fbpx
维基百科

時間晶體

時間晶體(英語:time crystal)乃一開放系統,其與周圍環境保持非平衡態,呈現時間平移對稱破缺(英語:time translation symmetry breaking)的特性。2017年3月的科學報導指出,此一理論概念已在實驗上獲得證實;隨著時間演進,時間晶體仍無法與環境達到熱平衡[1][2]

時間晶體的概念首先由諾貝爾物理學獎得主弗朗克·韋爾切克於2012年提出。相對於尋常晶體在空間上呈週期性重複,時間晶體則在時間上呈週期性重複而呈現永動狀態。時間晶體在時間平移對稱上具有自發對稱破缺現象。時間晶體也與零點能量和動態卡西米爾效應有關。

2016年,姚穎(英語:Norman Y. Yao)與加州大學柏克萊分校物理系的同僚提出在實驗室建構時間晶體的藍圖[3];隨後此藍圖經兩組人馬採用,包括馬里蘭大學的Christopher Monroe以及哈佛大學的Mikhail Lukin,兩團隊皆成功創造出時間晶體,實驗成果於2017年3月發表在《自然》期刊。[4][5]

常规晶体是一个三维物体,它们的内部原子按照有规则的顺序重复排列而构成。时间晶体是一种四维以上晶体,在时空中拥有一种周期性结构。 一个时间晶体能自发破坏时间平移的对称性,做空间的非平移运动,时间晶体的构成以‘空间’非定域的粒子交叉存在做相互关联运动,是能效粒子的‘额外维’超出‘定域空间’的能动量,时间晶体的存在同样揭示了‘超额外维度’的存在意义。

它可以随着时间改变,但是会持续回到它开始时的相同形态,就如一个钟的移动的指针周期性的回到它的原始位置。与普通的钟或者其他周期性的过程不同的是,时间晶体和空间晶体一样会是最低限度的能量的一种状态。可以将它看作是一只可以永远保持走时精确无误的钟,即便是在宇宙达到热寂之后也是如此。

主要特点 编辑

  1. 时间晶体的运动应该不消耗任何能量,相反,它应该处于一种稳定的最小能量状态,就像钻石和其他传统的晶体一样。即使这样,它仍然是处于一种永动状态。
  2. 时间晶体并不违背能量守恒定律。通常情况下永动机不会长久,因为它们并不是处于一种基态,它们的能量会随着运动而消耗,最终能量会消耗殆尽。在时间晶体中,能量是守恒的,因为没有任何能量被移走。在这些物体中,原子的运动速率并非为零。

设计方法 编辑

2012年7月,来自美国加州大学伯克利分校的李统藏博士以及他来自密歇根大学清华大学的同事们提出了一种新的方案,有可能实现时间晶体的设想。

首先需要一个离子阱,这是一种利用电场来将某一带电粒子固定在某一位置上的装置。这样做将可以让这些离子形成一个环状的晶体,这是因为当离子在极低温度条件下被捕获时,它们会相互排斥。随后科学家施加一个微弱的静磁场,它将驱动电子自旋。

量子力学指出,离子的自旋能量必须大于0,即便是在这个电子环已经被冷冻至最低能级的情况下也是如此。在这种状态下,已经不需要电场和磁场来帮助维持这一晶体的形状以及组成它的各个离子的自旋。这样做的结果就是获得一个时间晶体,或者更准确的说是一个时空晶体,因为这个离子环不但在时间上,在空间上也是不断重复着自身。

研究人员从理论上推理认为,这种时间晶体可以被用作计算机,它可以用不同的自旋状态当做传统计算法中的0和1。利用该系统方案,这一设想将是可能的[6]

该方案是基于电场离子阱和粒子之间的库伦斥力构建的。离子阱的电场将带电粒子固定住,而库伦斥力让它们自发地形成一个空间环状晶体。在一个微弱的静态磁场作用下,这一环状离子晶体将开始永无止境的转动。由于这一时空晶体已经位于最低量子能态,其时间序列,从理论上说将会永远持续,即便是当宇宙达到的极大值,也就是达到“热寂”状态时,情况也是一样。

