fbpx
维基百科

高熵合金

高熵合金(英語:High-entropy alloysHEAs)簡稱HEA,通常是由五種或五種以上等量或相對比例金屬形成的新型合金。名為「高熵合金」是因為當混合物中存在大量元素混合時的熵增加實質上更高,並且比例更接近相等。[2]

面心立方結構CoCrFeMnNi原子結構[1]

由於高熵合金可能具有許多理想的性質,因此在材料科學及工程上相當受到重視[3]。相對於以往的典型金屬合金,合金主要的金屬成份可能只有一至兩種。例如會以鐵為基礎,再加入一些微量元素(等)來提昇其特性,但因此所得的還是以鐵為主的合金[3],其他元素比例實際相當低。過往的概念中,若合金中加的金屬種類越多,會使其材質脆化,但高熵合金和以往的合金不同,有多種金屬卻不會脆化,是一種新的材料[1][3][4]

研究發現有些高熵合金的比強度比傳統合金好很多,而且抗断裂能力抗拉強度、抗腐蝕及抗氧化特性都比傳統的合金要好。高熵合金在2004年以前就已問世,但在2010年代才有許多相關的研究[3][5][6][7][8][9]

發展 编辑

儘管早在1981年[10]、1996年[11]、以及整個1980年代就考究了理論上可以存在高熵合金。但製造出這些特殊合金,還要到2004年。

據說葉均蔚博士是在1995年駕車穿越新竹鄉村時,想出了實際製造高熵合金方法。

高熵合金潛在應用包括用於潛艇、航天器、核武器、核反應堆[12]、噴氣式飛機、遠程高超音速導彈等等。[13][14]

在葉均蔚博士的論文發表幾個月後,布賴恩·康托爾英语Brian Cantor、I. T. H. Chang、P. Knight、A. J. B. Vincent提交了關於高熵合金的獨立論文。

葉均蔚也是第一個提出「高熵合金」(英語:High-entropy alloys)一詞的人,他將高構型熵歸因於穩定固溶體相機制。[15]

儘管布賴恩·康托爾英语Brian Cantor直到2004年葉均蔚論文發表幾個月後才發表論文,康托爾其實早在1970年代末1980年代初就完成了該領域的首項工作。康托爾英语Brian Cantor由於不知道葉均蔚的工作,康托爾英语Brian Cantor更喜歡稱「高熵合金」為「多組分合金多元合金」(英語:multicomponent alloys)。康托爾英语Brian Cantor開發了高熵合金FeCrMnNiCo合金,類似的衍生物也被稱為康托爾合金。[16]

在將高熵合金和多組分系統歸類為單獨一類材料之前,核科學家已經研究了一種現在可以歸類為高熵合金的系統:在核燃料晶界和裂變氣泡處的Mo-Pd-Rh-Ru-Tc粒子。[17]醫療行業對了解這些「五金屬粒子」特別感興趣,因為鍀-99m是一種重要醫學成像同位素。

定義 编辑

沒有普遍認可的HEA定義。最初將HEA定義為含有至少5種元素且原子百分比5到35的合金。[15]然而後來的研究表明,這個定義還可以擴展。建議只有形成沒有金屬間相的固溶體的合金才應該被認為是真正的高熵合金,因為有序相的形成會降低系統的熵。[18]一些作者將四組分合金也描述為高熵合金[19]也有建議只有2到4種元素合金滿足HEA要求,也算高熵合金[20]理想氣體常數1到1.5之間的混合熵也算[21]中熵合金[20]

合成 编辑

使用現有技術截至2018年 (2018-Missing required parameter 1=month!)難以製造高熵合金,並且通常需要昂貴的材料和特殊的加工技術。[22]

高熵合金主要是使用依賴於金屬相方法生產——如果金屬在液態、固態、氣態下合成。

  • 大多數HEA已使用液相方法生產,包括電弧熔化(電弧爐)、感應熔化(感應爐英语induction furnace)、布里奇曼-史托巴格法
  • 固態加工通常通過使用高能球磨機機械合金化英语Mechanical alloying完成。這種方法生產的粉末可以使用傳統的粉末冶金方法或放電等離子燒結英语Spark plasma sintering進行加工。這種方法可以生產出使用鑄造難以或不可能生產的合金,例如AlLiMgScTi。[23][24][25]
  • 氣相處理包括濺鍍分子束外延等工藝,可用於仔細控制不同的元素組成以獲得高熵金屬[26]或陶瓷膜。[23]

增材制造(立體打印)[27][12]可產出具不同微觀結構的合金,潛在地增加強度(1.3吉帕斯卡)、增加延展性[28]

其他技術包括熱噴塗激光熔覆英语Cladding (metalworking)電鍍[23][29]

例子 编辑

高熵合金薄膜例子:

合金 相態 硬度(吉帕斯卡 相關模數(吉帕斯卡 參考
CoCrFeMnNi FCC 5.71 Er = 172.84 [30]
CoCrFeMnNiAl1.3 BCC 8.74 Er = 167.19 [30]
Al0.3CoCrFeNi FCC + BCC 11.09 E = 186.01 [31]
CrCoCuFeNi FCC + BCC 15 E = 181 [32]
CoCrFeMnNiTi0.2 FCC 8.61 Er = 157.81 [33]
CoCrFeMnNiTi0.8 無定形 8.99 Er = 151.42 [33]
CoCrFeMnNiV0.07 FCC 7.99 E = 206.4 [34]
CoCrFeMnNiV1.1 無定形 8.69 E = 144.6 [34]
(CoCrFeMnNi)99.5Mo0.5 FCC 4.62 Er = 157.76 [35]
(CoCrFeMnNi)85.4Mo14.6 無定形 8.77 Er = 169.17 [35]
(CoCrFeMnNi)92.8Nb7.2 無定形 8.1 Er ~105 [36]
TiZrNbHfTa FCC 5.4 [37]
FeCoNiCrCuAlMn FCC + BCC 4.2 [38]
FeCoNiCrCuAl0.5 FCC 4.4 [38]
AlCrMnMoNiZr 無定形 7.2 E = 172 [39]
AlCrMoTaTiZr 無定形 11.2 E = 193 [40]
AlCrTiTaZr 無定形 9.3 E = 140 [41]
AlCrMoNbZr BCC + 無定形 11.8 [42]
AlCrNbSiTiV 無定形 10.4 E = 177 [43]
AlCrSiTiZr 無定形 11.5 E ~206 [44]
CrNbSiTaZr 無定形 20.12 [45]
CrNbSiTiZr 無定形 9.6 E = 179.7 [46]
AlFeCrNiMo BCC 4.98 [47]
CuMoTaWV BCC 19 E = 259 [48]
TiVCrZrHf 無定形 8.3 E = 104.7 [49]
ZrTaNbTiW 無定形 4.7 E = 120 [50]
TiVCrAlZr 無定形 8.2 E = 128.9 [51]
FeCoNiCuVZrAl 無定形 8.6 E = 153 [52]
合金 RN (%) 相態 硬度(吉帕斯卡 相關模數(吉帕斯卡 參考
(FeCoNiCuVZrAl)N 30 無定形 12 E = 166 [52]
(TiZrNbHfTa)N 25 FCC 32.9 [37]
(TiVCrAlZr)N 50 FCC 11 E = 151 [51]
(AlCrTaTiZr)N 14 FCC 32 E = 368 [41]
(FeCoNiCrCuAl0.5)N 33.3 無定形 10.4 [38]
(FeCoNiCrCuAlMn)N 23.1 無定形 11.8 [38]
(AlCrMnMoNiZr)N 50 FCC 11.9 E = 202 [39]
(TiVCrZrHf)N 3.85 FCC 23.8 E = 267.3 [49]
(NbTiAlSiW)N 16.67 無定形 13.6 E = 154.4 [53]
(NbTiAlSi)N 16.67 FCC 20.5 E = 206.8
(AlCrNbSiTiV)N 5 FCC 35 E ~ 337 [43]
28 FCC 41 E = 360
(AlCrTaTiZr)N 50 FCC 36 E = 360 [54]
(Al23.1Cr30.8Nb7.7Si7.7Ti30.7)N50 FCC 36.1 E ~ 430 [55]
(Al29.1Cr30.8Nb11.2Si7.7Ti21.2)N50 FCC 36.7 E ~ 380
(AlCrSiTiZr)N 5 無定形 17 E ~ 232 [44]
30 FCC 16 E ~ 232
(AlCrMoTaTiZr)N 40 FCC 40.2 E = 420 [40]
(AlCrTaTiZr)N 50 FCC 35 E = 350 [56]
(CrTaTiVZr)N 20 FCC 34.3 E ~ 268 [57]
(CrNbTiAlV)N 67.86 FCC 35.3 E = 353.7 [58]
(HfNbTiVZr)N 33.33 FCC 7.6 E = 270 [59]

