fbpx
维基百科

格尔斯滕哈伯代数

格爾斯滕哈伯代数是Gerstenhaber在研究结合代数的形变时发现的。一个结合代数的形变跟它的Hochschild上复形有密切的关系,Gerstenhaber证明,Hochschild上复形实际上形成一个微分分次李代数,并且这个微分分次李代数完全控制了该结合代数的形变。Gerstenhaber的研究受到小平邦彦(Kodaira)-Spencer关于流形复结构形变研究的启发,这些思想后来由Deligne和Kontsevich等人加以系统完成。

在下面后4个例子中,例2和例3是1990年代之前发现的,1993年,Deligne在给一些数学家的通信中猜测它们之间也许是有关系的,用数学语言表述,即:对任何一个结合代数,其Hochschild上复形是little disks operad的链(chain) operad上的代数。这就是著名的Deligne猜想,最后由Kontsevich-Soibelman[1],McClure-Smith[2],Tamarkin[3]和Voronov[4]等人解决。Deligne猜想的证明涉及到了很多高深的数学工具,而这些工具都与拓扑共形场论有着密切的联系,因而引起了很多人的兴趣。

稍后,在1997年,Chas和Sullivan的研究论文发表了名为弦拓扑的论文[5],发现了例5。他们的研究结果引起了数学家们很大的关注和进一步的研究,从而开辟了一门崭新的学科。

最后,需要补充的是,关于Gerstenhaber代数的研究往往伴随着Batalin-Vilkovisky代数(简称BV代数)的研究。BV代数是一类特殊的Gerstenhaber代数,往往由Gerstenhaber代数里面的某种对称性而得到,如[6][5]

定义 编辑

 数域   上的一个分次向量空间。  上的一个格尔斯滕哈伯代数结构是三元组  ,满足以下关系:

  1.    上的分次、交换、结合的代数
  2.  是李括号次数为 -1 的分次李代数
  3. 李括号对其两个变元都是乘积  导子,即对任给  
 

有些文献也把格尔斯滕哈伯代数称为辫代数(braid algebra)。

例子 编辑

下面是一些Gerstenhaber代数的例子,因为构造都比较复杂,因此只列出结果,有兴趣的读者可以参考所给文献资料:

  1.  是一个李代数,记 为其所对应的链复形,则在其上有一个自然的Gerstenhaber代数结构,乘法由外积给出,李括号为从 上诱导的李括号给出(这是一个比较平凡的例子,因此一般人并不重点讨论,但它在构造Gerstenhaber代数的同伦论中非常重要);
  2.  是数域 上的结合代数,Gerstenhaber证明: 霍赫希尔德上同调形成一个Gerstenhaber代数[7]
  3.  为little disks operad,Cohen证明: 的同调群形成一个Gerstenhaber代数[8]
  4. Lian和Zuckerman证明了,在弦理论的背景(background,指从弦理论里面抽象出来的代数结构)中,存在一个Gerstenhaber代数结构[6]
  5.  是一个紧致光滑的流形, 是它的自由环路空间(free loop space)。Chas和Sullivan证明: 的同调群形成一个Gerstenhaber代数[5]


參見 编辑

参考资料 编辑

  1. ^ Kontsevich, M. and Soibelman, Y., Deformations of algebras over operads and the Deligne conjecture. Conférence Moshé Flato 1999, Vol. I (Dijon), 255-307, Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht, 2000.
  2. ^ McClure, J.E. and Smith, J.H., A solution of Deligne's Hochschild cohomology conjecture. Recent progress in homotopy theory (Baltimore, MD, 2000), 153-193, Contemp. Math., 293, Amer. Math. Soc., Providence, RI, 2002.
  3. ^ Tamarkin, D., Formality of chain operad of small squares, arxiv: math.QA/9809164
  4. ^ Voronov, A.A., Homotopy Gerstenhaber algebras. Conférence Moshé Flato 1999, Vol. II (Dijon), 307-331, Math. Phys. Stud., 22, Kluwer Acad. Publ., Dordrecht, 2000.
  5. ^ 5.0 5.1 5.2 Chas, M. and Sullivan, D., String topology, arXiv: math-GT/9911159.
  6. ^ 6.0 6.1 Lian, B.H., Zuckerman, G.J., New perspectives on the BRST-algebraic structure of string theory. Comm. Math. Phys. 154 (1993), no. 3, 613-646.
  7. ^ Gerstenhaber, M., The cohomology structure of an associative ring. Ann. of Math. (2) 78, 1963, 267-288.
  8. ^ Cohen, F.R., The homology of  -spaces, , in The homology of iterated loop spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, 1976, 207-351.