制造方法:将10个原子排成一列,然后用两束激光交替轰击它们,使得这些原子进入一种稳定且重复的自旋翻转模式,符合“时间晶体”的定义。另一个来自哈佛大学的研究团队则通过向钻石中密集充入氮气的方式,也制造出了“时间晶体”。

意义 编辑

构建一个时空晶体,存在着实际和重要的科学理由:有了这种4维晶体,科学家们将拥有一种全新的,更加有效的手段对复杂的物理属性和大量粒子的复杂相互作用行为进行研究,或者是研究物理学中所谓的“多体问题”。这种时空晶体同样可以被用来对量子世界进行研究,如量子纠缠现象,在这种状态中,当对其中一个粒子进行操作时,另外一个粒子也会相应地发生变化,即便这两个粒子之间隔开着巨大的距离。

參考文獻 编辑

  1. ^ Ghose, Tia. Time Crystals Created, Suspending Laws of Physics. Live Science (Purch). 2017-03-08 [2017-03-16]. (原始内容于2021-03-18). 
  2. ^ Researcher unveils time crystal as new form of matter. Xinhua English news. [2021-11-15]. (原始内容于2021-05-24). 
  3. ^ "时间晶体"不再是科幻_ 中国青年网. [2021-11-15]. (原始内容于2021-11-17). 
  4. ^ “时间晶体”不再是科幻 人民网. [2021-11-15]. (原始内容于2021-11-15). 
  5. ^ Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman Y.; Demler, Eugene; Lukin, Mikhail D. Observation of discrete time-crystalline order in a disordered dipolar many-body system (PDF). Nature. 2017, 543 (7644): 221–225 [2017-03-23]. Bibcode:2016arXiv161008057C. ISSN 0028-0836. arXiv:1610.08057v1 . doi:10.1038/nature21426. (原始内容 (PDF)于2019-05-10). 
  6. ^ 科学家打造超宇宙寿命“时空晶体”. 科学探索_科技时代:新浪网. [2019-04-20]. (原始内容于2019-06-04). 