參考 编辑

  1. ^ 1.0 1.1 Wang, Shaoqing. Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy. Entropy. 13 December 2013, 15 (12): 5536–5548 [2016-10-20]. Bibcode:2013Entrp..15.5536W. doi:10.3390/e15125536. (原始内容于2016-04-21).  HTML full text article available
  2. ^ Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: challenges and prospects. Materials Today. July 2016, 19 (6): 349–362. doi:10.1016/j.mattod.2015.11.026 . 
  3. ^ 3.0 3.1 3.2 3.3 Tsai, Ming-Hung; Yeh, Jien-Wei. High-Entropy Alloys: A Critical Review. Materials Research Letters. 30 April 2014, 2 (3): 107–123. doi:10.1080/21663831.2014.912690.  Free PDF download.
  4. ^ 【央廣RTI】「高熵合金」打破多元素合金易脆迷思. [2016-10-21]. (原始内容于2016-10-21). 
  5. ^ Lavine, Marc S. A metal alloy that is stronger when cold. Science. 2014, 345: 1131 [9 January 2015]. Bibcode:2014Sci...345Q1131L. doi:10.1126/science.345.6201.1131-b. (原始内容于2015-09-24). 
  6. ^ Shipman, Matt. New 'high-entropy' alloy is as light as aluminum, as strong as titanium alloys. Phys.org. 10 December 2014 [9 January 2015]. (原始内容于2019-04-19). 
  7. ^ Youssef, Khaled M.; Zaddach, Alexander J.; Niu, Changning; Irving, Douglas L.; Koch, Carl C. A Novel Low-Density, High-Hardness, High-entropy Alloy... (Free PDF download). Materials Research Letters. 9 December 2014: 1. doi:10.1080/21663831.2014.985855. 
  8. ^ Yarris, Lyn. A metallic alloy that is tough and ductile at cryogenic temperatures. Berkeley Lab News Center (University of California, Berkeley). 4 September 2014 [9 January 2015]. (原始内容于2016-04-07). 
  9. ^ Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications (Free PDF download). Science (AAAS). 5 September 2014, 345 (6201): 1153–1158 [9 January 2015]. Bibcode:2014Sci...345.1153G. PMID 25190791. doi:10.1126/science.1254581. (原始内容 (PDF)于2017-01-27). 
  10. ^ Vincent AJB; Cantor B: part II thesis, University of Sussex (1981).
  11. ^ Huang KH, Yeh JW. A study on multicomponent alloy systems containing equal-mole elements [M.S. thesis]. Hsinchu: National Tsing Hua University; 1996.
  12. ^ 12.0 12.1 Sonal, Sonal; Lee, Jonghyun. Recent Advances in Additive Manufacturing of High Entropy Alloys and Their Nuclear and Wear-Resistant Applications. Metals. December 2021, 11 (12): 1980. doi:10.3390/met11121980 . 
  13. ^ Wei-han, Chen. Taiwanese researcher gets special 'Nature' coverage - Taipei Times. The Taipei Times. 10 June 2016 [2022-09-03]. (原始内容于2022-04-07). 
  14. ^ Yeh, Jien Wei; Chen, Yu Liang; Lin, Su Jien; Chen, Swe Kai. High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum. November 2007, 560: 1–9. S2CID 137011733. doi:10.4028/www.scientific.net/MSF.560.1. 
  15. ^ 15.0 15.1 Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. May 2004, 6 (5): 299–303. S2CID 137380231. doi:10.1002/adem.200300567. 
  16. ^ Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. July 2004,. 375-377: 213–218. doi:10.1016/j.msea.2003.10.257. 
  17. ^ Middleburgh, S. C.; King, D. M.; Lumpkin, G. R. Atomic scale modelling of hexagonal structured metallic fission product alloys. Royal Society Open Science. April 2015, 2 (4): 140292. Bibcode:2015RSOS....2n0292M. PMC 4448871 . PMID 26064629. doi:10.1098/rsos.140292. 
  18. ^ Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia. April 2013, 61 (7): 2628–2638 [2022-09-03]. Bibcode:2013AcMat..61.2628O. doi:10.1016/j.actamat.2013.01.042. (原始内容于2022-09-03). 
  19. ^ Zou, Yu; Maiti, Soumyadipta; Steurer, Walter; Spolenak, Ralph. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Materialia. February 2014, 65: 85–97. Bibcode:2014AcMat..65...85Z. doi:10.1016/j.actamat.2013.11.049. 
  20. ^ 20.0 20.1 Gali, A.; George, E.P. Tensile properties of high- and medium-entropy alloys. Intermetallics. August 2013, 39: 74–78 [2022-09-03]. doi:10.1016/j.intermet.2013.03.018. (原始内容于2022-09-03). 
  21. ^ Miracle, Daniel; Miller, Jonathan; Senkov, Oleg; Woodward, Christopher; Uchic, Michael; Tiley, Jaimie. Exploration and Development of High Entropy Alloys for Structural Applications. Entropy. 10 January 2014, 16 (1): 494–525. Bibcode:2014Entrp..16..494M. doi:10.3390/e16010494 . 
  22. ^ Johnson, Duane; Millsaps, Laura. Ames Lab takes the guesswork out of discovering new high-entropy alloys. Ames Laboratory News (U.S. Dept. of Energy). 1 May 2018 [10 December 2018]. (原始内容于2019-03-30). high-entropy alloys are notoriously difficult to make, requiring expensive materials and specialty processing techniques. Even then, attempts in a laboratory don't guarantee that a theoretically possible compound is physically possible, let alone potentially useful. 
  23. ^ 23.0 23.1 23.2 Zhang, Yong; Zuo, Ting Ting; Tang, Zhi; Gao, Michael C.; Dahmen, Karin A.; Liaw, Peter K.; Lu, Zhao Ping. Microstructures and properties of high-entropy alloys. Progress in Materials Science. April 2014, 61: 1–93. doi:10.1016/j.pmatsci.2013.10.001. 
