fbpx
维基百科

氧气

氧气(英語:Oxygen, Dioxygen分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可,可助燃。

氧气
英文名 Oxygen
识别
CAS号 7782-44-7  N
SMILES
性质
化学式 O2
摩尔质量 31.998[1] g·mol⁻¹
外观 无色气体 [1]
密度 1.141 g/cm3(-183.0 ℃,液态)[1]
熔点 -218.79 ℃ (54.36 K)[1]
沸点 -182.962 ℃ (90.188 K)[1]
溶解性 微溶于水[1]
溶解性 微溶于乙醇有机溶剂[1]
若非注明,所有数据均出自一般条件(25 ℃,100 kPa)下。

科學史

氧气最先是由卡尔·威廉·舍勒发现的,约瑟夫·普利斯特里也于之后成功发现[2],但由于约瑟夫首先发表论文,所以很多人仍然认为氧气是约瑟夫首先发现的。氧气的英文名是“Dioxygen”,由拉瓦锡定名于1777年,他利用氧气所进行的试验在燃烧腐蚀的方面打败了当时流行的燃素说

普利斯特里的實驗

約瑟夫·普利斯特里將一隻燃燒的蠟燭放入密閉的玻璃罩中,蠟燭燃燒一段時間即熄滅;如果將一隻老鼠與燃燒的蠟燭一同放在密閉的玻璃罩中,老鼠在蠟燭燃盡後不久即死亡;如果以植物取代老鼠並以陽光照射,植物不僅不會在蠟燭燃盡後死亡,在蠟燭燃盡一段時間後再放入另一支點燃的蠟燭,該蠟燭甚至可以燃燒的更劇烈。

由於普利斯特里為燃素說的支持者,他推論植物可產生能助燃、維持生物生存的氣體,即氧氣,而燃燒則會使氧氣與燃素結合而被「污染」,因此在著作中將氧氣稱為「脫去燃素的氣體」,氧氣燃燒後產生的二氧化碳則被稱為「固定氣體」。

拉瓦節的研究

中文命名

“氧氣”这一中文名稱是十九世紀清朝科學家徐壽命名的。他認為人的生存離不開氧氣,所以就命名為「養氣」即「養氣之質」,後來就用「氧」代替了「養」字,便叫「氧氣」。

氧氣旧称“酸素”,来自日语,英语“oxygen”(希臘語Οξυγόνο)也是来自希腊词根“Οξυ”(oxy),表示“酸”,因为曾认为所有的酸都含有這種氣體。現在日文裡氧氣的名稱仍然是「酸素さんそ Sanso」。而台語受到台灣日治時期的影響,也以「酸素」之日語發音稱呼氧氣。

分布

 
相對地冷的海洋有比較多的O2

地球空气中大约含有体积为20.947%的以单质形式存在的氧气。拉瓦锡曾利用与曲颈甑测出空气中氧气的含量。实验室里也可以通过红磷白磷大致测出空气中的氧气含量。

八大行星中,地球是含氧气最多的,其他的星体(例如金星火星)几乎没有氧气。而很久以前地球上的原始大气也没有氧气。

森林植被丰富的地区,氧气含量相对更加丰富。一般,在一天之内,早晨是含氧气中最少的时候。

大气层氧气的历史

大气层氧气的出现源于两种作用,一个是非生物参与的水的光解,一个是例如藍綠菌等生物参与的光合作用

生物的光合作用对大气层的影响巨大。它造成了大气层由还原氛围向氧化氛围的转变。使得水光解产生的气能重新被氧化为水回到地球而不至于扩散到外层空间去,从而防止了地球上的水的流失。同时光合作用也加速了大气层氧气的积累,深刻地改变了地球上物种的代谢方式和形态。大气层含氧量在石炭纪的时候一度上升到了35%。 氧气含量的增加造成了依赖于渗透方式输氧的昆虫在形态上的巨型化,在石炭纪曾出现过翼展达一米的巨脈蜻蜓