延伸阅读 编辑

学術論文 编辑

  • Beck, Christian; Mackey, Michael C. Could dark energy be measured in the lab? (PDF). Physics Letters B. 2005, 605 (3–4): 295–300 [2021-03-28]. Bibcode:2005PhLB..605..295B. ISSN 0370-2693. arXiv:astro-ph/0406504v2 . doi:10.1016/j.physletb.2004.11.060. (原始内容 (PDF)于2019-10-15). 
  • Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick. Symmetric Satellite Swarms and Choreographic Crystals (PDF). Physical Review Letters. 2016, 116 (1): 015503 [2021-03-28]. Bibcode:2016PhRvL.116a5503B. ISSN 0031-9007. PMID 26799028. arXiv:1407.5876v2 . doi:10.1103/PhysRevLett.116.015503. (原始内容 (PDF)于2017-02-11). 
  • Bruno, Patrick. Comment on "Quantum Time Crystals" (PDF). Physical Review Letters. 2013a, 110 (11): 118901 [2021-03-28]. Bibcode:2013PhRvL.110k8901B. ISSN 0031-9007. PMID 25166585. arXiv:1210.4128v1 . doi:10.1103/PhysRevLett.110.118901. (原始内容 (PDF)于2017-02-11). 
  • Bruno, Patrick. Comment on "Space-Time Crystals of Trapped Ions" (PDF). Physical Review Letters. 2013b, 111 (2) [2021-03-28]. Bibcode:2013PhRvL.111b9301B. ISSN 0031-9007. arXiv:1211.4792v1 . doi:10.1103/PhysRevLett.111.029301. (原始内容 (PDF)于2017-02-11). 
  • Campisi, Michele; Hänggi, Peter; Talkner, Peter. Colloquium: Quantum fluctuation relations: Foundations and applications (PDF). Reviews of Modern Physics. 2011, 83 (3): 771–791 [2021-03-28]. Bibcode:2011RvMP...83..771C. ISSN 0034-6861. arXiv:1012.2268v5 . doi:10.1103/RevModPhys.83.771. (原始内容 (PDF)于2019-01-27). 
  • Choi, Soonwon; Choi, Joonhee; Landig, Renate; Kucsko, Georg; Zhou, Hengyun; Isoya, Junichi; Jelezko, Fedor; Onoda, Shinobu; Sumiya, Hitoshi; Khemani, Vedika; von Keyserlingk, Curt; Yao, Norman Y.; Demler, Eugene; Lukin, Mikhail D. Observation of discrete time-crystalline order in a disordered dipolar many-body system (PDF). Nature. 2017, 543 (7644): 221–225 [2017-03-23]. Bibcode:2017Natur.543..221C. ISSN 0028-0836. arXiv:1610.08057v1 . doi:10.1038/nature21426. (原始内容 (PDF)于2019-05-10). 
  • Chernodub, M. N. Permanently rotating devices: extracting rotation from quantum vacuum fluctuations? (PDF). 2012 [2021-03-28]. Bibcode:2012arXiv1203.6588C. arXiv:1203.6588v1 . (原始内容 (PDF)于2019-10-24). 
  • Chernodub, M. N. Zero-point fluctuations in rotation: Perpetuum mobile of the fourth kind without energy transfer (PDF). Nuovo Cimento C. 2013a, 5 (36): 53–63 [2021-03-28]. Bibcode:2013arXiv1302.0462C. arXiv:1302.0462v1 . doi:10.1393/ncc/i2013-11523-5. (原始内容 (PDF)于2019-08-14). 
  • Chernodub, M. N. Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics (PDF). Physical Review D. 2013b, 87 (2) [2021-03-28]. Bibcode:2013PhRvD..87b5021C. ISSN 1550-7998. arXiv:1207.3052v2 . doi:10.1103/PhysRevD.87.025021. (原始内容 (PDF)于2019-10-23). 
  • Copeland, Edmund J.; Sami, M.; Tsujikawa, Shinji. Dynamics of dark energy (PDF). International Journal of Modern Physics D. 2006, 15 (11): 1753–1935 [2021-03-28]. Bibcode:2006IJMPD..15.1753C. ISSN 0218-2718. arXiv:hep-th/0603057 . doi:10.1142/S021827180600942X. (原始内容 (PDF)于2017-02-11). 
  • Dillenschneider, R.; Lutz, E. Energetics of quantum correlations (PDF). EPL. 2009, 88 (5): 50003 [2021-03-28]. Bibcode:2009EL.....8850003D. ISSN 0295-5075. arXiv:0803.4067 . doi:10.1209/0295-5075/88/50003. (原始内容 (PDF)于2019-10-01). 
  • Else, Dominic V.; Bauer, Bela; Nayak, Chetan. Floquet Time Crystals (PDF). Physical Review Letters. 2016, 117 (9): 090402 [2021-03-28]. Bibcode:2016PhRvL.117i0402E. ISSN 0031-9007. PMID 27610834. arXiv:1603.08001v4 . doi:10.1103/PhysRevLett.117.090402. (原始内容 (PDF)于2019-10-16). 