  24. ^ Youssef, Khaled M.; Zaddach, Alexander J.; Niu, Changning; Irving, Douglas L.; Koch, Carl C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Materials Research Letters. 9 December 2014, 3 (2): 95–99. doi:10.1080/21663831.2014.985855 . 
  25. ^ Ji, Wei; Wang, Weimin; Wang, Hao; Zhang, Jinyong; Wang, Yucheng; Zhang, Fan; Fu, Zhengyi. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. January 2015, 56: 24–27. doi:10.1016/j.intermet.2014.08.008. 
  26. ^ Zou, Yu; Ma, Huan; Spolenak, Ralph. Ultrastrong ductile and stable high-entropy alloys at small scales. Nature Communications. 10 July 2015, 6 (1): 7748. Bibcode:2015NatCo...6.7748Z. PMC 4510962 . PMID 26159936. doi:10.1038/ncomms8748 . 
  27. ^ Chaudhary, V.; Mantri, S. A.; Ramanujan, R. V.; Banerjee, R. Additive manufacturing of magnetic materials. Progress in Materials Science. 2020-10-01, 114: 100688. ISSN 0079-6425. doi:10.1016/j.pmatsci.2020.100688 (英语). 
  28. ^ Irving, Michael. 3D-printable 5-metal alloy proves ultra-strong but ductile. New Atlas. 2022-08-10 [2022-08-10]. (原始内容于2022-12-13) (美国英语). 
  29. ^ Yao, Chen-Zhong; Zhang, Peng; Liu, Meng; Li, Gao-Ren; Ye, Jian-Qing; Liu, Peng; Tong, Ye-Xiang. Electrochemical preparation and magnetic study of Bi–Fe–Co–Ni–Mn high-entropy alloy. Electrochimica Acta. November 2008, 53 (28): 8359–8365. doi:10.1016/j.electacta.2008.06.036. 
  30. ^ 30.0 30.1 Hsu, Ya-Chu; Li, Chia-Lin; Hsueh, Chun-Hway. Effects of Al Addition on Microstructures and Mechanical Properties of CoCrFeMnNiAlx High Entropy Alloy Films. Entropy. 2019-12-18, 22 (1): 2. Bibcode:2019Entrp..22....2H. ISSN 1099-4300. PMC 7516440 . PMID 33285777. doi:10.3390/e22010002 . 
  31. ^ Liao, Wei-Bing; Zhang, Hongti; Liu, Zhi-Yuan; Li, Pei-Feng; Huang, Jian-Jun; Yu, Chun-Yan; Lu, Yang. High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. Entropy. 2019-02-04, 21 (2): 146. Bibcode:2019Entrp..21..146L. ISSN 1099-4300. PMC 7514628 . PMID 33266862. doi:10.3390/e21020146 . 
  32. ^ Shaginyan, L. R.; Britun, V. F.; Krapivka, N. A.; Firstov, S. A.; Kotko, A. V.; Gorban, V. F. The Properties of Cr–Co–Cu–Fe–Ni Alloy Films Deposited by Magnetron Sputtering. Powder Metallurgy and Metal Ceramics. 2018-09-01, 57 (5): 293–300. ISSN 1573-9066. S2CID 139253120. doi:10.1007/s11106-018-9982-0 (英语). 
  33. ^ 33.0 33.1 Hsu, Ya-Chu; Li, Chia-Lin; Hsueh, Chun-Hway. Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element. Surface and Coatings Technology. 2020-10-15, 399: 126149. ISSN 0257-8972. S2CID 225592198. doi:10.1016/j.surfcoat.2020.126149 (英语). 
  34. ^ 34.0 34.1 Fang, Shuang; Wang, Cheng; Li, Chia-Lin; Luan, Jun-Hua; Jiao, Zeng-Bao; Liu, Chain-Tsuan; Hsueh, Chun-Hway. Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films. Journal of Alloys and Compounds. 2020-04-15, 820: 153388. ISSN 0925-8388. S2CID 213937088. doi:10.1016/j.jallcom.2019.153388 (英语). 
  35. ^ 35.0 35.1 Huang, Tzu-Hsuan; Hsueh, Chun-Hway. Microstructures and mechanical properties of (CoCrFeMnNi)100-xMox high entropy alloy films. Intermetallics. 2021-08-01, 135: 107236. ISSN 0966-9795. S2CID 236239363. doi:10.1016/j.intermet.2021.107236 (英语). 
  36. ^ Liang, Yu-Hsuan; Li, Chia-Lin; Hsueh, Chun-Hway. Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films. Coatings. 2021-12-14, 11 (12): 1539. ISSN 2079-6412. doi:10.3390/coatings11121539 . 
  37. ^ 37.0 37.1 Braic, V.; Vladescu, Alina; Balaceanu, M.; Luculescu, C. R.; Braic, M. Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface and Coatings Technology. Proceedings of Symposium K on Protective Coatings and Thin Films, E-MRS 2011 Conference. 2012-10-25, 211: 117–121. ISSN 0257-8972. doi:10.1016/j.surfcoat.2011.09.033 (英语). 
  38. ^ 38.0 38.1 38.2 38.3 Chen, T. K.; Shun, T. T.; Yeh, J. W.; Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology. Proceedings of the 31st International Conference on Metallurgical Coatings and Thin Films. 2004-11-01,. 188-189: 193–200. ISSN 0257-8972. doi:10.1016/j.surfcoat.2004.08.023 (英语). 
  39. ^ 39.0 39.1 Ren, Bo; Shen, Zigang; Liu, Zhongxia. Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering. Journal of Alloys and Compounds. 2013-05-25, 560: 171–176. ISSN 0925-8388. doi:10.1016/j.jallcom.2013.01.148 (英语). 
  40. ^ 40.0 40.1 Cheng, Keng-Hao; Lai, Chia-Han; Lin, Su-Jien; Yeh, Jien-Wei. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin Solid Films. 2011-03-01, 519 (10): 3185–3190. Bibcode:2011TSF...519.3185C. ISSN 0040-6090. doi:10.1016/j.tsf.2010.11.034 (英语). 
  41. ^ 41.0 41.1 Lai, Chia-Han; Lin, Su-Jien; Yeh, Jien-Wei; Chang, Shou-Yi. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology. 2006-12-04, 201 (6): 3275–3280. ISSN 0257-8972. doi:10.1016/j.surfcoat.2006.06.048 (英语). 