结构

氧气由氧分子(O2)构成。每一个氧气分子由2个原子构成。

氧氣是双原子分子,兩個氧原子形成共价键,一個2p轨道形成σ键,另两個2p轨道形成π键。其分子軌域式为(σ1s)21s*)22s)22s*)22p)22p)42p*)2,因此氧氣是奇电子分子,具有顺磁性

分子結構

 
氧氣分子的軌域圖。[3]左右兩旁為各氧原子的原子軌域,中間為原子軌域重疊後所形成的分子軌域。共12個2p電子根據構造原理從低至高順序填入分子軌域,其中最高兩個電子不成對,是氧氣諸多性質的根源。

氧氣分子 由兩個氧原子鍵合組成,又稱雙原子氧。分子軌域理論能夠很好地解釋氧氣分子的鍵合和性質(見圖)。兩個氧原子各自的s軌域p軌域結合後,形成一系列成鍵反鍵分子軌域  原子軌域分別結合,形成 成鍵分子軌域和 反鍵分子軌域。 原子軌域結合後,成為6個能級不同的分子軌域──   成鍵軌域,以及對應的   反鍵軌域,其中兩個 軌域及兩個π*的能量分別相同。[3]

電子按照構造原理,從低能量至高能量順序填入分子軌域。 電子共有8個,其中兩個填入 ,四個分別成對填入兩個π軌域,餘下兩個不成對地分別填入兩個 軌域。從成鍵軌域電子數和反鍵軌域電子數可得出,氧氣分子的鍵級 [3]這兩個不成對電子是氧氣分子的價電子,它們決定了氧氣的性質。

根據洪德規則,在基態下兩個價電子的自旋互相平行,因此氧氣分子的最低能態為三重態,即有三個能量相同而自旋不同的量子態。由於兩個價電子不成對,所以兩個 軌域均處於半滿的狀態。這使得氧氣有雙自由基的性質,還可以解釋氧氣的順磁性。(氧氣分子之間的負交換能也導致一部分的順磁性。)[5][6]由於含不成對電子,所以氧氣與多數有機分子的反應較慢,有機物因而不會自發燃燒。[7]

氧氣分子除了有能量最低的三重態( )以外,還有兩種能量高得多的單態。在這兩個激發態下,兩個價電子的自旋互相反平行,違反洪德規則。這兩種單態的差別在於,兩個價電子是位於同一個 軌域中( ),還是分開佔據兩個 軌域( )。 在能量上不穩定,會迅速變為更穩定的  狀態下的氧氣有抗磁性,而 狀態下的氧氣則因為既有的軌道磁矩而具有順磁性,其磁強度與三重態氧相約。[8][9]

單態氧對於有機物的反應性比普通氧氣分子強得多。短波長光在分解對流層中的臭氧時會產生單態氧。[10]免疫系統中,單態氧是活性氧的來源之一。[11]光合作用會利用陽光的能量,從水產生出單態氧。[12]在進行光合作用的生物中,類胡蘿蔔素有助吸收單態氧的能量,並將它轉換成基態氧,從而避免單態氧對組織造成損壞。[13]

制取

发生

化学方法

加热氯酸钾
实验室小规模制氧一般会加热氯酸钾催化剂二氧化锰的混合物,生成气和氯化钾。其中,二氧化锰是催化剂。其发生装置是固固加热型,需要使用试管。
 
用此方法制得的氧气通常混有少量刺激性气味的气体氯气
加热高锰酸钾
加热高锰酸钾生成锰酸钾、二氧化锰和氧气。发生装置与加热氯酸钾制氧气的装置相同,但试管口需要塞棉花,避免加热时高锰酸钾粉末进入导管而堵塞导管。导管被堵塞时,试管内压强增大,有可能导致试管炸裂。
 
分解过氧化氢
过氧化氢溶液(双氧水)和催化剂二氧化锰反应的方法也可以制得氧气,同时产生。发生装置为固液不加热型装置,通常使用锥形瓶,有时需要分液漏斗
 
这种方法简单易操作,节约能源,且生成物没有污染,是实验室制取氧气的常用方法之一。
电解
电解水也能制得氧气。电解水时,正极产生氧气,负极产生氢气。氢气的体积比氧气体积的2倍多一点点(氧气不易溶于水,氢气难溶于水)。
 