  • Esposito, Massimiliano; Harbola, Upendra; Mukamel, Shaul. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems (PDF). Reviews of Modern Physics. 2009, 81 (4): 1665–1702 [2021-03-28]. Bibcode:2009RvMP...81.1665E. ISSN 0034-6861. arXiv:0811.3717v2 . doi:10.1103/RevModPhys.81.1665. (原始内容 (PDF)于2017-02-11). 
  • Grifoni, Milena; Hänggi, Peter. (PDF). Physics Reports. 1998, 304 (5–6): 229–354 [2021-03-28]. Bibcode:1998PhR...304..229G. ISSN 0370-1573. doi:10.1016/S0370-1573(98)00022-2. (原始内容 (PDF)存档于2017-02-11). 
  • Guo, Lingzhen; Marthaler, Michael; Schön, Gerd. Phase Space Crystals: A New Way to Create a Quasienergy Band Structure (PDF). Physical Review Letters. 2013, 111 (20) [2021-03-28]. Bibcode:2013PhRvL.111t5303G. ISSN 0031-9007. arXiv:1305.1800v3 . doi:10.1103/PhysRevLett.111.205303. (原始内容 (PDF)于2017-02-11). 
  • Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators (PDF). Reviews of Modern Physics. 2010, 82 (4): 3045–3067 [2021-03-28]. Bibcode:2010RvMP...82.3045H. ISSN 0034-6861. arXiv:1002.3895v2 . doi:10.1103/RevModPhys.82.3045. (原始内容 (PDF)于2017-02-11). 
  • Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol. Quantum entanglement (PDF). Reviews of Modern Physics. 2009, 81 (2): 865–942 [2021-03-28]. Bibcode:2009RvMP...81..865H. ISSN 0034-6861. arXiv:quant-ph/0702225v2 . doi:10.1103/RevModPhys.81.865. (原始内容 (PDF)于2017-02-11). 
  • Jaffe, R. L. Casimir effect and the quantum vacuum (PDF). Physical Review D. 2005, 72 (2): 021301 [2021-03-28]. Bibcode:2005PhRvD..72b1301J. arXiv:hep-th/0503158 . doi:10.1103/PhysRevD.72.021301. (原始内容 (PDF)于2017-11-05). 
  • Jarzynski, Christopher. Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale (PDF). Annual Review of Condensed Matter Physics. 2011, 2 (1): 329–351 [2021-03-28]. Bibcode:2011ARCMP...2..329J. ISSN 1947-5454. doi:10.1146/annurev-conmatphys-062910-140506. (原始内容 (PDF)于2017-02-11). 
  • Jetzer, Philippe; Straumann, Norbert. Josephson junctions and dark energy (PDF). Physics Letters B. 2006, 639 (2): 57–58 [2021-03-28]. Bibcode:2006PhLB..639...57J. ISSN 0370-2693. arXiv:astro-ph/0604522 . doi:10.1016/j.physletb.2006.06.020. (原始内容 (PDF)于2019-01-27). 
  • Khemani, Vedika; Lazarides, Achilleas; Moessner, Roderich; Sondhi, S. L. Phase Structure of Driven Quantum Systems (PDF). Physical Review Letters. 2016, 116 (25) [2021-03-28]. Bibcode:2016PhRvL.116y0401K. ISSN 0031-9007. arXiv:1508.03344v3 . doi:10.1103/PhysRevLett.116.250401. (原始内容 (PDF)于2019-10-22). 
  • Lees, J. P. Observation of Time-Reversal Violation in the B0 Meson System (PDF). Physical Review Letters. 2012, 109 (21) [2021-03-28]. Bibcode:2012PhRvL.109u1801L. ISSN 0031-9007. arXiv:1207.5832v4 . doi:10.1103/PhysRevLett.109.211801. (原始内容 (PDF)于2019-01-27). 
  • Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H. T.; Yin, Xiaobo; Zhang, Peng; Duan, L.-M.; Zhang, Xiang. Space-Time Crystals of Trapped Ions (PDF). Physical Review Letters. 2012a, 109 (16) [2021-03-28]. Bibcode:2012PhRvL.109p3001L. ISSN 0031-9007. arXiv:1206.4772v2 . doi:10.1103/PhysRevLett.109.163001. (原始内容 (PDF)于2017-02-11). 
  • Li, Tongcang; Gong, Zhe-Xuan; Yin, Zhang-Qi; Quan, H. T.; Yin, Xiaobo; Zhang, Peng; Duan, L.-M.; Zhang, Xiang. Reply to Comment on "Space-Time Crystals of Trapped Ions" (PDF). 2012b [2021-03-28]. Bibcode:2012arXiv1212.6959L. arXiv:1212.6959v2 . (原始内容 (PDF)于2017-02-11). 