  42. ^ Zhang, W.; Tang, R.; Yang, Z. B.; Liu, C. H.; Chang, H.; Yang, J. J.; Liao, J. L.; Yang, Y. Y.; Liu, N. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/(AlCrMoNbZr)N. Journal of Nuclear Materials. 2018-12-15, 512: 15–24. Bibcode:2018JNuM..512...15Z. ISSN 0022-3115. S2CID 105282834. doi:10.1016/j.jnucmat.2018.10.001 (英语). 
  43. ^ 43.0 43.1 Huang, Ping-Kang; Yeh, Jien-Wei. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surface and Coatings Technology. 2009-03-25, 203 (13): 1891–1896. ISSN 0257-8972. doi:10.1016/j.surfcoat.2009.01.016 (英语). 
  44. ^ 44.0 44.1 Hsueh, Hwai-Te; Shen, Wan-Jui; Tsai, Ming-Hung; Yeh, Jien-Wei. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surface and Coatings Technology. 2012-05-25, 206 (19): 4106–4112. ISSN 0257-8972. doi:10.1016/j.surfcoat.2012.03.096 (英语). 
  45. ^ Kao, W. H.; Su, Y. L.; Horng, J. H.; Wu, H. M. Effects of carbon doping on mechanical, tribological, structural, anti-corrosion and anti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings. Thin Solid Films. 2021-01-01, 717: 138448. Bibcode:2021TSF...717m8448K. ISSN 0040-6090. S2CID 229423367. doi:10.1016/j.tsf.2020.138448 (英语). 
  46. ^ Yu, Xu; Wang, Junjun; Wang, Linqing; Huang, Weijiu. Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surface and Coatings Technology. 2021-04-25, 412: 127074. ISSN 0257-8972. S2CID 233695035. doi:10.1016/j.surfcoat.2021.127074 (英语). 
  47. ^ Zeng, Qunfeng; Xu, Yating. A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel. Materials Today Communications. 2020-09-01, 24: 101261. ISSN 2352-4928. S2CID 219474551. doi:10.1016/j.mtcomm.2020.101261 (英语). 
  48. ^ Sajid, Alvi. Synthesis and Characterization of High Entropy Alloy and Coating. ISBN 978-91-7790-395-6. OCLC 1102485976. 
  49. ^ 49.0 49.1 Liang, Shih-Chang; Tsai, Du-Cheng; Chang, Zue-Chin; Sung, Huan-Shin; Lin, Yi-Chen; Yeh, Yi-Jung; Deng, Min-Jen; Shieu, Fuh-Sheng. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Applied Surface Science. 2011-10-15, 258 (1): 399–403. Bibcode:2011ApSS..258..399L. ISSN 0169-4332. doi:10.1016/j.apsusc.2011.09.006 (英语). 
  50. ^ Feng, Xingguo; Tang, Guangze; Ma, Xinxin; Sun, Mingren; Wang, Liqin. Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based ion implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2013-04-15, 301: 29–35. Bibcode:2013NIMPB.301...29F. ISSN 0168-583X. doi:10.1016/j.nimb.2013.03.001 (英语). 
  51. ^ 51.0 51.1 Chang, Zue-Chin; Liang, Shih-Chang; Han, Sheng; Chen, Yi-Kun; Shieu, Fuh-Sheng. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010-08-15, 268 (16): 2504–2509. Bibcode:2010NIMPB.268.2504C. ISSN 0168-583X. doi:10.1016/j.nimb.2010.05.039 (英语). 
  52. ^ 52.0 52.1 Liu, L.; Zhu, J. B.; Hou, C.; Li, J. C.; Jiang, Q. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Materials & Design. 2013-04-01, 46: 675–679. ISSN 0261-3069. doi:10.1016/j.matdes.2012.11.001 (英语). 
  53. ^ Sheng, Wenjie; Yang, Xiao; Wang, Cong; Zhang, Yong. Nano-Crystallization of High-Entropy 無定形 NbTiAlSiWxNy Films Prepared by Magnetron Sputtering. Entropy. 2016-06-13, 18 (6): 226. Bibcode:2016Entrp..18..226S. ISSN 1099-4300. doi:10.3390/e18060226 . 
  54. ^ Lai, Chia-Han; Lin, Su-Jien; Yeh, Jien-Wei; Davison, Andrew. Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings. Journal of Physics D: Applied Physics. 2006-11-07, 39 (21): 4628–4633. Bibcode:2006JPhD...39.4628L. ISSN 0022-3727. doi:10.1088/0022-3727/39/21/019. 
  55. ^ Hsieh, Ming-Hsiao; Tsai, Ming-Hung; Shen, Wan-Jui; Yeh, Jien-Wei. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surface and Coatings Technology. 2013-04-25, 221: 118–123. ISSN 0257-8972. doi:10.1016/j.surfcoat.2013.01.036 (英语). 
  56. ^ Lai, Chia-Han; Tsai, Ming-Hung; Lin, Su-Jien; Yeh, Jien-Wei. Influence of substrate temperature on structure and mechanical, properties of multi-element (AlCrTaTiZr)N coatings. Surface and Coatings Technology. 2007-05-21, 201 (16): 6993–6998. ISSN 0257-8972. doi:10.1016/j.surfcoat.2007.01.001 (英语). 
  57. ^ Chang, Zue-Chin; Liang, Jun-Yang. Oxidation Behavior and Structural Transformation of (CrTaTiVZr)N Coatings. Coatings. 2020-04-22, 10 (4): 415. ISSN 2079-6412. doi:10.3390/coatings10040415 . 
  58. ^ Zhang, Cunxiu; Lu, Xiaolong; Wang, Cong; Sui, Xudong; Wang, Yanfang; Zhou, Haibin; Hao, Junying. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow. Journal of Materials Science & Technology. 2022-04-30, 107: 172–182. ISSN 1005-0302. S2CID 244583979. doi:10.1016/j.jmst.2021.08.032 (英语). 
  59. ^ Johansson, Kristina; Riekehr, Lars; Fritze, Stefan; Lewin, Erik. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition. Surface and Coatings Technology. 2018-09-15, 349: 529–539. ISSN 0257-8972. S2CID 103303702. doi:10.1016/j.surfcoat.2018.06.030 (英语). 


