fbpx
维基百科

滾動阻力

滚动阻力是一物体(例如輪胎)在另一物体表面滚动時,所受到的阻力。主要是因為滚动体及其所在的滚动面或其他物体的接触面受压產生塑性变形所造成[1][2][3],也就是指在接觸壓力消失後,部份滚动体或滚动面形變的能量耗散,沒有轉換為動能。滚动阻力可分為兩種:分別是遲滯損失,滚动体或滚动面(例如沙地)的塑性变形。若滚动体和滚动面之間滑動,也會有能量的損失。有些研究者認為這應當一併考慮到滾動阻力中,但也有研究者認為應當稱為「滑動損失」(slip loss)或「滑動阻力」(slip resistance)[1]。另外,只有滑動損失和摩擦力有關,其他和摩擦力無關,有些文獻將滾動阻力稱為滾動摩擦,但「滾動摩擦」其實不是準確的名稱。

滾動阻力和滑動摩擦類似,可以表示為一個係數和正向力的乘積。滾動阻力係數一般會比滑動摩擦係數要小[2]

有輪子的载具在沒有動力時,因為滾動阻力(也包括軸承的滾動阻力)會慢慢的減速,最後停止。但在鐵路軌道上,有鋼製胎的鐵路列車,無動力行駛的距離會比相同重量,橡膠輪胎,行駛在道路上的公共汽車更遠。前者的滾動阻力係數較後者低。會影響滾動阻力的因素包括有輪子的變形程度、路面的變形程度。其他的影響因素有輪徑[3]、輪上負載、表面粘性、 滑動、接觸表面相對的微滑動。因為遲滯現象產生的損失也和輪子和路面的材料特性有關。例如輪胎在柏油路上的滾動阻力比火車鋼輪英语Wheelset (rail transport)在鐵軌上的滾動阻力要小。路面上的也比混凝土的滾動阻力要大。滾動阻力和速度無關。

主要原因 编辑

 
滾動圓柱(往右邊滾動)之間因為黏彈性物質產生的非對稱壓力分佈[4]

充氣輪胎滾動阻力主要是因為遲滯現象[5]

可變形材料的一個特徵是變形的能量比復原的能量要大。輪胎中的橡膠會有遲滯現象,當輪子負荷著車子的重量滾動時,輪子的各部份會反覆的變形和復原,其遲滯能量會以熱的形式散失。遲滯是滾動阻力能量損失的主要原因,和橡膠的黏弹性有關:— National Academy of Sciences[6]

主要原理可以由滾動圓柱的圖上看出。若二個大小相同的圓柱因壓力貼在一起,其接觸平面會是平的。在沒有表面摩擦力的情形下,接觸應力是正向的(和平面垂直)。考慮一個物體從右側進入接觸平面,延著接觸路徑行進,最後從左邊離開。一開始其垂直變形量會增加,但增加量會因為遲滯現象而變的比較小,會產生額外的壓力讓這二個表面不會互相干涉,之後來垂直變形量會減少,這也會遲滯現象而受到影響。此例中,遲滯現象減少了讓這二個圓柱分開所需要的壓力。

所合成的壓力分佈是非對稱的,右邊會比較多。圖中壓力合成的作用線英语line of action不會通過圓柱的中心,會產生力矩抵擋滾動運動。

有些材大(例如橡皮)的遲滯現象較大,反彈比較慢,其滾動阻力會比遲滯現象小的材料(例如石頭或二氧化硅)要大,而遲滯現象小的材料其反彈比較快,反彈後也比較容易恢復原狀。低滾動阻力胎英语Low-rolling resistance tires中就會在其胎面膠中用二氧化矽代替碳黑,降低低頻遲滯,但不影響車輪的牽引力[7]。鐵路因為其路面結構,也可能會有遲滯現象[8]

定義 编辑

廣義的「滾動阻力」是指針對車輛的單位重量,需出力使車輛維持低速前進的力,其中的風阻省略,車輛的引擎和剎車都沒有啟動。換句話,若沒有出力使車輛維持定速,車輛會惰行慢慢停止[9]。這個廣義的定義包括軌承阻力、路面和車輛因為振動所散失的能量,以及輪子在路面(或鐵軌)上的滑動。

但更廣義的「滾動阻力」包括因為力矩產生滑動,所帶來的能量損耗。在滑動時,車輪切線速度比車輛速度要快。因為功等於力乘以速度,車輪速度變快,所需要的功率也對應的變大。

火車上的純「滾動阻力」是指在車輪和鐵軌接觸的位置,因為形變以及少許滑動而造成的阻力[10]。針對橡皮胎,也會有類似的能量損失,是出現在整個車輪上,不過仍稱為「滾動阻力」。廣義的「滾動阻力」還包括軸承的阻力、因為路面(以及下方土地)振動造成的損失、車輛本身振動造成的損失,以及車輪和路面/鐵軌接觸點的滑動。軌道車輛的教科書中會將這些損失都加總,但不會像此條目所作的,都一併稱為(廣義的)「滾動阻力」。軌道車輛的教科書還會加上風阻,一併稱為火車基本阻力。[11]

廣義的「滾動阻力」會是純滾動阻力的幾倍[12],因此不同資料上的「滾動阻力」可能會因為定義不同,而有很大的差異。火車在行駛時,引擎需要提供能量來克服廣義的「滾動阻力」。

輪胎的滾動阻力定義為使輪胎前進單位距離所需要的力[13]。也稱為滾動摩擦。車輛前進的過程中,會受到和前進方向相反的力,滾動阻力即為其中之一。滾動阻力主要的原因是因為在輪胎轉動,並且和地面接觸時,輪胎所產生的形變[14]

若是在高速公路上的車輛,能量還會透過行駛時造成的路面振動、車輛本身的振動以及輪胎的滑動所消耗。不過除了車輪軸承的摩擦力,以及因為加速而需要的動力之外,其他需要的力幾乎都是純滾動阻力,可能是因為輪胎純滾動阻力的大小是其他阻力的幾倍。

滾動阻力係數 编辑

滾動阻力係數(rolling resistance coefficient)可以用下式來定義[6]

 
其中
 是滾動阻力
 是無因次的滾動阻力係數(rolling resistance coefficient)
 為正向力,輪子所在滾動的表面所給予的力,方向和表面垂直。