  • Lindner, Netanel H.; Refael, Gil; Galitski, Victor. Floquet topological insulator in semiconductor quantum wells (PDF). Nature Physics. 2011, 7 (6): 490–495 [2021-03-28]. Bibcode:2011NatPh...7..490L. ISSN 1745-2473. arXiv:1008.1792v2 . doi:10.1038/nphys1926. (原始内容 (PDF)于2019-10-13). 
  • Nadj-Perge, S.; Drozdov, I. K.; Li, J.; Chen, H.; Jeon, S.; Seo, J.; MacDonald, A. H.; Bernevig, B. A.; Yazdani, A. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor (PDF). Science. 2014, 346 (6209): 602–607 [2021-03-28]. Bibcode:2014Sci...346..602N. ISSN 0036-8075. PMID 25278507. arXiv:1410.0682v1 . doi:10.1126/science.1259327. (原始内容 (PDF)于2017-02-11). 
  • Nozières, Philippe. Time crystals: Can diamagnetic currents drive a charge density wave into rotation? (PDF). EPL. 2013, 103 (5): 57008 [2021-03-28]. Bibcode:2013EL....10357008N. ISSN 0295-5075. arXiv:1306.6229v1 . doi:10.1209/0295-5075/103/57008. (原始内容 (PDF)于2019-10-21). 
  • Sacha, Krzysztof. Modeling spontaneous breaking of time-translation symmetry (PDF). Physical Review A. 2015, 91 (3) [2021-03-28]. Bibcode:2015PhRvA..91c3617S. ISSN 1050-2947. arXiv:1410.3638v3 . doi:10.1103/PhysRevA.91.033617. (原始内容 (PDF)于2017-02-11). 
  • Schwinger, Julian. Casimir effect in source theory. Letters in Mathematical Physics. 1975, 1 (1): 43–47. Bibcode:1975LMaPh...1...43S. doi:10.1007/BF00405585. 
  • Schwinger, Julian; DeRaad, Lester L.; Milton, Kimball A. Casimir effect in dielectrics. Annals of Physics. 1978, 115 (1): 1–23. Bibcode:1978AnPhy.115....1S. doi:10.1016/0003-4916(78)90172-0. 
  • Scully, Marlan O. Extracting Work from a Single Thermal Bath via Quantum Negentropy. Physical Review Letters. 2001, 87 (22): 220601. Bibcode:2001PhRvL..87v0601S. ISSN 0031-9007. PMID 11736390. doi:10.1103/PhysRevLett.87.220601. 
  • Scully, Marlan O.; Zubairy, M. Suhail; Agarwal, Girish S.; Walther, Herbert. Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence. Science. 2003, 299 (5608): 862–864. Bibcode:2003Sci...299..862S. ISSN 0036-8075. PMID 12511655. doi:10.1126/science.1078955. 
  • Seifert, Udo. Stochastic thermodynamics, fluctuation theorems and molecular machines (PDF). Reports on Progress in Physics. 2012, 75 (12): 126001 [2021-03-28]. Bibcode:2012RPPh...75l6001S. ISSN 0034-4885. arXiv:1205.4176v1 . doi:10.1088/0034-4885/75/12/126001. (原始内容 (PDF)于2017-02-11). 
  • Senitzky, I. R. Dissipation in Quantum Mechanics. The Harmonic Oscillator. Physical Review. 1960, 119 (2): 670–679. Bibcode:1960PhRv..119..670S. ISSN 0031-899X. doi:10.1103/PhysRev.119.670. 
  • Shapere, Alfred; Wilczek, Frank. Classical Time Crystals (PDF). Physical Review Letters. 2012, 109 (16) [2021-03-28]. Bibcode:2012PhRvL.109p0402S. ISSN 0031-9007. arXiv:1202.2537v2 . doi:10.1103/PhysRevLett.109.160402. (原始内容 (PDF)于2017-02-11). 
  • Shirley, Jon H. Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time. Physical Review. 1965, 138 (4B): B979–B987. Bibcode:1965PhRv..138..979S. ISSN 0031-899X. doi:10.1103/PhysRev.138.B979. 
  • Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, P.; Heyl, M.; Huse, D. A.; Monroe, C. Many-body localization in a quantum simulator with programmable random disorder (PDF). Nature Physics. 2016, 12 (10): 907–911 [2021-03-28]. Bibcode:2016NatPh..12..907S. ISSN 1745-2473. arXiv:1508.07026v1 . doi:10.1038/nphys3783. (原始内容 (PDF)于2017-02-11). 