格尔斯滕哈伯代数, 格爾斯滕哈伯代数是gerstenhaber在研究结合代数的形变时发现的, 一个结合代数的形变跟它的hochschild上复形有密切的关系, gerstenhaber证明, hochschild上复形实际上形成一个微分分次李代数, 并且这个微分分次李代数完全控制了该结合代数的形变, gerstenhaber的研究受到小平邦彦, kodaira, spencer关于流形复结构形变研究的启发, 这些思想后来由deligne和kontsevich等人加以系统完成, 在下面后4个例子中, 例2和例3是19. 格爾斯滕哈伯代数是Gerstenhaber在研究结合代数的形变时发现的 一个结合代数的形变跟它的Hochschild上复形有密切的关系 Gerstenhaber证明 Hochschild上复形实际上形成一个微分分次李代数 并且这个微分分次李代数完全控制了该结合代数的形变 Gerstenhaber的研究受到小平邦彦 Kodaira Spencer关于流形复结构形变研究的启发 这些思想后来由Deligne和Kontsevich等人加以系统完成 在下面后4个例子中 例2和例3是1990年代之前发现的 1993年 Deligne在给一些数学家的通信中猜测它们之间也许是有关系的 用数学语言表述 即 对任何一个结合代数 其Hochschild上复形是little disks operad的链 chain operad上的代数 这就是著名的Deligne猜想 最后由Kontsevich Soibelman 1 McClure Smith 2 Tamarkin 3 和Voronov 4 等人解决 Deligne猜想的证明涉及到了很多高深的数学工具 而这些工具都与拓扑共形场论有着密切的联系 因而引起了很多人的兴趣 稍后 在1997年 Chas和Sullivan的研究论文发表了名为弦拓扑的论文 5 发现了例5 他们的研究结果引起了数学家们很大的关注和进一步的研究 从而开辟了一门崭新的学科 最后 需要补充的是 关于Gerstenhaber代数的研究往往伴随着Batalin Vilkovisky代数 简称BV代数 的研究 BV代数是一类特殊的Gerstenhaber代数 往往由Gerstenhaber代数里面的某种对称性而得到 如 6 5 目录 1 定义 2 例子 3 參見 4 参考资料定义 编辑设 V displaystyle V nbsp 是数域 k displaystyle k nbsp 上的一个分次向量空间 V displaystyle V nbsp 上的一个格尔斯滕哈伯代数结构是三元组 V displaystyle V bullet nbsp 满足以下关系 V displaystyle V bullet nbsp 是k displaystyle k nbsp 上的分次 交换 结合的代数 V displaystyle V nbsp 是李括号次数为 1 的分次李代数 李括号对其两个变元都是乘积 displaystyle bullet nbsp 的导子 即对任给 a b c V displaystyle a b c in V nbsp a b c a b c 1 b a 1 b a c displaystyle a b bullet c a b bullet c 1 b a 1 b bullet a c nbsp 有些文献也把格尔斯滕哈伯代数称为辫代数 braid algebra 例子 编辑下面是一些Gerstenhaber代数的例子 因为构造都比较复杂 因此只列出结果 有兴趣的读者可以参考所给文献资料 设g displaystyle mathfrak g nbsp 是一个李代数 记L g displaystyle Lambda mathfrak g nbsp 为其所对应的链复形 则在其上有一个自然的Gerstenhaber代数结构 乘法由外积给出 李括号为从g displaystyle mathfrak g nbsp 上诱导的李括号给出 这是一个比较平凡的例子 因此一般人并不重点讨论 但它在构造Gerstenhaber代数的同伦论中非常重要 设A displaystyle A nbsp 是数域k displaystyle k nbsp 上的结合代数 Gerstenhaber证明 A displaystyle A nbsp 的霍赫希尔德上同调形成一个Gerstenhaber代数 7 记D displaystyle D nbsp 为little disks operad Cohen证明 D displaystyle D nbsp 的同调群形成一个Gerstenhaber代数 8 Lian和Zuckerman证明了 在弦理论的背景 background 指从弦理论里面抽象出来的代数结构 中 存在一个Gerstenhaber代数结构 6 设M displaystyle M nbsp 是一个紧致光滑的流形 L M displaystyle LM nbsp 是它的自由环路空间 free loop space Chas和Sullivan证明 L M displaystyle LM nbsp 的同调群形成一个Gerstenhaber代数 5 參見 编辑Batalin Vilkovisky代数 弦拓扑参考资料 编辑 Kontsevich M and Soibelman Y Deformations of algebras over operads and the Deligne conjecture Conference Moshe Flato 1999 Vol I Dijon 255 307 Math Phys Stud 21 Kluwer Acad Publ Dordrecht 2000 McClure J E and Smith J H A solution of Deligne s Hochschild cohomology conjecture Recent progress in homotopy theory Baltimore MD 2000 153 193 Contemp Math 293 Amer Math Soc Providence RI 2002 Tamarkin D Formality of chain operad of small squares arxiv math QA 9809164 Voronov A A Homotopy Gerstenhaber algebras Conference Moshe Flato 1999 Vol II Dijon 307 331 Math Phys Stud 22 Kluwer Acad Publ Dordrecht 2000 5 0 5 1 5 2 Chas M and Sullivan D String topology arXiv math GT 9911159 6 0 6 1 Lian B H Zuckerman G J New perspectives on the BRST algebraic structure of string theory Comm Math Phys 154 1993 no 3 613 646 Gerstenhaber M The cohomology structure of an associative ring Ann of Math 2 78 1963 267 288 Cohen F R The homology of C n 1 displaystyle C n 1 nbsp spaces n 1 displaystyle n geq 1 nbsp in The homology of iterated loop spaces Lecture Notes in Math vol 533 Springer Verlag 1976 207 351 取自 https zh wikipedia org w index php title 格尔斯滕哈伯代数 amp oldid 46488493, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。