 相當於是要推動有輪子的車輛往前(在平面上以定速前進,沒有空氣阻力)每單位車輛重量需要出的力。假設四個輪胎都相同,且承受相同的重量。若 ,表示針對重一磅的車輛,只需要0.01磅的力即可推動。若是一千磅的車輛,只需要10磅的力即可推動。可以說 的單位是磅(推力的單位)除以磅(車重的單位),因此 是無因次量。若乘以100,可以得到在慢的定速下推動車輛,所需施力相對車重的百分比。 也常乘以1000,相當於每公噸(一千公斤)的車重要花多少公斤重的力去推動[15],也相當於每一千磅的車重要花多少磅重的力去推動。針對美國的火車,以往會使用lb/ton的單位,因此會是 。這些都是考慮單位車重下的阻力,因此其實都是「比阻力」(單位重量下的阻力),有時會簡稱為阻力。若是用磅重或是公斤重為力的單位,質量和重量的量值相等,因此可以說 也是每單位質量下的阻力。SI制會用牛頓/公噸(N/T, N/t)的單位,相當於 ,是單位質量下的力,其中g是國際標準制的重力加速度(公尺每秒平方)[16]

以上可以看出阻力和 成正比,但看不出隨著速度、負載、力矩、表面粗糙度、直徑、輪胎充氣或摩損程度的關係,這些的影響會直接的影響 。另外,上述的計算中看似滾動阻力和車重成正比,但 會略為隨車重而變化,因此滾動阻力和車重不是單純的正比關係。

測量 编辑

在計算滾動阻力上,至少有二種常用的作法。

  1. 「滾動阻力係數(Rolling resistance coefficient)簡稱RRC。這是滾動阻力的值除以車輛載重後的值。國際汽車工程師學會(SAE)有訂定輪胎RRC值的測試方式。測試(SAE J1269英语SAE J1269SAE J2452英语SAE J2452)多半是針對新輪胎進行測試。新輪胎用這些標準測試的數值約在0.007到0.014。」[6]若是針對自行車,數值約在0.0025到0.005之間[17]。量測係數的方式是在大型滾筒上,也有可能配合功率計在路面上測試,或是進行惰行測試(coast-down test),若是後面兩項,需另外去除風阻的影響,或是在非常低的速度下進行測試。
  2. 另一種單位為长度的滾動阻力係數(coefficient of rolling resistance)b,近似於(因為 小角度近似)滾動阻力乘以車輸半径後,除以車輪載重後的值[3]
  3. ISO 18164:2005是歐洲測量滾動阻力的標準。

對一般大眾而言,不太容易取得上述測試的結果,因為製造商比較希望宣傳有關舒適以及性能的資訊。

物理公式 编辑

一個的剛體輪子在完全彈性的表面上緩慢滾動,不考慮速度的影響時,其滾動阻力係數(rolling resistance coefficient) 如下[來源請求]

 
其中
 是表面的下沉深度
 是剛體輪子的直徑

針對礦車的鑄鐵輪子,在鋼軌上行駛的經驗公式如下[18]

 
where
 是輪子的直徑,單位為英寸
 是輪子的載重,單位為磅力。

除了使用 外,也可以使用 作為滾動阻力係數(coefficient of rolling friction),但其量綱為長度。其定義如下[3]

 
其中
 是滾動阻力
 是輪子的半徑
 是因次為長度的滾動阻力係數
 是表面所提供的正向力。

在上式中,阻力和半徑r成反比,是源自不正確的「庫侖定律」(不是庫侖平方反比定律,也不是庫侖摩擦力定律[來源請求](可以參考和輪徑的關係)。配合滾動阻力係數(rolling resistance coefficient)Crr的公式計算,可以求得b = Crr·r。若有參考資料提供無因次的滾動阻力係數Crr,也有輪子的半徑r,就可以計算因次為長度的滾動阻力係數b,將Crr和輪子半徑r相乘即可。

滾動阻力係數的例子 编辑

以下是一些滾動阻力係數的例子[19]

Crr b 說明
0.0003 至 0.0004[20] 火車的鋼輪在鐵軌上行駛(純滾動阻力
0.0010 至 0.0015[21] 0.1 mm[3] 硬化鋼珠軌承在鋼上滾動
0.0010 至 0.0024[22][23] 0.5 mm[3] 火車的鋼輪在鐵軌上行駛。若是客運軌道車,約為0.0020[24]
0.0019 至 0.0065[25] 礦車的鑄鐵輪在鐵軌上行駛
0.0022 至 0.0050[26] 量產的自行車胎,胎壓在120 psi(8.3 bar),速度為50 km/h(31 mph),用滾輪量測
0.0025[27] 特殊的米其林solar car英语solar car/eco-marathon英语eco-marathon用胎
0.0050 髒的電車軌道(標準)[來源請求]
0.0045 至 0.0080[28] 大型卡車(半掛車英语Semi-trailer)車胎
0.0055[27] solar car上用的一般BMX自行車車胎
0.0062 至 0.0150[29] 車胎量測
0.0100 至 0.0150[30] 一般車胎在混凝土路面上行駛
0.0385 至 0.0730[31] (十九世紀)土路上的公共馬車。最壞的情形是路上有軟雪的時候
0.3000[30] 一般車胎在沙上行駛

舉例來說,1000 kg的車在柏油路面上,要讓車輪滾動的力大約需要100 牛頓(1000 kg × 9.81 m/s2 × 0.01 = 98.1 N)。

和輪徑的關係 编辑

驛馬車和鐵路 编辑

依照Dupuit(1837)的研究,外圈包覆著鐵胎的馬車木頭車輪,其滾動阻力約和輪子直徑的平方根成反比[32]。此公式有在鐵軌上用鑄鐵輪子(直徑8至24英寸)實驗確認過[33],也有用十九世紀的車輪驗證過[31],不過也有其他針對車輪的實驗,結果和上述的公式不同[31]。若用理論分析圓柱在有彈性的路面滾動,也可以得到和公式相同的結果[34]。這和1785年庫侖用滾動木柱所作的測試結果不同,庫侖的測試結果是滾動阻力和直徑成反比(也會誤稱為「庫侖定律」)[35]。這個錯誤的名稱仍會出現在一些教科書上。