  • Maruyama, Koji; Nori, Franco; Vedral, Vlatko. Colloquium* The physics of Maxwell’s demon and information (PDF). Reviews of Modern Physics. 2009, 81 (1): 1–23 [2021-03-28]. Bibcode:2009RvMP...81....1M. ISSN 0034-6861. arXiv:0707.3400 . doi:10.1103/RevModPhys.81.1. (原始内容 (PDF)于2017-02-11). 
  • Mendonça, J. T.; Dodonov, V. V. Time Crystals in Ultracold Matter (PDF). Journal of Russian Laser Research. 2014, 35 (1): 93–100 [2021-03-28]. ISSN 1071-2836. doi:10.1007/s10946-014-9404-9. (原始内容 (PDF)于2018-06-23). 
  • Modi, Kavan; Brodutch, Aharon; Cable, Hugo; Paterek, Tomasz; Vedral, Vlatko. The classical-quantum boundary for correlations* Discord and related measures (PDF). Reviews of Modern Physics. 2012, 84 (4): 1655–1707 [2021-03-28]. Bibcode:2012RvMP...84.1655M. ISSN 0034-6861. arXiv:1112.6238 . doi:10.1103/RevModPhys.84.1655. (原始内容 (PDF)于2017-02-11). 
  • Ray, M. W.; Ruokokoski, E.; Kandel, S.; Möttönen, M.; Hall, D. S. Observation of Dirac monopoles in a synthetic magnetic field (PDF). Nature. 2014, 505 (7485): 657–660 [2021-03-28]. Bibcode:2014Natur.505..657R. ISSN 0028-0836. PMID 24476889. arXiv:1408.3133v1 . doi:10.1038/nature12954. (原始内容 (PDF)于2019-10-20). 
  • Ray, M. W.; Ruokokoski, E.; Tiurev, K.; Mottonen, M.; Hall, D. S. Observation of isolated monopoles in a quantum field (PDF). Science. 2015, 348 (6234): 544–547 [2021-03-28]. Bibcode:2015Sci...348..544R. ISSN 0036-8075. doi:10.1126/science.1258289. (原始内容 (PDF)于2017-08-08). 
  • Reimann, Peter; Grifoni, Milena; Hänggi, Peter. (PDF). Physical Review Letters. 1997, 79 (1): 10–13 [2021-03-28]. Bibcode:1997PhRvL..79...10R. ISSN 0031-9007. doi:10.1103/PhysRevLett.79.10. (原始内容 (PDF)存档于2017-02-11). 
  • Roßnagel, J.; Abah, O.; Schmidt-Kaler, F.; Singer, K.; Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit (PDF). Physical Review Letters. 2014, 112 (3): 030602 [2021-03-28]. Bibcode:2014PhRvL.112c0602R. ISSN 0031-9007. PMID 24484127. arXiv:1308.5935 . doi:10.1103/PhysRevLett.112.030602. (原始内容 (PDF)于2016-06-16). 
  • Roßnagell, J.; Dawkins, S. T.; Tolazzi, K. N.; Abah, O.; Lutz, E.; Schmidt-Kaler, F.; Singer, K. A single-atom heat engine (PDF). Science. 2016, 352 (6283): 325–329 [2021-03-28]. Bibcode:2016Sci...352..325R. ISSN 0036-8075. arXiv:1510.03681 . doi:10.1126/science.aad6320. (原始内容 (PDF)于2017-02-11). 
  • Tatara, Gen; Kikuchi, Makoto; Yukawa, Satoshi; Matsukawa, Hiroshi. Dissipation Enhanced Asymmetric Transport in Quantum Ratchets (PDF). Journal of the Physical Society of Japan. 1998, 67 (4): 1090–1093 [2021-03-28]. Bibcode:1998JPSJ...67.1090T. ISSN 0031-9015. arXiv:cond-mat/9711045 . doi:10.1143/JPSJ.67.1090. (原始内容 (PDF)于2019-10-01). 
  • Volovik, G. E. On the broken time translation symmetry in macroscopic systems* Precessing states and off-diagonal long-range order (PDF). JETP Letters. 2013, 98 (8): 491–495 [2021-03-28]. Bibcode:2013JETPL..98..491V. ISSN 0021-3640. arXiv:1309.1845v2 . doi:10.1134/S0021364013210133. (原始内容 (PDF)于2019-01-27). 
  • von Keyserlingk, C. W.; Khemani, Vedika; Sondhi, S. L. Absolute stability and spatiotemporal long-range order in Floquet systems (PDF). Physical Review B. 2016, 94 (8) [2021-03-28]. Bibcode:2016PhRvB..94h5112V. ISSN 2469-9950. arXiv:1605.00639v3 . doi:10.1103/PhysRevB.94.085112. (原始内容 (PDF)于2019-10-21). 