相關條目 编辑

  • 非晶态金属
  • 納米晶材料英语Nanocrystalline material
  • Hume-Rothery法則英语Hume-Rothery rules

高熵合金, 英語, high, entropy, alloys, heas, 簡稱hea, 通常是由五種或五種以上等量或相對比例金屬形成的新型合金, 名為, 是因為當混合物中存在大量元素混合時的熵增加實質上更高, 並且比例更接近相等, 面心立方結構cocrfemnni原子結構, 由於可能具有許多理想的性質, 因此在材料科學及工程上相當受到重視, 相對於以往的典型金屬合金, 合金主要的金屬成份可能只有一至兩種, 例如會以鐵為基礎, 再加入一些微量元素, 錳等, 來提昇其特性, 但因此所得的還是以鐵為主的合金, 其他元. 高熵合金 英語 High entropy alloys HEAs 簡稱HEA 通常是由五種或五種以上等量或相對比例金屬形成的新型合金 名為 高熵合金 是因為當混合物中存在大量元素混合時的熵增加實質上更高 並且比例更接近相等 2 面心立方結構CoCrFeMnNi原子結構 1 由於高熵合金可能具有許多理想的性質 因此在材料科學及工程上相當受到重視 3 相對於以往的典型金屬合金 合金主要的金屬成份可能只有一至兩種 例如會以鐵為基礎 再加入一些微量元素 碳 錳等 來提昇其特性 但因此所得的還是以鐵為主的合金 3 其他元素比例實際相當低 過往的概念中 若合金中加的金屬種類越多 會使其材質脆化 但高熵合金和以往的合金不同 有多種金屬卻不會脆化 是一種新的材料 1 3 4 研究發現有些高熵合金的比強度比傳統合金好很多 而且抗断裂能力 抗拉強度 抗腐蝕及抗氧化特性都比傳統的合金要好 高熵合金在2004年以前就已問世 但在2010年代才有許多相關的研究 3 5 6 7 8 9 目录 1 發展 2 定義 3 合成 4 例子 5 參考 6 相關條目發展 编辑儘管早在1981年 10 1996年 11 以及整個1980年代就考究了理論上可以存在高熵合金 但製造出這些特殊合金 還要到2004年 據說葉均蔚博士是在1995年駕車穿越新竹鄉村時 想出了實際製造高熵合金方法 高熵合金潛在應用包括用於潛艇 航天器 核武器 核反應堆 12 噴氣式飛機 遠程高超音速導彈等等 13 14 在葉均蔚博士的論文發表幾個月後 布賴恩 康托爾 英语 Brian Cantor I T H Chang P Knight A J B Vincent提交了關於高熵合金的獨立論文 葉均蔚也是第一個提出 高熵合金 英語 High entropy alloys 一詞的人 他將高構型熵歸因於穩定固溶體相機制 15 儘管布賴恩 康托爾 英语 Brian Cantor 直到2004年葉均蔚論文發表幾個月後才發表論文 康托爾其實早在1970年代末1980年代初就完成了該領域的首項工作 康托爾 英语 Brian Cantor 由於不知道葉均蔚的工作 康托爾 英语 Brian Cantor 更喜歡稱 高熵合金 為 多組分合金 多元合金 英語 multicomponent alloys 康托爾 英语 Brian Cantor 開發了高熵合金FeCrMnNiCo合金 類似的衍生物也被稱為康托爾合金 16 在將高熵合金和多組分系統歸類為單獨一類材料之前 核科學家已經研究了一種現在可以歸類為高熵合金的系統 在核燃料晶界和裂變氣泡處的Mo Pd Rh Ru Tc粒子 17 醫療行業對了解這些 五金屬粒子 特別感興趣 因為鍀 99m是一種重要醫學成像同位素 定義 编辑沒有普遍認可的HEA定義 最初將HEA定義為含有至少5種元素且原子百分比5到35的合金 15 然而後來的研究表明 這個定義還可以擴展 建議只有形成沒有金屬間相的固溶體的合金才應該被認為是真正的高熵合金 因為有序相的形成會降低系統的熵 18 一些作者將四組分合金也描述為高熵合金 19 也有建議只有2到4種元素合金滿足HEA要求 也算高熵合金 20 或理想氣體常數1到1 5之間的混合熵也算 21 中熵合金 20 合成 编辑使用現有技術截至2018年 2018 Missing required parameter 1 month update 難以製造高熵合金 並且通常需要昂貴的材料和特殊的加工技術 22 高熵合金主要是使用依賴於金屬相方法生產 如果金屬在液態 固態 氣態下合成 大多數HEA已使用液相方法生產 包括電弧熔化 電弧爐 感應熔化 感應爐 英语 induction furnace 布里奇曼 史托巴格法 固態加工通常通過使用高能球磨機的機械合金化 英语 Mechanical alloying 完成 這種方法生產的粉末可以使用傳統的粉末冶金方法或放電等離子燒結 英语 Spark plasma sintering 進行加工 這種方法可以生產出使用鑄造難以或不可能生產的合金 例如AlLiMgScTi 23 24 25 氣相處理包括濺鍍或 分子束外延等工藝 可用於仔細控制不同的元素組成以獲得高熵金屬 26 或陶瓷膜 23 增材制造 立體打印 27 12 可產出具不同微觀結構的合金 潛在地增加強度 1 3吉帕斯卡 增加延展性 28 其他技術包括熱噴塗 激光熔覆 英语 Cladding metalworking 和電鍍 23 29 例子 编辑高熵合金薄膜例子 合金 相態 硬度 吉帕斯卡 相關模數 吉帕斯卡 參考CoCrFeMnNi FCC 5 71 Er 172 84 30 CoCrFeMnNiAl1 3 BCC 8 74 Er 167 19 30 Al0 3CoCrFeNi FCC BCC 11 09 E 186 01 31 CrCoCuFeNi FCC BCC 15 E 181 32 CoCrFeMnNiTi0 2 FCC 8 61 Er 157 81 33 CoCrFeMnNiTi0 8 無定形 8 99 Er 151 42 33 CoCrFeMnNiV0 07 FCC 7 99 E 206 4 34 CoCrFeMnNiV1 1 無定形 8 69 E 144 6 34 CoCrFeMnNi 99 5Mo0 5 FCC 4 62 Er 157 76 35 CoCrFeMnNi 85 4Mo14 6 無定形 8 77 Er 169 17 35 CoCrFeMnNi 92 8Nb7 2 無定形 8 1 Er 105 36 TiZrNbHfTa FCC 5 4 37 FeCoNiCrCuAlMn FCC BCC 4 2 38 FeCoNiCrCuAl0 5 FCC 4 4 38 AlCrMnMoNiZr 無定形 7 2 E 172 39 AlCrMoTaTiZr 無定形 11 2 E 193 40 AlCrTiTaZr 無定形 9 3 E 140 41 AlCrMoNbZr BCC 無定形 11 8 42 AlCrNbSiTiV 無定形 10 4 E 177 43 AlCrSiTiZr 無定形 11 5 E 206 44 CrNbSiTaZr 無定形 20 12 45 CrNbSiTiZr 無定形 9 6 E 179 7 46 AlFeCrNiMo BCC 4 98 47 CuMoTaWV BCC 19 E 259 48 TiVCrZrHf 無定形 8 3 E 104 7 49 ZrTaNbTiW 無定形 4 7 E 120 50 TiVCrAlZr 無定形 8 2 E 128 9 51 FeCoNiCuVZrAl 無定形 8 6 E 153 52 合金 RN 相態 硬度 吉帕斯卡 相關模數 吉帕斯卡 參考 FeCoNiCuVZrAl N 30 無定形 12 E 166 52 TiZrNbHfTa N 25 FCC 32 9 37 TiVCrAlZr N 50 FCC 11 E 151 51 AlCrTaTiZr N 14 FCC 32 E 368 41 FeCoNiCrCuAl0 5 N 33 3 無定形 10 4 38 FeCoNiCrCuAlMn N 23 1 無定形 11 8 38 AlCrMnMoNiZr N 50 FCC 11 9 E 202 39 TiVCrZrHf N 3 85 FCC 23 8 E 267 3 49 NbTiAlSiW N 16 67 無定形 13 6 E 154 4 53 NbTiAlSi N 16 67 FCC 20 5 E 206 8 AlCrNbSiTiV N 5 FCC 35 E 337 43 28 FCC 41 E 360 AlCrTaTiZr N 50 FCC 36 E 360 54 Al23 1Cr30 8Nb7 7Si7 7Ti30 7 N50 FCC 36 1 E 430 55 Al29 1Cr30 8Nb11 2Si7 7Ti21 2 N50 FCC 36 7 E 380 AlCrSiTiZr N 5 無定形 17 E 232 44 30 FCC 16 E 232 AlCrMoTaTiZr N 40 FCC 40 2 E 420 40 AlCrTaTiZr N 50 FCC 35 E 350 56 CrTaTiVZr N 20 FCC 34 3 E 268 57 CrNbTiAlV N 67 86 FCC 35 3 E 353 7 58 HfNbTiVZr N 33 33 FCC 7 6 E 270 59 參考 编辑 1 0 1 1 Wang Shaoqing Atomic Structure Modeling of Multi Principal Element Alloys by the Principle of Maximum Entropy Entropy 13 December 2013 15 12 5536 5548 2016 10 20 Bibcode 2013Entrp 15 5536W doi 10 3390 e15125536 原始内容存档于2016 04 21 HTML full text article available Ye Y F Wang Q Lu J Liu C T Yang Y High entropy alloy challenges and prospects Materials Today July 2016 19 6 349 362 doi 10 1016 j mattod 2015 11 026 nbsp 3 0 3 1 3 2 3 3 Tsai Ming Hung Yeh Jien Wei High Entropy Alloys A Critical Review Materials Research Letters 30 April 2014 2 3 107 123 doi 10 1080 21663831 2014 912690 Free PDF download 央廣RTI 高熵合金 打破多元素合金易脆迷思 2016 10 21 原始内容存档于2016 10 21 Lavine Marc S A metal alloy that is stronger when cold Science 2014 