充氣輪胎 编辑

若是充氣輪胎在硬路面上,在實務常用的車輪直徑範圍內,直徑對滾動阻力的影響幾乎可以忽略[36]

和力矩的關係 编辑

為了要抵抗滾動阻力 ,並且在路面上維持定速(不考慮風阻)的驅動力矩 可以由下式求得:

 
其中
 是車軸的線速度
 是車輪的旋轉速度

特別需要說明的因為是車輪滑動的影響, 一般不會等於車輪的半徑[37][38][39]。無論輪上有驅動車前進的轉矩,或是剎車轉矩,車輪和地面還是會有速度差的情形[40][41]。因此,車子的線速度和車輪的圓周速度不同。另外,車子的從動輪因為沒有使車輛前進的傳動力矩,除了剎車以外,不會有速度差。因此,滾動阻力(也稱為遲滯損失)是從動輪上能量耗散的主要原因,不過在驅動輪上,滑動損失和滾動阻力一樣的重要[42]。滑動阻力和滾動阻力的大小會大幅地受到牵引力、摩擦係數、正向力等因素影響[40]

針對各種車輪 编辑

車輪的施加力矩可以指從馬達透過傳動系統提供的傳動力矩,或是由煞車(包括再生制動)產生的煞車力矩。這些力矩會額外產生能量的耗損。其原因是因為車輪會有一些對地面的滑動,橡膠胎也會有因為力矩產生的側邊彎曲。滑動的滑差(Slip)定義如下:2%的滑差是指驅動輪的圓周速度會比車輛行駛速度多2%。

小比例的滑差增加會造成比基本滾動阻力大很多的滑動阻力。例如針對充氣胎,5%的滑差會讓阻力變成滾動阻力的三倍[43]。其中部份原因是因為在滑動時所施加的牵引力比滾動阻力大許多倍,因此單位速度需提供的功率也會增加(功率是力和速度的乘積,因此單位速度要提供的功率就是力)。因此因為滑差造成小幅的圓周速度增加,可以帶來大量的牵引功率損失,甚至會大於基本的滾動阻力。若在鐵路上,因為鐵軌的低滾動阻力,其現象會更加嚴重。

在轎車上,若牵引力是最大牵引力的40%,滑動阻力和基本的滾動阻力相同。但若牵引力是最大牵引力的70%,滑動阻力會比基本滾動阻力大十倍[40]

鐵軌車輪 编辑

為了在車輪上提供牵引力,車輪上需要有一些滑差[44]。俄國火車要爬坡時,滑差約為1.5%到2.5%。

滑差(slip,也稱為creep)一般大約和牵引力成正比。但若牵引力太大,車輪有嚴重的打滑(比上述的數值大一些),其滑差會隨著牵引力快速變大,不再是線性關係。當施加的牵引力再大一些,車輪會失去控制,而車輪轉更快時,車輪的鐵軌黏著力會下降。這是可以用肉眼觀察到的打滑。至於2%的滑動只能透過儀器來觀測,快速的打滑會產生磨損。

充氣胎 编辑

充氣胎的滾動阻力會隨施加力矩而大幅增加。大力矩時,在路面上的切線力約為車重的一半,其滾動阻力可能會增加到原來的三倍[43]。有部份原因是因為在約5%的滑差下,滾動阻力和施加力矩的關係已不線性,力矩越大時其增加速度也更快。

相關條目 编辑

  • 摩擦力
  • 低滾動阻力胎英语Low-rolling resistance tires
  • 磁懸浮列車(沒有滾動,因此也沒有滾動阻力)
  • 滾動元件軸承英语Rolling element bearing