  • Wang, Y. H.; Steinberg, H.; Jarillo-Herrero, P.; Gedik, N. Observation of Floquet-Bloch States on the Surface of a Topological Insulator (PDF). Science. 2013, 342 (6157): 453–457 [2021-03-28]. Bibcode:2013Sci...342..453W. ISSN 0036-8075. arXiv:1310.7563v1 . doi:10.1126/science.1239834. (原始内容 (PDF)于2019-10-19). 
  • Watanabe, Haruki; Oshikawa, Masaki. Absence of Quantum Time Crystals (PDF). Physical Review Letters. 2015, 114 (25): 251603 [2021-03-28]. Bibcode:2015PhRvL.114y1603W. ISSN 0031-9007. PMID 26197119. arXiv:1410.2143v3 . doi:10.1103/PhysRevLett.114.251603. (原始内容 (PDF)于2019-10-12). 
  • Wilczek, Frank. Quantum Time Crystals (PDF). Physical Review Letters. 2012, 109 (16) [2021-03-28]. Bibcode:2012PhRvL.109p0401W. ISSN 0031-9007. arXiv:1202.2539v2 . doi:10.1103/PhysRevLett.109.160401. (原始内容 (PDF)于2019-10-16). 
  • Wilczek, Frank. Wilczek Reply* (PDF). Physical Review Letters. 2013a, 110 (11) [2021-03-28]. Bibcode:2013PhRvL.110k8902W. ISSN 0031-9007. doi:10.1103/PhysRevLett.110.118902. (原始内容 (PDF)于2017-02-11). 
  • Wilczek, Frank. Superfluidity and Space-Time Translation Symmetry Breaking (PDF). Physical Review Letters. 2013b, 111 (25) [2021-03-28]. Bibcode:2013PhRvL.111y0402W. ISSN 0031-9007. arXiv:1308.5949v1 . doi:10.1103/PhysRevLett.111.250402. (原始内容 (PDF)于2019-10-18). 
  • Willett, R. L.; Nayak, C.; Shtengel, K.; Pfeiffer, L. N.; West, K. W. Magnetic-Field-Tuned Aharonov-Bohm Oscillations and Evidence for Non-Abelian Anyons atν=5/2 (PDF). Physical Review Letters. 2013, 111 (18) [2021-03-28]. Bibcode:2013PhRvL.111r6401W. ISSN 0031-9007. arXiv:1301.2639v1 . doi:10.1103/PhysRevLett.111.186401. (原始内容 (PDF)于2016-06-02). 
  • Yao, N. Y.; Potter, A. C.; Potirniche, I.-D.; Vishwanath, A. Discrete Time Crystals* Rigidity, Criticality, and Realizations (PDF). Physical Review Letters. 2017, 118 (3) [2021-03-28]. Bibcode:2017PhRvL.118c0401Y. ISSN 0031-9007. arXiv:1608.02589v2 . doi:10.1103/PhysRevLett.118.030401. (原始内容 (PDF)于2019-01-27). 
  • Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto. Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields* Phase diagram and the first-order phase transitions (PDF). Physical Review B. 2015, 92 (22) [2021-03-28]. Bibcode:2015PhRvB..92v4512Y. ISSN 1098-0121. arXiv:1404.3519v2 . doi:10.1103/PhysRevB.92.224512. (原始内容 (PDF)于2017-02-11). 
  • Yukawa, Satoshi; Kikuchi, Macoto; Tatara, Gen; Matsukawa, Hiroshi. Quantum Ratchets (PDF). Journal of the Physical Society of Japan. 1997, 66 (10): 2953–2956 [2021-03-28]. Bibcode:1997JPSJ...66.2953Y. ISSN 0031-9015. arXiv:cond-mat/9706222 . doi:10.1143/JPSJ.66.2953. (原始内容 (PDF)于2017-02-11). 
  • Yukawa, Satoshi. A Quantum Analogue of the Jarzynski Equality (PDF). Journal of the Physical Society of Japan. 2000, 69 (8): 2367–2370 [2021-03-28]. Bibcode:2000JPSJ...69.2367Y. ISSN 0031-9015. arXiv:cond-mat/0007456 . doi:10.1143/JPSJ.69.2367. (原始内容 (PDF)于2019-01-27). 
  • Zel'Dovich, Y. B. The quasienergy of a quantum-mechanical system subjected to a periodic action (PDF). Soviet Physics JETP. 1967, 24 (5): 1006–1008 [2021-03-28]. Bibcode:1967JETP...24.1006Z. (原始内容 (PDF)于2017-02-11). 
  • Zhang, J.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.-D.; Potter, A. C.; Vishwanath, A.; Yao, N. Y.; Monroe, C. Observation of a Discrete Time Crystal (PDF). Nature. 2017, 543 (7644): 217–220 [2021-03-28]. Bibcode:2017Natur.543..217Z. ISSN 0028-0836. arXiv:1609.08684v1 . doi:10.1038/nature21413. (原始内容 (PDF)于2019-10-20). 

