheses 63 pp 895 899 2004 A U Igamberdiev Quantum computation non demolition measurements and reflective control in living systems BioSystems 77 pp 47 56 2004 S R Hameroff A new theory of the origin of cancer quantum coherent entanglement centrioles mitosis and differentiation BioSystems 77 pp 119 136 2004 Z X Liang and J P Klinman Structural bases of hydrogen tunneling in enzymes progress and puzzles Current Opinion in Structural Biology 14 pp 468 655 2004 P C W Davies Emergent biological principles and the computational properties of the universe Complexity 10 2 pp 11 15 2004 Erwin Schrodinger What is Life Cambridge 1946 C W Smith Quanta and coherence effects in water and living systems The Journal of Alternative and Complementary Medicine 10 1 pp 69 78 2004 L Hackermuller S Uttenthaler K Hornberger E Reiger B Brezger A Zeilinger and M Arndt Wave nature of biomolecules and fluorofullerenes Physical Review Letters 91 9 090408 2003 O Nariz M Arndt and A Zeilinger Quantum interference experiments with large molecules American Journal of Physics 71 4 pp 319 325 2003 S Axelsson Perspectives on handedness life and physics Medical Hypotheses 61 2 pp 267 274 2003 S R Hameroff A Nip M Porter and J Tuszynski Conduction pathways in microtubules biological quantum computation and consciousness BioSystems 64 pp 146 168 2002 V Helms Electronic excitations of biomolecules studied by quantum chemistry Current Opinion in Structural Biology 12 pp 169 175 2002 S M Hitchcock Photosynthetic quantum computers arXiv quant ph 0108087 2001 V Gogonea D Suarez A van der Vaart and K M Merz New developments in applying quantum mechanics to proteins Current Opinion in Structural Biology 11 pp 217 223 2001 M Kameyama Quantum cellular biology a curious example of a cat Medical Hypotheses 57 3 pp 358 360 2001 M Tegmark Why the brain is probably not a quantum computer Information Sciences 128 pp 155 179 2000 K Matsuno Is there a biology of quantum information BioSystems 55 pp 39 46 2000 M Tegmark The importance of quantum decoherence in brain processes Physical Review E 61 4 pp 4194 4206 2000 H S Green Measurement and the observer Chapter 8 in Information Theory and Quantum Physics Physical Foundations for Understanding the Conscious Process Springer pp 172 209 2000 E Bieberich Probing quantum coherence in a biological system by means of DNA amplification BioSystems 57 pp 109 124 2000 A Kohen and J Klinman Hydrogen tunneling in biology Chemistry and Biology 6 pp R191 R198 1999 W J Meggs Biological homing hypothesis for a quantum effect that leads to the existence of life Medical Hypotheses 51 pp 503 506 1998 M Tegmark Does the universe in fact contain almost no information Foundations of Physics Letters 9 1 pp 25 42 1996 S Hameroff and R Penrose Orchestrated reduction of quantum coherence in brain microtubules A model for consciousness Mathematics and Computers in Simulation 40 pp 453 480 1996 D V Nanopoulos Theory of brain function quantum mechanics and superstrings arXiv hep ph 950374 1995 注释 编辑 Tae Chang Kim Eric Chaisson Science Education and Future Generations Taylor amp Francis Ltd 1999 26 ISBN 978 9057005381 Ian Brown Zengliang Yu Thiraphat Vilaithong Introduction to Ion Beam Biotechnology Springer Verlag New York Inc 2005 97 ISBN 978 0387255316 Quantum Biology University of Illinois at Urbana Champaign Theoretical and Computational Biophysics Group http www ks uiuc edu Research quantum biology 页面存档备份 存于互联网档案馆 http www sciencedaily com releases 2007 01 070116133617 htm 页面存档备份 存于互联网档案馆 Science Daily Quantum Biology Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14 2007 H M Wiseman J Eisert Nontrivial quantum effects in biology A skeptical physicists view arXiv 0705 1232v2 physics gen ph Davies PC Does quantum mechanics play a non trivial role in life Biosystems 2004 Dec 78 1 3 69 79 Ogryzko VV Erwin Schrodinger Francis Crick and epigenetic stability Biol Direct 2008 Apr 17 3 15 1 页面存档备份 存于互联网档案馆 2 页面存档备份 存于互联网档案馆 Cooper WG Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states BioSystems 2009 Aug 97 73 89 doi 10 1016 j biosystems 2009 04 010 Cooper WG Necessity of quantum coherence to account for the spectrum of time dependent mutations exhibited by bacteriophage T4 Biochem Genet 2009 Oct doi 10 1007 s10528 009 9293 8 Quantum Secrets of Photosynthesis Revealed 2010 07 19 原始内容存档于2017 10 22 Garab G Photosynthesis Mechanisms and Effects Proceedings of the XIth International Congress on Photosynthesis Kluwer Academic Publishers 1999 ISBN 978 0792355472 Levine Raphael D Molecular Reaction Dynamics Cambridge University Press 2005 16 18 ISBN 978 0521842761 Binhi Vladimir N Magnetobiology Underlying Physical Problems Academic Press 2002 14 16 ISBN 978 0121000714 Harald Krug Harald Brune Gunter Schmid Ulrich Simon Viola Vogel Daniel Wyrwa Holger Ernst Armin Grunwald Werner Grunwald Heinrich Hofmann Nanotechnology Assessment and Perspectives Springer Verlag Berlin and Heidelberg GmbH amp Co K 2006 197 240 ISBN 978 3540328193 http rodgers org uk research 页面存档备份 存于互联网档案馆 Chris Rodgers The Spin Chemistry of Bird Navigation 2005 http www sciencedaily com releases 2007 08 070827174303 htm 页面存档备份 存于互联网档案馆 Math Model For Circadian Rhythm Created ScienceDaily August 30 2007 Sarovar Mohan Ishizaki Akihito Fleming Graham R Whaley K Birgitta Quantum entanglement in photosynthetic light harvesting complexes Nature Physics 2010 6 6 462 467 Bibcode 2010NatPh 6 462S arXiv 0905 3787 nbsp doi 10 1038 nphys1652 引文使用过时参数coauthors 帮助 Engel GS Calhoun TR Read EL Ahn TK Mancal T Cheng YC et al Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems Nature 2007 446 7137 782 6 2014 02 23 Bibcode 2007Natur 446 782E PMID 17429397 doi 10 1038 nature05678 原始内容存档于2017 06 17 引文格式1维护 显式使用等标签 link Scholes GS Quantum Coherent Electronic Energy Transfer Did Nature Think of It First Journal of Physical Chemistry Letters 2010 1 2 8 doi 10 1021 jz900062f 扩展阅读 编辑Atomistic approaches in modern biology from quantum chemistry to molecular simulations by Markus Reiher L Bertini Berlin New York Springer 2007 ISBN 978 3 540 38082 5 Molecular structure and dynamics in biology by Roman Osman Guiliano Alagona Caterina Ghio International Society for Quantum Biology and Pharmacology Wiley 1999 OCLC 82140679 Theoretical chemistry in biology from molecular structure to functional mechanisms by Peter Kollman Harel Weinstein John Wiley and Sons 1998 OCLC 80429626外部链接 编辑Theoretical and Computational Biophysics Group University of Illinois at Urbana Champaign 页面存档备份 存于互联网档案馆 The Spooky World of Quantum Biology 量子力学解释光合作用效率 页面存档备份 存于互联网档案馆 取自 https zh wikipedia org w index php title 量子生物学 amp oldid 75218096, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。