參考文獻 编辑

  1. ^ 1.0 1.1 SAE MOBILUS. saemobilus.sae.org. [2021-04-19]. doi:10.4271/06-11-02-0014. (原始内容于2021-10-29). 
  2. ^ 2.0 2.1 Peck, William Guy. Elements of Mechanics: For the Use of Colleges, Academies, and High Schools. A.S. Barnes & Burr: New York. 1859: 135 [2007-10-09]. rolling friction less than sliding friction. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 Hibbeler, R.C. Engineering Mechanics: Statics & Dynamics  Eleventh. Pearson, Prentice Hall. 2007: 441–442. ISBN 9780132038096. 
  4. ^ User guide for CONTACT, Rolling and sliding contact with friction. Technical report TR09-03 version v16.1. VORtech, 2016. (PDF). [2017-07-11]. (原始内容 (PDF)于2021-10-23). 
  5. ^ A handbook for the rolling resistance of pneumatic tires Clark, Samuel Kelly; Dodge, Richard N. 1979. [2021-10-19]. (原始内容于2021-10-26). 
  6. ^ 6.0 6.1 6.2 Tires and Passenger Vehicle Fuel Economy: Informing Consumers, Improving Performance -- Special Report 286. National Academy of Sciences, Transportation Research Board, 2006 (PDF). [2007-08-11]. (原始内容 (PDF)于2021-12-21). 
  7. ^ Tyres-Online: The Benefits of Silica in Tyre Design 互联网档案馆的,存档日期2013-02-04.
  8. ^ Астахов, p.85
  9. ^ 另一個在鐵路上的用法在 .
  10. ^ Деев, p. 79. Hay, p. 68
  11. ^ Астахов, Chapt. IV, p. 73+; Деев, Sect. 5.2 p. 78+; Hay, Chapt. 6 "Train Resistance" p. 67+
  12. ^ Астахов, Fig. 4.14, p. 107
  13. ^ Andersen Lasse G.; Larsen Jesper K.; Fraser Elsje S.; Schmidt Bjarne; Dyre Jeppe C. Rolling Resistance Measurement and Model Development. Journal of Transportation Engineering. 2015, 141 (2): 04014075. doi:10.1061/(ASCE)TE.1943-5436.0000673 . 
  14. ^ (PDF). (原始内容 (PDF)存档于2016-04-08). 
  15. ^ kgf/tonne is used by Астахов throughout his book
  16. ^ Деев uses N/T notation. See pp. 78-84.
  17. ^ Willett, Kraig. Roller Data. www.biketechreview.com. [2017-08-05]. (原始内容于2010-02-20) (英国英语). 
  18. ^ Hersey, equation (2), p. 83
  19. ^ 存档副本. [2021-12-10]. (原始内容于2011-08-07). 
  20. ^ Астахов, p. 81.
  21. ^ Coefficients of Friction in Bearing. Coefficients of Friction. [7 February 2012]. (原始内容于2022-01-06). 
  22. ^ Hay, Fig. 6-2 p.72(worst case shown of 0.0036 not used since it is likely erroneous)
  23. ^ Астахов, Figs. 3.8, 3.9, 3.11, pp. 50-55; Figs. 2.3, 2.4 pp. 35-36. (Worst case is 0.0024 for an axle load of 5.95 tonnes with obsolete plain (friction --not roller) bearings
  24. ^ Астахов, Fig. 2.1, p.22
  25. ^ Hersey, Table 6, p.267
  26. ^ (PDF). [2021-12-10]. (原始内容 (PDF)存档于2012-03-13). 
  27. ^ 27.0 27.1 Roche, Schinkel, Storey, Humphris & Guelden, "Speed of Light." ISBN 0-7334-1527-X
  28. ^ . [2021-12-10]. (原始内容存档于2013-05-07). 
  29. ^
  30. ^ 30.0 30.1 Gillespie ISBN 1-56091-199-9 p117
  31. ^ 31.0 31.1 31.2 Baker, Ira O., "Treatise on roads and pavements". New York, John Wiley, 1914. Stagecoach: Table 7, p. 28. Diameter: pp. 22-23. This book reports a few hundred values of rolling resistance for various animal-powered vehicles under various condition, mostly from 19th century data.
  32. ^ Hersey, subsection: "End of dark ages", p.261
  33. ^ Hersey, subsection: "Static rolling friction", p.266.
  34. ^ Williams, 1994, Ch. "Rolling contacts", eq. 11.1, p. 409.
  35. ^ Hersey, subsection: "Coulomb on wooden cylinders", p. 260
  36. ^ U.S. National Bureau of Standards, Fig. 1.13
  37. ^ Zéhil, Gérard-Philippe; Gavin, Henri P. Three-dimensional boundary element formulation of an incompressible viscoelastic layer of finite thickness applied to the rolling resistance of a rigid sphere. International Journal of Solids and Structures. 2013, 50 (6): 833–842. doi:10.1016/j.ijsolstr.2012.11.020 . 简明摘要. 
  38. ^ Zéhil, Gérard-Philippe; Gavin, Henri P. Simple algorithms for solving steady-state frictional rolling contact problems in two and three dimensions. International Journal of Solids and Structures. 2013, 50 (6): 843–852. doi:10.1016/j.ijsolstr.2012.11.021 . 
  39. ^ Zéhil, Gérard-Philippe; Gavin, Henri P. Simplified approaches to viscoelastic rolling resistance. International Journal of Solids and Structures. 2013, 50 (6): 853–862. doi:10.1016/j.ijsolstr.2012.09.025 . 
  40. ^ 40.0 40.1 40.2 SAE MOBILUS. saemobilus.sae.org. [2021-04-19]. doi:10.4271/06-11-02-0014. (原始内容于2021-10-29). 
  41. ^ Sina, Naser; Hairi Yazdi, Mohammad Reza; Esfahanian, Vahid. . Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2020-03-01, 234 (4): 1153–1166 [2022-01-06]. ISSN 0954-4070. S2CID 199099736. doi:10.1177/0954407019861241. (原始内容存档于2021-11-21) (英语). 
  42. ^ Sina, Naser; Nasiri, Sayyad; Karkhaneh, Vahid. Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions. Applied Energy. 2015-11-01, 157: 974–983 [2022-01-06]. ISSN 0306-2619. doi:10.1016/j.apenergy.2015.04.010. (原始内容于2021-11-20) (英语). 
  43. ^ 43.0 43.1 Roberts, Fig. 17: "Effect of torque transmission on rolling resistance", p. 71
  44. ^ Деев, p.30 including eq. (2.7) and Fig. 2.3
  • Астахов П.Н. (俄語) "Сопротивление движению железнодорожного подвижного состава" (Resistance to motion of railway rolling stock) Труды ЦНИИ МПС (ISSN 0372-3305). Выпуск 311 (Vol. 311). - Москва: Транспорт, 1966. – 178 pp. perm. record at UC Berkeley (页面存档备份,存于互联网档案馆) (In 2012, full text was on the Internet but the U.S. was blocked)
  • Деев В.В., Ильин Г.А., Афонин Г.С. (俄語) "Тяга поездов" (Traction of trains) Учебное пособие. - М.: Транспорт, 1987. - 264 pp.
  • Hay, William W. "Railroad Engineering" New York, Wiley 1953
  • Hersey, Mayo D., "Rolling Friction" Transactions of the ASME, April 1969 pp. 260–275 and Journal of Lubrication Technology, January 1970, pp. 83–88 (one article split between two journals) Except for the "Historical Introduction" and a survey of the literature, it is mainly about laboratory testing of mine railroad cast iron wheels of diameters 8″ to 24 done in the 1920s (almost a half century delay between experiment and publication).
  • Hoerner, Sighard F., "Fluid dynamic drag", published by the author, 1965. (Chapt. 12 is "Land-Borne Vehicles" and includes rolling resistance (trains, autos, trucks).)
  • Roberts, G. B., "Power wastage in tires", International Rubber Conference, Washington, D.C. 1959.
  • U.S National Bureau of Standards, "Mechanics of Pneumatic Tires", Monograph #132, 1969–1970.
  • Williams, J. A. Engineering tribology'. Oxford University Press, 1994.