需要注意的是,化学方程式中的“通电”不能写成“电解”。

物理方法

物理制取氧气的方法通常用于工业上。使用分离液态空气法(利用空气中各气体的沸点不同来分离出氧气)。

低温制取
氧气的熔点沸点与其他气体不同,所以可以利用这一特性将空气冷却至-200℃以下,然后滤出氧气。
分子筛
高分子透氧膜可以快速将氧气过滤出来。

收集

氧气不易溶于水,密度比空气大,所以可以用排水集氣法收集比较纯的氧气,或者使用向上排空气法收集较干燥的氧气。

装瓶

中国国家标准规定,氧气气瓶为淡蓝色[14],而美国则用绿色。

单线态氧和三线态氧

普通氧气含有两个未配对的电子,等同于一个双游离基。两个未配对电子的自旋状态相同,自旋量子数之和S = 1,2S + 1 = 3,因而基态的氧分子自旋多重性为3,称为三线态氧。

在受激发下,氧气分子的两个未配对电子发生配对,自旋量子数的代数和 S = 0,2S + 1 = 1,称为单线态氧英语Singlet oxygen

空气中的氧气绝大多数为三线态氧。紫外线的照射及一些有机分子对氧气的能量传递是形成单线态氧的主要原因。单线态氧的氧化能力高于三线态氧。

单线态氧的分子類似烯烴分子,因而可以和雙烯發生狄爾斯-阿爾德反應

毒性

虽然呼吸需要氧气,但是人和动物长期待在高压氧舱中,或者呼吸纯氧会发生氧气中毒,造成神经中毒的现象。其毒理过程为肺部毛细管屏障被破坏,导致肺水肿、肺淤血和出血,严重影响呼吸功能,进而使各脏器缺氧而发生损害。[15]

用途

氧氣的運用包括鋼鐵的冶煉、塑料紡織品的製造以及作為火箭推進劑與進行氧氣療法,也用來在飛機潛艇太空船潛水火災中維持生命。

供给呼吸

厌氧菌外,几乎所有的生物都需要氧气来呼吸。生物细胞内的线粒体会将氧气转化为二氧化碳,同时释放能量。同时,绿色植物叶绿体光合作用迅速产生氧气。当生物圈内消费者(或二氧化碳排放)过多而绿色植物(生产者)过少,氧气就会减少,即破坏碳—氧平衡、温室效应

在太空船等封闭空间,人呼吸会消耗氧气,此时可以通过催化剂使二氧化碳转化为氧气。在室内等封闭空间摆放绿色植物也可以增加氧气,但是绿色植物在晚上或者阴雨天不适宜摆在室内。

助燃

几乎所有的可燃物燃烧都需要氧气。能够支持聚合物燃烧的氧气的最小浓度叫作极限氧指数

可燃物燃烧是剧烈氧化反应,常见的燃烧有:

  •  
    • 氧气充足时: 
    • 氧气不充足时: 
  •  
  • :只能在纯氧中燃烧: 
  • 一氧化碳 
  •  
  • ……

是一个例外。在氧气、二氧化碳氮气中都能够燃烧

参考来源

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 CRC Handbook of Chemistry and Physics 97th Edition. 2016-06-24: 4–77. ISBN 1-4987-5428-7 (英语). 
  2. ^ Herbert, S. Klickstein. A Source Book in Chemistry. 1952. ISBN 978-0-6748-2230-6. 
  3. ^ 3.0 3.1 3.2 Jack Barrett. Atomic Structure and Periodicity, (Basic concepts in chemistry, Vol. 9 of Tutorial chemistry texts). Royal Society of Chemistry. 2002: 153 [2017-07-13]. ISBN 0854046577. (原始内容于2020-05-30). 
  4. ^ Emsley, John. Oxygen. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England: Oxford University Press. 2001: 297–304. ISBN 0-19-850340-7. 
  5. ^ Emsley 2001[4], p.303
  6. ^ Jakubowski, Henry. . Biochemistry Online. Saint John's University. [2008-01-28]. (原始内容存档于2018-10-05). 
  7. ^ Weiss, H. M. Appreciating Oxygen. J. Chem. Educ. 2008, 85: 1218–1219 [2017-07-13]. doi:10.1021/ed085p1218. (原始内容于2017-03-13). 
  8. ^ Keisuke Hasegawa: Direct measurements of absolute concentration and lifetime of singlet oxygen in the gas phase by electron paramagnetic resonance. In: Chemical Physics Letters. 457 (4–6), 2008, S. 312–314; doi:10.1016/j.cplett.2008.04.031.
  9. ^ N. V. Shinkarenko, V. B. Aleskovskiji: Singlet Oxygen: Methods of Preparation and Detection. In: Russian Chemical Reviews. 50, 1981, S. 320–231; doi:10.1070/RC1981v050n03ABEH002587.
  10. ^ Harrison, Roy M. Pollution: Causes, Effects & Control 2nd. Cambridge: Royal Society of Chemistry. 1990. ISBN 0-85186-283-7. 
  11. ^ Wentworth, Paul; McDunn, J. E.; Wentworth, A. D.; Takeuchi, C.; Nieva, J.; Jones, T.; Bautista, C.; Ruedi, J. M.; et al. Evidence for Antibody-Catalyzed Ozone Formation in Bacterial Killing and Inflammation. Science. 2002-12-13, 298 (5601): 2195–219. Bibcode:2002Sci...298.2195W. PMID 12434011. doi:10.1126/science.1077642. 
  12. ^ Krieger-Liszkay, Anja. Singlet oxygen production in photosynthesis. Journal of Experimental Botanics (Oxford Journals). 2004-10-13, 56 (411): 337–46. PMID 15310815. doi:10.1093/jxb/erh237. 
  13. ^ Hirayama, Osamu; Nakamura, Kyoko; Hamada, Syoko; Kobayasi, Yoko. Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids (Springer). 1994, 29 (2): 149–50. PMID 8152349. doi:10.1007/BF02537155. 
  14. ^ GB 7144-2016,《气瓶颜色标志》
  15. ^ 氧气危害表现. [2013-06-25]. (原始内容于2018-05-20). 