345 1131 9 January 2015 Bibcode 2014Sci 345Q1131L doi 10 1126 science 345 6201 1131 b 原始内容存档于2015 09 24 Shipman Matt New high entropy alloy is as light as aluminum as strong as titanium alloys Phys org 10 December 2014 9 January 2015 原始内容存档于2019 04 19 Youssef Khaled M Zaddach Alexander J Niu Changning Irving Douglas L Koch Carl C A Novel Low Density High Hardness High entropy Alloy Free PDF download Materials Research Letters 9 December 2014 1 doi 10 1080 21663831 2014 985855 Yarris Lyn A metallic alloy that is tough and ductile at cryogenic temperatures Berkeley Lab News Center University of California Berkeley 4 September 2014 9 January 2015 原始内容存档于2016 04 07 Gludovatz B Hohenwarter A Catoor D Chang E H George E P Ritchie R O A fracture resistant high entropy alloy for cryogenic applications Free PDF download Science AAAS 5 September 2014 345 6201 1153 1158 9 January 2015 Bibcode 2014Sci 345 1153G PMID 25190791 doi 10 1126 science 1254581 原始内容存档 PDF 于2017 01 27 Vincent AJB Cantor B part II thesis University of Sussex 1981 Huang KH Yeh JW A study on multicomponent alloy systems containing equal mole elements M S thesis Hsinchu National Tsing Hua University 1996 12 0 12 1 Sonal Sonal Lee Jonghyun Recent Advances in Additive Manufacturing of High Entropy Alloys and Their Nuclear and Wear Resistant Applications Metals December 2021 11 12 1980 doi 10 3390 met11121980 nbsp Wei han Chen Taiwanese researcher gets special Nature coverage Taipei Times The Taipei Times 10 June 2016 2022 09 03 原始内容存档于2022 04 07 Yeh Jien Wei Chen Yu Liang Lin Su Jien Chen Swe Kai High Entropy Alloys A New Era of Exploitation Materials Science Forum November 2007 560 1 9 S2CID 137011733 doi 10 4028 www scientific net MSF 560 1 15 0 15 1 Yeh J W Chen S K Lin S J Gan J Y Chin T S Shun T T Tsau C H Chang S Y Nanostructured High Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes Advanced Engineering Materials May 2004 6 5 299 303 S2CID 137380231 doi 10 1002 adem 200300567 Cantor B Chang I T H Knight P Vincent A J B Microstructural development in equiatomic multicomponent alloys Materials Science and Engineering A July 2004 375 377 213 218 doi 10 1016 j msea 2003 10 257 Middleburgh S C King D M Lumpkin G R Atomic scale modelling of hexagonal structured metallic fission product alloys Royal Society Open Science April 2015 2 4 140292 Bibcode 2015RSOS 2n0292M PMC 4448871 nbsp PMID 26064629 doi 10 1098 rsos 140292 Otto F Yang Y Bei H George E P Relative effects of enthalpy and entropy on the phase stability of equiatomic high entropy alloys Acta Materialia April 2013 61 7 2628 2638 2022 09 03 Bibcode 2013AcMat 61 2628O doi 10 1016 j actamat 2013 01 042 原始内容存档于2022 09 03 Zou Yu Maiti Soumyadipta Steurer Walter Spolenak Ralph Size dependent plasticity in an Nb25Mo25Ta25W25 refractory high entropy alloy Acta Materialia February 2014 65 85 97 Bibcode 2014AcMat 65 85Z doi 10 1016 j actamat 2013 11 049 20 0 20 1 Gali A George E P Tensile properties of high and medium entropy alloys Intermetallics August 2013 39 74 78 2022 09 03 doi 10 1016 j intermet 2013 03 018 原始内容存档于2022 09 03 Miracle Daniel Miller Jonathan Senkov Oleg Woodward Christopher Uchic Michael Tiley Jaimie Exploration and Development of High Entropy Alloys for Structural Applications Entropy 10 January 2014 16 1 494 525 Bibcode 2014Entrp 16 494M doi 10 3390 e16010494 nbsp Johnson Duane Millsaps Laura Ames Lab takes the guesswork out of discovering new high entropy alloys Ames Laboratory News U S Dept of Energy 1 May 2018 10 December 2018 原始内容存档于2019 03 30 high entropy alloys are notoriously difficult to make requiring expensive materials and specialty processing techniques Even then attempts in a laboratory don t guarantee that a theoretically possible compound is physically possible let alone potentially useful 23 0 23 1 23 2 Zhang Yong Zuo Ting Ting Tang Zhi Gao Michael C Dahmen Karin A Liaw Peter K Lu Zhao Ping Microstructures and properties of high entropy alloys Progress in Materials Science April 2014 61 1 93 doi 10 1016 j pmatsci 2013 10 001 Youssef Khaled M Zaddach Alexander J Niu Changning Irving Douglas L Koch Carl C A Novel Low Density High Hardness High entropy Alloy with Close packed Single phase Nanocrystalline Structures Materials Research Letters 9 December 2014 3 2 95 99 doi 10 1080 21663831 2014 985855 nbsp Ji Wei Wang Weimin Wang Hao Zhang Jinyong Wang Yucheng Zhang Fan Fu Zhengyi Alloying behavior and novel properties of CoCrFeNiMn high entropy alloy fabricated by mechanical alloying and spark plasma sintering Intermetallics January 2015 56 24 27 doi 10 1016 j intermet 2014 08 008 Zou Yu Ma Huan Spolenak Ralph Ultrastrong ductile and stable high