外部連結 编辑

滾動阻力, 此條目可参照英語維基百科相應條目来扩充, 2021年7月28日, 若您熟悉来源语言和主题, 请协助参考外语维基百科扩充条目, 请勿直接提交机械翻译, 也不要翻译不可靠, 低品质内容, 依版权协议, 译文需在编辑摘要注明来源, 或于讨论页顶部标记, href, template, translated, page, html, title, template, translated, page, translated, page, 标签, 滚动阻力是一物体, 例如球, 輪胎或輪, 在另一物体表面滚动時, . 此條目可参照英語維基百科相應條目来扩充 2021年7月28日 若您熟悉来源语言和主题 请协助参考外语维基百科扩充条目 请勿直接提交机械翻译 也不要翻译不可靠 低品质内容 依版权协议 译文需在编辑摘要注明来源 或于讨论页顶部标记 a href Template Translated page html title Template Translated page Translated page a 标签 滚动阻力是一物体 例如球 輪胎或輪 在另一物体表面滚动時 所受到的阻力 主要是因為滚动体及其所在的滚动面或其他物体的接触面受压產生塑性变形所造成 1 2 3 也就是指在接觸壓力消失後 部份滚动体或滚动面形變的能量耗散 沒有轉換為動能 滚动阻力可分為兩種 分別是遲滯損失 滚动体或滚动面 例如沙地 的塑性变形 若滚动体和滚动面之間滑動 也會有能量的損失 有些研究者認為這應當一併考慮到滾動阻力中 但也有研究者認為應當稱為 滑動損失 slip loss 或 滑動阻力 slip resistance 1 另外 只有滑動損失和摩擦力有關 其他和摩擦力無關 有些文獻將滾動阻力稱為滾動摩擦 但 滾動摩擦 其實不是準確的名稱 滾動阻力和滑動摩擦類似 可以表示為一個係數和正向力的乘積 滾動阻力係數一般會比滑動摩擦係數要小 2 有輪子的载具在沒有動力時 因為滾動阻力 也包括軸承的滾動阻力 會慢慢的減速 最後停止 但在鐵路軌道上 有鋼製胎的鐵路列車 無動力行駛的距離會比相同重量 橡膠輪胎 行駛在道路上的公共汽車更遠 前者的滾動阻力係數較後者低 會影響滾動阻力的因素包括有輪子的變形程度 路面的變形程度 其他的影響因素有輪徑 3 輪上負載 表面粘性 滑動 接觸表面相對的微滑動 因為遲滯現象產生的損失也和輪子和路面的材料特性有關 例如輪胎在柏油路上的滾動阻力比火車鋼輪 英语 Wheelset rail transport 在鐵軌上的滾動阻力要小 路面上的沙也比混凝土的滾動阻力要大 滾動阻力和速度無關 目录 1 主要原因 2 定義 3 滾動阻力係數 4 測量 5 物理公式 6 滾動阻力係數的例子 7 和輪徑的關係 7 1 驛馬車和鐵路 7 2 充氣輪胎 8 和力矩的關係 8 1 針對各種車輪 8 2 鐵軌車輪 8 3 充氣胎 9 相關條目 10 參考文獻 11 外部連結主要原因 编辑 nbsp 滾動圓柱 往右邊滾動 之間因為黏彈性物質產生的非對稱壓力分佈 4 充氣輪胎滾動阻力主要是因為遲滯現象 5 可變形材料的一個特徵是變形的能量比復原的能量要大 輪胎中的橡膠會有遲滯現象 當輪子負荷著車子的重量滾動時 輪子的各部份會反覆的變形和復原 其遲滯能量會以熱的形式散失 遲滯是滾動阻力能量損失的主要原因 和橡膠的黏弹性有關 National Academy of Sciences 6 主要原理可以由滾動圓柱的圖上看出 若二個大小相同的圓柱因壓力貼在一起 其接觸平面會是平的 在沒有表面摩擦力的情形下 接觸應力是正向的 和平面垂直 考慮一個物體從右側進入接觸平面 延著接觸路徑行進 最後從左邊離開 一開始其垂直變形量會增加 但增加量會因為遲滯現象而變的比較小 會產生額外的壓力讓這二個表面不會互相干涉 之後來垂直變形量會減少 這也會遲滯現象而受到影響 此例中 遲滯現象減少了讓這二個圓柱分開所需要的壓力 所合成的壓力分佈是非對稱的 右邊會比較多 圖中壓力合成的作用線 英语 line of action 不會通過圓柱的中心 會產生力矩抵擋滾動運動 有些材大 例如橡皮 的遲滯現象較大 反彈比較慢 其滾動阻力會比遲滯現象小的材料 例如石頭或二氧化硅 要大 而遲滯現象小的材料其反彈比較快 反彈後也比較容易恢復原狀 低滾動阻力胎 英语 Low rolling resistance tires 中就會在其胎面膠中用二氧化矽代替碳黑 降低低頻遲滯 但不影響車輪的牽引力 7 鐵路因為其路面結構 也可能會有遲滯現象 8 定義 编辑廣義的 滾動阻力 是指針對車輛的單位重量 需出力使車輛維持低速前進的力 其中的風阻省略 車輛的引擎和剎車都沒有啟動 換句話 若沒有出力使車輛維持定速 車輛會惰行慢慢停止 9 這個廣義的定義包括軌承阻力 路面和車輛因為振動所散失的能量 以及輪子在路面 或鐵軌 上的滑動 但更廣義的 滾動阻力 包括因為力矩產生滑動 所帶來的能量損耗 在滑動時 車輪切線速度比車輛速度要快 因為功等於力乘以速度 車輪速度變快 所需要的功率也對應的變大 火車上的純 滾動阻力 是指在車輪和鐵軌接觸的位置 因為形變以及少許滑動而造成的阻力 10 針對橡皮胎 也會有類似的能量損失 是出現在整個車輪上 不過仍稱為 滾動阻力 廣義的 滾動阻力 還包括軸承的阻力 因為路面 以及下方土地 振動造成的損失 車輛本身振動造成的損失 以及車輪和路面 鐵軌接觸點的滑動 軌道車輛的教科書中會將這些損失都加總 但不會像此條目所作的 都一併稱為 廣義的 滾動阻力 軌道車輛的教科書還會加上風阻 一併稱為火車基本阻力 11 廣義的 滾動阻力 會是純滾動阻力的幾倍 12 因此不同資料上的 滾動阻力 可能會因為定義不同 而有很大的差異 火車在行駛時 引擎需要提供能量來克服廣義的 滾動阻力 輪胎的滾動阻力定義為使輪胎前進單位距離所需要的力 13 也稱為滾動摩擦 車輛前進的過程中 會受到和前進方向相反的力 滾動阻力即為其中之一 滾動阻力主要的原因是因為在輪胎轉動 並且和地面接觸時 輪胎所產生的形變 14 若是在高速公路上的車輛 能量還會透過行駛時造成的路面振動 車輛本身的振動以及輪胎的滑動所消耗 不過除了車輪軸承的摩擦力 以及因為加速而需要的動力之外 其他需要的力幾乎都是純滾動阻力 可能是因為輪胎純滾動阻力的大小是其他阻力的幾倍 滾動阻力係數 编辑滾動阻力係數 rolling resistance coefficient 可以用下式來定義 6 F C r r N displaystyle F C rr N nbsp 其中F displaystyle F nbsp 是滾動阻力 C r r displaystyle C rr nbsp 是無因次的滾動阻力係數 rolling resistance coefficient N displaystyle N nbsp 為正向力 輪子所在滾動的表面所給予的力 方向和表面垂直 dd C r r displaystyle C rr nbsp 相當於是要推動有輪子的車輛往前 在平面上以定速前進 沒有空氣阻力 每單位車輛重量需要出的力 假設四個輪胎都相同 且承受相同的重量 若 C r r 0 01 displaystyle C rr 0 01 nbsp 表示針對重一磅的車輛 只需要0 01磅的力即可推動 若是一千磅的車輛 只需要10磅的力即可推動 可以說C r r displaystyle C rr nbsp 的單位是磅 推力的單位 除以磅 車重的單位 因此C r r displaystyle C rr nbsp 是無因次量 若乘以100 可以得到在慢的定速下推動車輛 所需施力相對車重的百分比 C r r displaystyle C rr nbsp 也常乘以1000 相當於每公噸 一千公斤 的車重要花多少公斤重的力去推動 15 也相當於每一千磅的車重要花多少磅重的力去推動 針對美國的火車 以往會使用lb ton的單位 因此會是2000 C r r displaystyle 2000C rr nbsp 