参见

氧气, 此條目介紹的是由氧元素组成的o2气体, 关于氧元素, 请见, 此條目需要补充更多来源, 2014年7月23日, 请协助補充多方面可靠来源以改善这篇条目, 无法查证的内容可能會因為异议提出而移除, 致使用者, 请搜索一下条目的标题, 来源搜索, 网页, 新闻, 书籍, 学术, 图像, 以检查网络上是否存在该主题的更多可靠来源, 判定指引, 英語, oxygen, dioxygen, 分子式, 是氧元素最常见的单质形态, 在空气中按体积分数算大约占21, 在标准状况下是气体, 不易溶于水, 密度比空气略大, 的. 此條目介紹的是由氧元素组成的O2气体 关于氧元素 请见 氧 此條目需要补充更多来源 2014年7月23日 请协助補充多方面可靠来源以改善这篇条目 无法查证的内容可能會因為异议提出而移除 致使用者 请搜索一下条目的标题 来源搜索 氧气 网页 新闻 书籍 学术 图像 以检查网络上是否存在该主题的更多可靠来源 判定指引 氧气 英語 Oxygen Dioxygen 分子式 O2 是氧元素最常见的单质形态 在空气中按体积分数算大约占21 在标准状况下是气体 不易溶于水 密度比空气略大 氧气的密度是1 429g L 不可燃 可助燃 氧气英文名 Oxygen识别CAS号 7782 44 7 NSMILES O O性质化学式 O2摩尔质量 31 998 1 g mol 外观 无色气体 1 密度 1 141 g cm3 183 0 液态 1 熔点 218 79 54 36 K 1 沸点 182 962 90 188 K 1 溶解性 水 微溶于水 1 溶解性 微溶于乙醇 有机溶剂 1 若非注明 所有数据均出自一般条件 25 100 kPa 下 目录 1 科學史 1 1 普利斯特里的實驗 1 2 拉瓦節的研究 1 3 中文命名 2 分布 2 1 大气层氧气的历史 3 结构 3 1 分子結構 4 制取 4 1 发生 4 1 1 化学方法 4 1 2 物理方法 4 2 收集 4 3 装瓶 5 单线态氧和三线态氧 6 毒性 7 用途 7 1 供给呼吸 7 2 助燃 8 参考来源 9 参见科學史 编辑氧气最先是由卡尔 威廉 舍勒发现的 约瑟夫 普利斯特里也于之后成功发现 2 但由于约瑟夫首先发表论文 所以很多人仍然认为氧气是约瑟夫首先发现的 氧气的英文名是 Dioxygen 由拉瓦锡定名于1777年 他利用氧气所进行的试验在燃烧和腐蚀的方面打败了当时流行的燃素说 普利斯特里的實驗 编辑 約瑟夫 普利斯特里將一隻燃燒的蠟燭放入密閉的玻璃罩中 蠟燭燃燒一段時間即熄滅 如果將一隻老鼠與燃燒的蠟燭一同放在密閉的玻璃罩中 老鼠在蠟燭燃盡後不久即死亡 如果以植物取代老鼠並以陽光照射 植物不僅不會在蠟燭燃盡後死亡 在蠟燭燃盡一段時間後再放入另一支點燃的蠟燭 該蠟燭甚至可以燃燒的更劇烈 由於普利斯特里為燃素說的支持者 他推論植物可產生能助燃 維持生物生存的氣體 即氧氣 而燃燒則會使氧氣與燃素結合而被 污染 因此在著作中將氧氣稱為 脫去燃素的氣體 氧氣燃燒後產生的二氧化碳則被稱為 固定氣體 拉瓦節的研究 编辑 参见 安東萬 羅倫 德 拉瓦節 氧化學說 中文命名 编辑 氧氣 这一中文名稱是十九世紀清朝科學家徐壽命名的 他認為人的生存離不開氧氣 所以就命名為 養氣 即 養氣之質 後來就用 氧 代替了 養 字 便叫 氧氣 氧氣旧称 酸素 来自日语 英语 oxygen 希臘語 O3ygono 也是来自希腊词根 O3y oxy 表示 酸 因为曾认为所有的酸都含有這種氣體 現在日文裡氧氣的名稱仍然是 酸素 さんそ Sanso 而台語受到台灣日治時期的影響 也以 酸素 之日語發音稱呼氧氣 分布 编辑 相對地冷的海洋有比較多的O2 地球空气中大约含有体积为20 947 的以单质形式存在的氧气 拉瓦锡曾利用汞与曲颈甑测出空气中氧气的含量 实验室里也可以通过红磷或白磷大致测出空气中的氧气含量 在八大行星中 地球是含氧气最多的 其他的星体 例如金星 火星 几乎没有氧气 而很久以前地球上的原始大气也没有氧气 在森林等植被丰富的地区 氧气含量相对更加丰富 一般 在一天之内 早晨是含氧气中最少的时候 大气层氧气的历史 编辑 参见 大氧化事件 大气层氧气的出现源于两种作用 一个是非生物参与的水的光解 一个是例如藍綠菌等生物参与的光合作用 生物的光合作用对大气层的影响巨大 它造成了大气层由还原氛围向氧化氛围的转变 使得水光解产生的氢气能重新被氧化为水回到地球而不至于扩散到外层空间去 从而防止了地球上的水的流失 同时光合作用也加速了大气层氧气的积累 深刻地改变了地球上物种的代谢方式和形态 大气层含氧量在石炭纪的时候一度上升到了35 氧气含量的增加造成了依赖于渗透方式输氧的昆虫在形态上的巨型化 在石炭纪曾出现过翼展达一米的巨脈蜻蜓 结构 编辑氧气由氧分子 O2 构成 每一个氧气分子由2个氧原子构成 