entropy alloys at small scales Nature Communications 10 July 2015 6 1 7748 Bibcode 2015NatCo 6 7748Z PMC 4510962 nbsp PMID 26159936 doi 10 1038 ncomms8748 nbsp Chaudhary V Mantri S A Ramanujan R V Banerjee R Additive manufacturing of magnetic materials Progress in Materials Science 2020 10 01 114 100688 ISSN 0079 6425 doi 10 1016 j pmatsci 2020 100688 英语 Irving Michael 3D printable 5 metal alloy proves ultra strong but ductile New Atlas 2022 08 10 2022 08 10 原始内容存档于2022 12 13 美国英语 Yao Chen Zhong Zhang Peng Liu Meng Li Gao Ren Ye Jian Qing Liu Peng Tong Ye Xiang Electrochemical preparation and magnetic study of Bi Fe Co Ni Mn high entropy alloy Electrochimica Acta November 2008 53 28 8359 8365 doi 10 1016 j electacta 2008 06 036 30 0 30 1 Hsu Ya Chu Li Chia Lin Hsueh Chun Hway Effects of Al Addition on Microstructures and Mechanical Properties of CoCrFeMnNiAlx High Entropy Alloy Films Entropy 2019 12 18 22 1 2 Bibcode 2019Entrp 22 2H ISSN 1099 4300 PMC 7516440 nbsp PMID 33285777 doi 10 3390 e22010002 nbsp Liao Wei Bing Zhang Hongti Liu Zhi Yuan Li Pei Feng Huang Jian Jun Yu Chun Yan Lu Yang High Strength and Deformation Mechanisms of Al0 3CoCrFeNi High Entropy Alloy Thin Films Fabricated by Magnetron Sputtering Entropy 2019 02 04 21 2 146 Bibcode 2019Entrp 21 146L ISSN 1099 4300 PMC 7514628 nbsp PMID 33266862 doi 10 3390 e21020146 nbsp Shaginyan L R Britun V F Krapivka N A Firstov S A Kotko A V Gorban V F The Properties of Cr Co Cu Fe Ni Alloy Films Deposited by Magnetron Sputtering Powder Metallurgy and Metal Ceramics 2018 09 01 57 5 293 300 ISSN 1573 9066 S2CID 139253120 doi 10 1007 s11106 018 9982 0 英语 33 0 33 1 Hsu Ya Chu Li Chia Lin Hsueh Chun Hway Modifications of microstructures and mechanical properties of CoCrFeMnNi high entropy alloy films by adding Ti element Surface and Coatings Technology 2020 10 15 399 126149 ISSN 0257 8972 S2CID 225592198 doi 10 1016 j surfcoat 2020 126149 英语 34 0 34 1 Fang Shuang Wang Cheng Li Chia Lin Luan Jun Hua Jiao Zeng Bao Liu Chain Tsuan Hsueh Chun Hway Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films Journal of Alloys and Compounds 2020 04 15 820 153388 ISSN 0925 8388 S2CID 213937088 doi 10 1016 j jallcom 2019 153388 英语 35 0 35 1 Huang Tzu Hsuan Hsueh Chun Hway Microstructures and mechanical properties of CoCrFeMnNi 100 xMox high entropy alloy films Intermetallics 2021 08 01 135 107236 ISSN 0966 9795 S2CID 236239363 doi 10 1016 j intermet 2021 107236 英语 Liang Yu Hsuan Li Chia Lin Hsueh Chun Hway Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx CoCrFeMnNi High Entropy Alloy Films Coatings 2021 12 14 11 12 1539 ISSN 2079 6412 doi 10 3390 coatings11121539 nbsp 37 0 37 1 Braic V Vladescu Alina Balaceanu M Luculescu C R Braic M Nanostructured multi element TiZrNbHfTa N and TiZrNbHfTa C hard coatings Surface and Coatings Technology Proceedings of Symposium K on Protective Coatings and Thin Films E MRS 2011 Conference 2012 10 25 211 117 121 ISSN 0257 8972 doi 10 1016 j surfcoat 2011 09 033 英语 38 0 38 1 38 2 38 3 Chen T K Shun T T Yeh J W Wong M S Nanostructured nitride films of multi element high entropy alloys by reactive DC sputtering Surface and Coatings Technology Proceedings of the 31st International Conference on Metallurgical Coatings and Thin Films 2004 11 01 188 189 193 200 ISSN 0257 8972 doi 10 1016 j surfcoat 2004 08 023 英语 39 0 39 1 Ren Bo Shen Zigang Liu Zhongxia Structure and mechanical properties of multi element AlCrMnMoNiZr Nx coatings by reactive magnetron sputtering Journal of Alloys and Compounds 2013 05 25 560 171 176 ISSN 0925 8388 doi 10 1016 j jallcom 2013 01 148 英语 40 0 40 1 Cheng Keng Hao Lai Chia Han Lin Su Jien Yeh Jien Wei Structural and mechanical properties of multi element AlCrMoTaTiZr Nx coatings by reactive magnetron sputtering Thin Solid Films 2011 03 01 519 10 3185 3190 Bibcode 2011TSF 519 3185C ISSN 0040 6090 doi 10 1016 j tsf 2010 11 034 英语 41 0 41 1 Lai Chia Han Lin Su Jien Yeh Jien Wei Chang Shou Yi Preparation and characterization of AlCrTaTiZr multi element nitride coatings Surface and Coatings Technology 2006 12 04 201 6 3275 3280 ISSN 0257 8972 doi 10 1016 j surfcoat 2006 06 048 英语 Zhang W Tang R Yang Z B Liu C H Chang H Yang J J Liao J L Yang Y Y Liu N Preparation structure and properties of high entropy alloy multilayer coatings for nuclear fuel cladding A case study of AlCrMoNbZr AlCrMoNbZr N Journal of Nuclear Materials 2018 12 15 512 15 24 Bibcode 2018JNuM 512 15Z ISSN 0022 3115 S2CID 105282834 doi 10 1016 j jnucmat 2018 10 001 英语 43 0 43 1 Huang Ping Kang Yeh Jien Wei Effects of nitrogen content on structure and mechanical properties of multi element AlCrNbSiTiV N coating Surface and Coatings