這些都是考慮單位車重下的阻力 因此其實都是 比阻力 單位重量下的阻力 有時會簡稱為阻力 若是用磅重或是公斤重為力的單位 質量和重量的量值相等 因此可以說C r r displaystyle C rr nbsp 也是每單位質量下的阻力 SI制會用牛頓 公噸 N T N t 的單位 相當於1000 g C r r displaystyle 1000gC rr nbsp 是單位質量下的力 其中g是國際標準制的重力加速度 公尺每秒平方 16 以上可以看出阻力和C r r displaystyle C rr nbsp 成正比 但看不出隨著速度 負載 力矩 表面粗糙度 直徑 輪胎充氣或摩損程度的關係 這些的影響會直接的影響C r r displaystyle C rr nbsp 另外 上述的計算中看似滾動阻力和車重成正比 但C r r displaystyle C rr nbsp 會略為隨車重而變化 因此滾動阻力和車重不是單純的正比關係 測量 编辑在計算滾動阻力上 至少有二種常用的作法 滾動阻力係數 Rolling resistance coefficient 簡稱RRC 這是滾動阻力的值除以車輛載重後的值 國際汽車工程師學會 SAE 有訂定輪胎RRC值的測試方式 測試 SAE J1269 英语 SAE J1269 和SAE J2452 英语 SAE J2452 多半是針對新輪胎進行測試 新輪胎用這些標準測試的數值約在0 007到0 014 6 若是針對自行車 數值約在0 0025到0 005之間 17 量測係數的方式是在大型滾筒上 也有可能配合功率計在路面上測試 或是進行惰行測試 coast down test 若是後面兩項 需另外去除風阻的影響 或是在非常低的速度下進行測試 另一種單位為长度的滾動阻力係數 coefficient of rolling resistance b 近似於 因為cos 8 1 displaystyle cos theta 1 nbsp 的小角度近似 滾動阻力乘以車輸半径後 除以車輪載重後的值 3 ISO 18164 2005是歐洲測量滾動阻力的標準 對一般大眾而言 不太容易取得上述測試的結果 因為製造商比較希望宣傳有關舒適以及性能的資訊 物理公式 编辑一個的剛體輪子在完全彈性的表面上緩慢滾動 不考慮速度的影響時 其滾動阻力係數 rolling resistance coefficient C r r displaystyle C rr nbsp 如下 來源請求 C r r z d displaystyle C rr sqrt z d nbsp 其中z displaystyle z nbsp 是表面的下沉深度 d displaystyle d nbsp 是剛體輪子的直徑 dd 針對礦車的鑄鐵輪子 在鋼軌上行駛的經驗公式如下 18 C r r 0 0048 18 D 1 2 100 W 1 4 0 0643988 W D 2 4 displaystyle C rr 0 0048 18 D frac 1 2 100 W frac 1 4 frac 0 0643988 sqrt 4 WD 2 nbsp whereD displaystyle D nbsp 是輪子的直徑 單位為英寸 W displaystyle W nbsp 是輪子的載重 單位為磅力 dd 除了使用 C r r displaystyle C rr nbsp 外 也可以使用 b displaystyle b nbsp 作為滾動阻力係數 coefficient of rolling friction 但其量綱為長度 其定義如下 3 F N b r displaystyle F frac Nb r nbsp 其中F displaystyle F nbsp 是滾動阻力 r displaystyle r nbsp 是輪子的半徑 b displaystyle b nbsp 是因次為長度的滾動阻力係數 N displaystyle N nbsp 是表面所提供的正向力 dd 在上式中 阻力和半徑r成反比 是源自不正確的 庫侖定律 不是庫侖平方反比定律 也不是庫侖摩擦力定律 來源請求 可以參考和輪徑的關係 配合滾動阻力係數 rolling resistance coefficient Crr的公式計算 可以求得b Crr r 若有參考資料提供無因次的滾動阻力係數Crr 也有輪子的半徑r 就可以計算因次為長度的滾動阻力係數b 將Crr和輪子半徑r相乘即可 滾動阻力係數的例子 编辑以下是一些滾動阻力係數的例子 19 Crr b 說明0 0003 至 0 0004 20 火車的鋼輪在鐵軌上行駛 純滾動阻力 0 0010 至 0 0015 21 0 1 mm 3 硬化鋼珠軌承在鋼上滾動0 0010 至 0 0024 22 23 0 5 mm 3 火車的鋼輪在鐵軌上行駛 若是客運軌道車 約為0 0020 24 0 0019 至 0 0065 25 礦車的鑄鐵輪在鐵軌上行駛0 0022 至 0 0050 26 量產的自行車胎 胎壓在120 psi 8 3 bar 速度為50 km h 31 mph 用滾輪量測0 0025 27 特殊的米其林solar car 英语 solar car eco marathon 英语 eco marathon 用胎0 0050 髒的電車軌道 標準 來源請求 0 0045 至 0 0080 28 大型卡車 半掛車 英语 Semi trailer 車胎0 0055 27 solar car上用的一般BMX自行車車胎0 0062 至 0 0150 29 車胎量測0 0100 至 0 0150 30 一般車胎在混凝土路面上行駛0 0385 至 0 0730 31 十九世紀 土路上的公共馬車 最壞的情形是路上有軟雪的時候0 3000 30 一般車胎在沙上行駛舉例來說 1000 kg的車在柏油路面上 要讓車輪滾動的力大約需要100 牛頓 1000 kg 9 81 m s2 0 01 98 1 N 和輪徑的關係 编辑驛馬車和鐵路 编辑 依照Dupuit 1837 的研究 外圈包覆著鐵胎的馬車木頭車輪 其滾動阻力約和輪子直徑的平方根成反比 32 此公式有在鐵軌上用鑄鐵輪子 直徑8至24英寸 實驗確認過 33 也有用十九世紀的車輪驗證過 31 不過也有其他針對車輪的實驗 結果和上述的公式不同 31 若用理論分析圓柱在有彈性的路面滾動 也可以得到和公式相同的結果 34 這和1785年庫侖用滾動木柱所作的測試結果不同 庫侖的測試結果是滾動阻力和直徑成反比 也會誤稱為 庫侖定律 35 這個錯誤的名稱仍會出現在一些教科書上 充氣輪胎 编辑 若是充氣輪胎在硬路面上 在實務常用的車輪直徑範圍內 直徑對滾動阻力的影響幾乎可以忽略 36 和力矩的關係 编辑為了要抵抗滾動阻力R r displaystyle R r nbsp 並且在路面上維持定速 不考慮風阻 的驅動力矩T displaystyle T nbsp 可以由下式求得 T V s W R r displaystyle T frac V s Omega R r nbsp 其中V s displaystyle V s nbsp 是車軸的線速度 W displaystyle Omega nbsp 是車輪的旋轉速度 dd 特別需要說明的因為是車輪滑動的影響 V s W displaystyle V s Omega nbsp 一般不會等於車輪的半徑 37 38 39 無論輪上有驅動車前進的轉矩 或是剎車轉矩 車輪和地面還是會有速度差的情形 40 41 因此 車子的線速度和車輪的圓周速度不同 另外 車子的從動輪因為沒有使車輛前進的傳動力矩 除了剎車以外 不會有速度差 因此 滾動阻力 也稱為遲滯損失 是從動輪上能量耗散的主要原因 不過在驅動輪上 滑動損失和滾動阻力一樣的重要 42 滑動阻力和滾動阻力的大小會大幅地受到牵引力 摩擦係數 正向力等因素影響 40 針對各種車輪 编辑 車輪的施加力矩可以指從馬達透過傳動系統提供的傳動力矩 或是由煞車 包括再生制動 產生的煞車力矩 