氧氣是双原子分子 兩個氧原子形成共价键 一個2p轨道形成s键 另两個2p轨道形成p键 其分子軌域式为 s1s 2 s1s 2 s2s 2 s2s 2 s2p 2 p2p 4 p2p 2 因此氧氣是奇电子分子 具有顺磁性 分子結構 编辑 氧氣分子的軌域圖 3 左右兩旁為各氧原子的原子軌域 中間為原子軌域重疊後所形成的分子軌域 共12個2p電子根據構造原理從低至高順序填入分子軌域 其中最高兩個電子不成對 是氧氣諸多性質的根源 氧氣分子O 2 displaystyle ce O2 由兩個氧原子鍵合組成 又稱雙原子氧 分子軌域理論能夠很好地解釋氧氣分子的鍵合和性質 見圖 兩個氧原子各自的s軌域和p軌域結合後 形成一系列成鍵與反鍵分子軌域 1 s displaystyle 1s 和2 s displaystyle 2s 原子軌域分別結合 形成s s displaystyle sigma s 成鍵分子軌域和s s displaystyle sigma s 反鍵分子軌域 2 p displaystyle 2p 原子軌域結合後 成為6個能級不同的分子軌域 s p displaystyle sigma p p x displaystyle pi x 和p y displaystyle pi y 成鍵軌域 以及對應的s p displaystyle sigma p p x displaystyle pi x 和p y displaystyle pi y 反鍵軌域 其中兩個p displaystyle pi 軌域及兩個p 的能量分別相同 3 電子按照構造原理 從低能量至高能量順序填入分子軌域 2 p displaystyle 2p 電子共有8個 其中兩個填入s p displaystyle sigma p 四個分別成對填入兩個p軌域 餘下兩個不成對地分別填入兩個p displaystyle pi 軌域 從成鍵軌域電子數和反鍵軌域電子數可得出 氧氣分子的鍵級為6 2 2 2 displaystyle frac 6 2 2 2 3 這兩個不成對電子是氧氣分子的價電子 它們決定了氧氣的性質 根據洪德規則 在基態下兩個價電子的自旋互相平行 因此氧氣分子的最低能態為三重態 即有三個能量相同而自旋不同的量子態 由於兩個價電子不成對 所以兩個p displaystyle pi 軌域均處於半滿的狀態 這使得氧氣有雙自由基的性質 還可以解釋氧氣的順磁性 氧氣分子之間的負交換能也導致一部分的順磁性 5 6 由於含不成對電子 所以氧氣與多數有機分子的反應較慢 有機物因而不會自發燃燒 7 氧氣分子除了有能量最低的三重態 3 g displaystyle 3 textstyle sum g 以外 還有兩種能量高得多的單態 在這兩個激發態下 兩個價電子的自旋互相反平行 違反洪德規則 這兩種單態的差別在於 兩個價電子是位於同一個p displaystyle pi 軌域中 1 D g displaystyle 1 Delta g 還是分開佔據兩個p displaystyle pi 軌域 1 g displaystyle 1 textstyle sum g 1 g displaystyle 1 textstyle sum g 在能量上不穩定 會迅速變為更穩定的1 D g displaystyle 1 Delta g 1 g displaystyle 1 textstyle sum g 狀態下的氧氣有抗磁性 而1 D g displaystyle 1 Delta g 狀態下的氧氣則因為既有的軌道磁矩而具有順磁性 其磁強度與三重態氧相約 8 9 單態氧對於有機物的反應性比普通氧氣分子強得多 短波長光在分解對流層中的臭氧時會產生單態氧 10 在免疫系統中 單態氧是活性氧的來源之一 11 光合作用會利用陽光的能量 從水產生出單態氧 12 在進行光合作用的生物中 類胡蘿蔔素有助吸收單態氧的能量 並將它轉換成基態氧 從而避免單態氧對組織造成損壞 13 制取 编辑发生 编辑 化学方法 编辑 加热氯酸钾 实验室小规模制氧一般会加热氯酸钾和催化剂二氧化锰的混合物 生成氧气和氯化钾 其中 二氧化锰是催化剂 其发生装置是固固加热型 需要使用试管 2 KClO 3 MnO 2 2 KCl 3 O 2 displaystyle ce 2KClO3 overset MnO2 underset vartriangle 2KCl 3O2 uparrow 用此方法制得的氧气通常混有少量刺激性气味的气体氯气 加热高锰酸钾 加热高锰酸钾生成锰酸钾 二氧化锰和氧气 发生装置与加热氯酸钾制氧气的装置相同 但试管口需要塞棉花 避免加热时高锰酸钾粉末进入导管而堵塞导管 导管被堵塞时 试管内压强增大 有可能导致试管炸裂 2 KMnO 4 K 2 MnO 4 MnO 2 O 2 displaystyle ce 