Technology 2009 03 25 203 13 1891 1896 ISSN 0257 8972 doi 10 1016 j surfcoat 2009 01 016 英语 44 0 44 1 Hsueh Hwai Te Shen Wan Jui Tsai Ming Hung Yeh Jien Wei Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high entropy films AlCrSiTiZr 100 xNx Surface and Coatings Technology 2012 05 25 206 19 4106 4112 ISSN 0257 8972 doi 10 1016 j surfcoat 2012 03 096 英语 Kao W H Su Y L Horng J H Wu H M Effects of carbon doping on mechanical tribological structural anti corrosion and anti glass sticking properties of CrNbSiTaZr high entropy alloy coatings Thin Solid Films 2021 01 01 717 138448 Bibcode 2021TSF 717m8448K ISSN 0040 6090 S2CID 229423367 doi 10 1016 j tsf 2020 138448 英语 Yu Xu Wang Junjun Wang Linqing Huang Weijiu Fabrication and characterization of CrNbSiTiZr high entropy alloy films by radio frequency magnetron sputtering via tuning substrate bias Surface and Coatings Technology 2021 04 25 412 127074 ISSN 0257 8972 S2CID 233695035 doi 10 1016 j surfcoat 2021 127074 英语 Zeng Qunfeng Xu Yating A comparative study on the tribocorrosion behaviors of AlFeCrNiMo high entropy alloy coatings and 304 stainless steel Materials Today Communications 2020 09 01 24 101261 ISSN 2352 4928 S2CID 219474551 doi 10 1016 j mtcomm 2020 101261 英语 Sajid Alvi Synthesis and Characterization of High Entropy Alloy and Coating ISBN 978 91 7790 395 6 OCLC 1102485976 49 0 49 1 Liang Shih Chang Tsai Du Cheng Chang Zue Chin Sung Huan Shin Lin Yi Chen Yeh Yi Jung Deng Min Jen Shieu Fuh Sheng Structural and mechanical properties of multi element TiVCrZrHf N coatings by reactive magnetron sputtering Applied Surface Science 2011 10 15 258 1 399 403 Bibcode 2011ApSS 258 399L ISSN 0169 4332 doi 10 1016 j apsusc 2011 09 006 英语 Feng Xingguo Tang Guangze Ma Xinxin Sun Mingren Wang Liqin Characteristics of multi element ZrTaNbTiW N films prepared by magnetron sputtering and plasma based ion implantation Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 2013 04 15 301 29 35 Bibcode 2013NIMPB 301 29F ISSN 0168 583X doi 10 1016 j nimb 2013 03 001 英语 51 0 51 1 Chang Zue Chin Liang Shih Chang Han Sheng Chen Yi Kun Shieu Fuh Sheng Characteristics of TiVCrAlZr multi element nitride films prepared by reactive sputtering Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 2010 08 15 268 16 2504 2509 Bibcode 2010NIMPB 268 2504C ISSN 0168 583X doi 10 1016 j nimb 2010 05 039 英语 52 0 52 1 Liu L Zhu J B Hou C Li J C Jiang Q Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high entropy alloy deposited by direct current magnetron sputtering Materials amp Design 2013 04 01 46 675 679 ISSN 0261 3069 doi 10 1016 j matdes 2012 11 001 英语 Sheng Wenjie Yang Xiao Wang Cong Zhang Yong Nano Crystallization of High Entropy 無定形 NbTiAlSiWxNy Films Prepared by Magnetron Sputtering Entropy 2016 06 13 18 6 226 Bibcode 2016Entrp 18 226S ISSN 1099 4300 doi 10 3390 e18060226 nbsp Lai Chia Han Lin Su Jien Yeh Jien Wei Davison Andrew Effect of substrate bias on the structure and properties of multi element AlCrTaTiZr N coatings Journal of Physics D Applied Physics 2006 11 07 39 21 4628 4633 Bibcode 2006JPhD 39 4628L ISSN 0022 3727 doi 10 1088 0022 3727 39 21 019 Hsieh Ming Hsiao Tsai Ming Hung Shen Wan Jui Yeh Jien Wei Structure and properties of two Al Cr Nb Si Ti high entropy nitride coatings Surface and Coatings Technology 2013 04 25 221 118 123 ISSN 0257 8972 doi 10 1016 j surfcoat 2013 01 036 英语 Lai Chia Han Tsai Ming Hung Lin Su Jien Yeh Jien Wei Influence of substrate temperature on structure and mechanical properties of multi element AlCrTaTiZr N coatings Surface and Coatings Technology 2007 05 21 201 16 6993 6998 ISSN 0257 8972 doi 10 1016 j surfcoat 2007 01 001 英语 Chang Zue Chin Liang Jun Yang Oxidation Behavior and Structural Transformation of CrTaTiVZr N Coatings Coatings 2020 04 22 10 4 415 ISSN 2079 6412 doi 10 3390 coatings10040415 nbsp Zhang Cunxiu Lu Xiaolong Wang Cong Sui Xudong Wang Yanfang Zhou Haibin Hao Junying Tailoring the microstructure mechanical and tribocorrosion performance of CrNbTiAlV Nx high entropy nitride films by controlling nitrogen flow Journal of Materials Science amp Technology 2022 04 30 107 172 182 ISSN 1005 0302 S2CID 244583979 doi 10 1016 j jmst 2021 08 032 英语 Johansson Kristina Riekehr Lars Fritze Stefan Lewin Erik Multicomponent Hf Nb Ti V Zr nitride coatings by reactive magnetron sputter deposition Surface and Coatings Technology 2018 09 15 349 529 539 ISSN 0257 8972 S2CID 103303702 doi 10 1016 j surfcoat 2018 06 030 英语 相關條目 编辑非晶态金属 納米晶材料 英语 Nanocrystalline material Hume Rothery法則 英语 Hume Rothery rules 取自 https zh wikipedia org w index php title 高熵合金 amp oldid 75390962, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。