這些力矩會額外產生能量的耗損 其原因是因為車輪會有一些對地面的滑動 橡膠胎也會有因為力矩產生的側邊彎曲 滑動的滑差 Slip 定義如下 2 的滑差是指驅動輪的圓周速度會比車輛行駛速度多2 小比例的滑差增加會造成比基本滾動阻力大很多的滑動阻力 例如針對充氣胎 5 的滑差會讓阻力變成滾動阻力的三倍 43 其中部份原因是因為在滑動時所施加的牵引力比滾動阻力大許多倍 因此單位速度需提供的功率也會增加 功率是力和速度的乘積 因此單位速度要提供的功率就是力 因此因為滑差造成小幅的圓周速度增加 可以帶來大量的牵引功率損失 甚至會大於基本的滾動阻力 若在鐵路上 因為鐵軌的低滾動阻力 其現象會更加嚴重 在轎車上 若牵引力是最大牵引力的40 滑動阻力和基本的滾動阻力相同 但若牵引力是最大牵引力的70 滑動阻力會比基本滾動阻力大十倍 40 鐵軌車輪 编辑 為了在車輪上提供牵引力 車輪上需要有一些滑差 44 俄國火車要爬坡時 滑差約為1 5 到2 5 滑差 slip 也稱為creep 一般大約和牵引力成正比 但若牵引力太大 車輪有嚴重的打滑 比上述的數值大一些 其滑差會隨著牵引力快速變大 不再是線性關係 當施加的牵引力再大一些 車輪會失去控制 而車輪轉更快時 車輪的鐵軌黏著力會下降 這是可以用肉眼觀察到的打滑 至於2 的滑動只能透過儀器來觀測 快速的打滑會產生磨損 充氣胎 编辑 充氣胎的滾動阻力會隨施加力矩而大幅增加 大力矩時 在路面上的切線力約為車重的一半 其滾動阻力可能會增加到原來的三倍 43 有部份原因是因為在約5 的滑差下 滾動阻力和施加力矩的關係已不線性 力矩越大時其增加速度也更快 相關條目 编辑摩擦力 低滾動阻力胎 英语 Low rolling resistance tires 磁懸浮列車 沒有滾動 因此也沒有滾動阻力 滾動元件軸承 英语 Rolling element bearing 參考文獻 编辑 1 0 1 1 SAE MOBILUS saemobilus sae org 2021 04 19 doi 10 4271 06 11 02 0014 原始内容存档于2021 10 29 2 0 2 1 Peck William Guy Elements of Mechanics For the Use of Colleges Academies and High Schools A S Barnes amp Burr New York 1859 135 2007 10 09 rolling friction less than sliding friction 3 0 3 1 3 2 3 3 3 4 3 5 Hibbeler R C Engineering Mechanics Statics amp Dynamics nbsp Eleventh Pearson Prentice Hall 2007 441 442 ISBN 9780132038096 含有內容需登入查看的頁面 link User guide for CONTACT Rolling and sliding contact with friction Technical report TR09 03 version v16 1 VORtech 2016 PDF 2017 07 11 原始内容存档 PDF 于2021 10 23 A handbook for the rolling resistance of pneumatic tires Clark Samuel Kelly Dodge Richard N 1979 2021 10 19 原始内容存档于2021 10 26 6 0 6 1 6 2 Tires and Passenger Vehicle Fuel Economy Informing Consumers Improving Performance Special Report 286 National Academy of Sciences Transportation Research Board 2006 PDF 2007 08 11 原始内容存档 PDF 于2021 12 21 Tyres Online The Benefits of Silica in Tyre Design 互联网档案馆的存檔 存档日期2013 02 04 Astahov p 85 另一個在鐵路上的用法在 here Deev p 79 Hay p 68 Astahov Chapt IV p 73 Deev Sect 5 2 p 78 Hay Chapt 6 Train Resistance p 67 Astahov Fig 4 14 p 107 Andersen Lasse G Larsen Jesper K Fraser Elsje S Schmidt Bjarne Dyre Jeppe C Rolling Resistance Measurement and Model Development Journal of Transportation Engineering 2015 141 2 04014075 doi 10 1061 ASCE TE 1943 5436 0000673 nbsp Rolling Resistance and Fuel Saving PDF 原始内容 PDF 存档于2016 04 08 kgf tonne is used by Astahov throughout his book Deev uses N T notation See pp 78 84 Willett Kraig Roller Data www biketechreview com 2017 08 05 原始内容存档于2010 02 20 英国英语 Hersey equation 2 p 83 存档副本 2021 12 10 原始内容存档于2011 08 07 Astahov p 81 Coefficients of Friction in Bearing Coefficients of Friction 7 February 2012 原始内容存档于2022 01 06 Hay Fig 6 2 p 72 worst case shown of 0 0036 not used since it is likely erroneous Astahov Figs 3 8 3 9 3 11 pp 50 55 Figs 2 3 2 4 pp 35 36 Worst case is 0 0024 for an axle load of 5 95 tonnes with obsolete plain friction not roller bearings Astahov Fig 2 1 p 22 Hersey Table 6 p 267 Roller Data PDF 2021 12 10 原始内容 PDF 存档于2012 03 13 27 0 27 1 Roche Schinkel Storey Humphris amp Guelden Speed of Light ISBN 0 7334 1527 X Crr for large truck tires per Michelin 2021 12 10 原始内容存档于2013 05 07 Green Seal 2003 Report 30 0 30 1 Gillespie ISBN 1 56091 199 9 p117 31 0 31 1 31 2 Baker Ira O Treatise on roads and pavements New York John Wiley 1914 Stagecoach Table 7 p 28 Diameter pp 22 23 This book reports a few hundred values of rolling resistance for various animal powered vehicles under various