2KMnO 4 overset vartriangle K2MnO4 MnO2 O2 uparrow 分解过氧化氢 用过氧化氢溶液 双氧水 和催化剂二氧化锰反应的方法也可以制得氧气 同时产生水 发生装置为固液不加热型装置 通常使用锥形瓶 有时需要分液漏斗 2 H 2 O 2 MnO 2 2 H 2 O O 2 displaystyle ce 2H2O2 overset MnO2 2H2O O2 uparrow 这种方法简单易操作 节约能源 且生成物没有污染 是实验室制取氧气的常用方法之一 电解水 电解水也能制得氧气 电解水时 正极产生氧气 负极产生氢气 氢气的体积比氧气体积的2倍多一点点 氧气不易溶于水 氢气难溶于水 2 H 2 O 通 电 2 H 2 O 2 displaystyle ce 2H2O overset text 通 电 2H2 uparrow O2 uparrow 需要注意的是 化学方程式中的 通电 不能写成 电解 物理方法 编辑 物理制取氧气的方法通常用于工业上 使用分离液态空气法 利用空气中各气体的沸点不同来分离出氧气 低温制取 氧气的熔点 沸点与其他气体不同 所以可以利用这一特性将空气冷却至 200 以下 然后滤出氧气 分子筛 高分子透氧膜可以快速将氧气过滤出来 收集 编辑 氧气不易溶于水 密度比空气大 所以可以用排水集氣法收集比较纯的氧气 或者使用向上排空气法收集较干燥的氧气 装瓶 编辑 中国国家标准规定 氧气气瓶为淡蓝色 14 而美国则用绿色 单线态氧和三线态氧 编辑普通氧气含有两个未配对的电子 等同于一个双游离基 两个未配对电子的自旋状态相同 自旋量子数之和S 1 2S 1 3 因而基态的氧分子自旋多重性为3 称为三线态氧 在受激发下 氧气分子的两个未配对电子发生配对 自旋量子数的代数和 S 0 2S 1 1 称为单线态氧 英语 Singlet oxygen 空气中的氧气绝大多数为三线态氧 紫外线的照射及一些有机分子对氧气的能量传递是形成单线态氧的主要原因 单线态氧的氧化能力高于三线态氧 单线态氧的分子類似烯烴分子 因而可以和雙烯發生狄爾斯 阿爾德反應 毒性 编辑虽然呼吸需要氧气 但是人和动物长期待在高压氧舱中 或者呼吸纯氧会发生氧气中毒 造成神经中毒的现象 其毒理过程为肺部毛细管屏障被破坏 导致肺水肿 肺淤血和出血 严重影响呼吸功能 进而使各脏器缺氧而发生损害 15 用途 编辑氧氣的運用包括鋼鐵的冶煉 塑料和紡織品的製造以及作為火箭推進劑與進行氧氣療法 也用來在飛機 潛艇 太空船 潛水及火災中維持生命 供给呼吸 编辑 参见 呼吸和呼吸作用 除厌氧菌外 几乎所有的生物都需要氧气来呼吸 生物细胞内的线粒体会将氧气转化为二氧化碳 同时释放能量 同时 绿色植物叶绿体光合作用迅速产生氧气 当生物圈内消费者 或二氧化碳排放 过多而绿色植物 生产者 过少 氧气就会减少 即破坏碳 氧平衡 温室效应 在太空船等封闭空间 人呼吸会消耗氧气 此时可以通过催化剂使二氧化碳转化为氧气 在室内等封闭空间摆放绿色植物也可以增加氧气 但是绿色植物在晚上或者阴雨天不适宜摆在室内 助燃 编辑 参见 燃烧 几乎所有的可燃物燃烧都需要氧气 能够支持聚合物燃烧的氧气的最小浓度叫作极限氧指数 可燃物燃烧是剧烈氧化反应 常见的燃烧有 硫 S O 2 点 燃 SO 2 displaystyle ce S O2 overset text 点 燃 SO2 碳 氧气充足时 C O 2 点 燃 CO 2 displaystyle ce C O2 overset text 点 燃 CO2 氧气不充足时 2 C O 2 点 燃 2 CO displaystyle ce 2C O2 overset text 点 燃 2CO 镁 2 Mg O 2 点 燃 2 MgO displaystyle ce 2Mg O2 overset text 点 燃 2MgO 铁 只能在纯氧中燃烧 3 Fe 4 O 2 点 燃 Fe 3 O 4 displaystyle ce 3Fe 4O2 overset text 点 燃 Fe3O4 一氧化碳 2 CO O 2 点 燃 2 CO 2 displaystyle ce 2CO O2 overset text 点 燃 2CO2 磷 4 P 5 O 2 点 燃 2 P 2 O 5 displaystyle ce 4P 5O2 overset text 点 燃 2P2O5 镁是一个例外 镁在氧气 二氧化碳 氮气中都能够燃烧 参考来源 编辑 1 0 1 1 1 2 1 3 1 4 1 5 1 6 CRC Handbook of Chemistry and Physics 97th Edition 2016 06 24 4 77 ISBN 1 4987 5428 7 英语 使用 accessdate 需要含有 url 帮助 Herbert S Klickstein A Source Book in Chemistry 1952 ISBN 978 0 6748 2230 6 3 0 3 1 3 2 Jack Barrett Atomic Structure and Periodicity Basic concepts in chemistry Vol 9 of Tutorial chemistry texts Royal Society of Chemistry 2002 153 2017 07 13 ISBN 0854046577 原始内容存档于2020 05 30 Emsley John Oxygen Nature s Building Blocks An A Z Guide to the Elements Oxford England Oxford University Press 2001 297 304 ISBN 0 19 850340 7 Emsley 2001 4 p 303 Jakubowski Henry Chapter 8 Oxidation Phosphorylation the Chemistry of Di Oxygen Biochemistry Online Saint John s University 2008 01 28 原始内容存档于2018 10 05 Weiss H M Appreciating Oxygen J Chem Educ 2008 85 1218 1219 2017 07 13 doi 10 1021 ed085p1218 原始内容存档于2017 03 13 Keisuke Hasegawa Direct measurements of absolute concentration and lifetime of singlet oxygen in the gas phase by electron paramagnetic resonance In Chemical Physics Letters 457 4 6 2008 S 312 314 doi 10 1016 j cplett 2008 04 031 N V Shinkarenko V B Aleskovskiji Singlet Oxygen Methods of Preparation and Detection In Russian Chemical Reviews 50 1981 S 320 231 doi 10 1070 RC1981v050n03ABEH002587 Harrison Roy M Pollution Causes Effects amp Control 2nd Cambridge Royal Society of Chemistry 1990 ISBN 0 85186 283 7 Wentworth Paul McDunn J E Wentworth A D Takeuchi C Nieva J Jones T Bautista C Ruedi J M et al Evidence for Antibody Catalyzed Ozone Formation in Bacterial Killing and Inflammation Science 2002 12 13 298 5601 2195 219 Bibcode 2002Sci 298 2195W PMID 12434011 doi 10 1126 science 1077642 Krieger Liszkay Anja Singlet oxygen production in photosynthesis Journal of Experimental Botanics Oxford Journals 2004 10 13 56 411 337 46 PMID 15310815 doi 10 1093 jxb erh237 Hirayama Osamu Nakamura Kyoko Hamada Syoko Kobayasi Yoko Singlet oxygen quenching ability of naturally occurring carotenoids Lipids Springer 1994 29 2 149 50 PMID 8152349 doi 10 1007 BF02537155 GB 7144 2016 气瓶颜色标志 氧气危害表现 2013 06 25 原始内容存档于2018 05 20 参见 编辑氧 液氧 取自 https zh wikipedia org w index php title 氧气 amp oldid 73787953, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。