condition mostly from 19th century data Hersey subsection End of dark ages p 261 Hersey subsection Static rolling friction p 266 Williams 1994 Ch Rolling contacts eq 11 1 p 409 Hersey subsection Coulomb on wooden cylinders p 260 U S National Bureau of Standards Fig 1 13 Zehil Gerard Philippe Gavin Henri P Three dimensional boundary element formulation of an incompressible viscoelastic layer of finite thickness applied to the rolling resistance of a rigid sphere International Journal of Solids and Structures 2013 50 6 833 842 doi 10 1016 j ijsolstr 2012 11 020 nbsp 简明摘要 Zehil Gerard Philippe Gavin Henri P Simple algorithms for solving steady state frictional rolling contact problems in two and three dimensions International Journal of Solids and Structures 2013 50 6 843 852 doi 10 1016 j ijsolstr 2012 11 021 nbsp Zehil Gerard Philippe Gavin Henri P Simplified approaches to viscoelastic rolling resistance International Journal of Solids and Structures 2013 50 6 853 862 doi 10 1016 j ijsolstr 2012 09 025 nbsp 40 0 40 1 40 2 SAE MOBILUS saemobilus sae org 2021 04 19 doi 10 4271 06 11 02 0014 原始内容存档于2021 10 29 Sina Naser Hairi Yazdi Mohammad Reza Esfahanian Vahid A novel method to improve vehicle energy efficiency Minimization of tire power loss Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering 2020 03 01 234 4 1153 1166 2022 01 06 ISSN 0954 4070 S2CID 199099736 doi 10 1177 0954407019861241 原始内容存档于2021 11 21 英语 Sina Naser Nasiri Sayyad Karkhaneh Vahid Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real world conditions Applied Energy 2015 11 01 157 974 983 2022 01 06 ISSN 0306 2619 doi 10 1016 j apenergy 2015 04 010 原始内容存档于2021 11 20 英语 43 0 43 1 Roberts Fig 17 Effect of torque transmission on rolling resistance p 71 Deev p 30 including eq 2 7 and Fig 2 3 Astahov P N 俄語 Soprotivlenie dvizheniyu zheleznodorozhnogo podvizhnogo sostava Resistance to motion of railway rolling stock Trudy CNII MPS ISSN 0372 3305 Vypusk 311 Vol 311 Moskva Transport 1966 178 pp perm record at UC Berkeley 页面存档备份 存于互联网档案馆 In 2012 full text was on the Internet but the U S was blocked Deev V V Ilin G A Afonin G S 俄語 Tyaga poezdov Traction of trains Uchebnoe posobie M Transport 1987 264 pp Hay William W Railroad Engineering New York Wiley 1953 Hersey Mayo D Rolling Friction Transactions of the ASME April 1969 pp 260 275 and Journal of Lubrication Technology January 1970 pp 83 88 one article split between two journals Except for the Historical Introduction and a survey of the literature it is mainly about laboratory testing of mine railroad cast iron wheels of diameters 8 to 24 done in the 1920s almost a half century delay between experiment and publication Hoerner Sighard F Fluid dynamic drag published by the author 1965 Chapt 12 is Land Borne Vehicles and includes rolling resistance trains autos trucks Roberts G B Power wastage in tires International Rubber Conference Washington D C 1959 U S National Bureau of Standards Mechanics of Pneumatic Tires Monograph 132 1969 1970 Williams J A Engineering tribology Oxford University Press 1994 外部連結 编辑维基共享资源中相关的多媒体资源 滾動阻力Rolling Resistance and Fuel Saving temperature vs rolling resistance 页面存档备份 存于互联网档案馆 Simple roll down test to measure Crr in cars and bikes Rolling Resistance Thresholds 取自 https zh wikipedia org w index php title 滾動阻力 amp oldid 72545460, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。