書籍 编辑

  • Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect (PDF). Physics Reports. 2001, 353 (1–3): 1–205 [2021-03-28]. Bibcode:2001PhR...353....1B. ISSN 0370-1573. arXiv:quant-ph/0106045 . doi:10.1016/S0370-1573(01)00015-1. (原始内容 (PDF)于2017-02-11). 
  • Bordag, M.; Mohideen, U.; Mostepanenko, V.M.; Klimchitskaya, G. L. Advances in the Casimir Effect. Oxford: Oxford University Press. 28 May 2009 [2021-03-28]. ISBN 978-0-19-157988-2. (原始内容于2019-03-31). 
  • Cao, Tian Yu. Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University Press. 25 March 2004 [2021-03-28]. ISBN 978-0-521-60272-3. (原始内容于2019-12-15). 
  • Enz, Charles P. Is the Zero-Point Energy Real?. Enz, C. P.; Mehra, J. (编). Physical Reality and Mathematical Description. Dordrecht: D. Reidel Publishing Company. 1974: 124–132. ISBN 978-94-010-2274-3. doi:10.1007/978-94-010-2274-3_8. 
  • Greiner, Walter; Müller, B.; Rafelski, J. Quantum Electrodynamics of Strong Fields* With an Introduction into Modern Relativistic Quantum Mechanics. Springer. 2012 [2021-03-28]. ISBN 978-3-642-82274-2. doi:10.1007/978-3-642-82272-8. (原始内容于2020-08-20). 
  • Lee, T. D. Particle Physics. CRC Press. 15 August 1981 [2021-03-28]. ISBN 978-3-7186-0033-5. (原始内容于2020-08-19). 
  • Feng, Duan; Jin, Guojun. Introduction to Condensed Matter Physics. singapore: World Scientific. 2005 [2021-03-28]. ISBN 978-981-238-711-0. (原始内容于2019-03-31). 
  • Milonni, Peter W. The Quantum Vacuum* An Introduction to Quantum Electrodynamics. London: Academic Press. 1994 [2021-03-28]. ISBN 978-0-124-98080-8. (原始内容于2020-08-20). 
  • Pade, Jochen. Quantum Mechanics for Pedestrians 2* Applications and Extensions. Dordrecht: Springer. 2014 [2021-03-28]. ISBN 978-3-319-00813-4. ISSN 2192-4791. doi:10.1007/978-3-319-00813-4. (原始内容于2020-08-19). 
  • Schwinger, Julian. Particles, Sources, And Fields, Volume 1* v. 1 (Advanced Books Classics). Perseus. 1998a. ISBN 978-0-738-20053-8. 
  • Schwinger, Julian. Particles, Sources, And Fields, Volume 2* v. 2 (Advanced Books Classics). Perseus. 1998b. ISBN 978-0-738-20054-5. 
  • Schwinger, Julian. Particles, Sources, And Fields, Volume 3* v. 3 (Advanced Books Classics). Perseus. 1998c. ISBN 978-0-738-20055-2. 
  • Sólyom, Jenö. Fundamentals of the Physics of Solids* Volume 1* Structure and Dynamics. Springer. 19 September 2007 [2021-03-28]. ISBN 978-3-540-72600-5. (原始内容于2019-03-31). 
  • Wilczek, Frank. A Beautiful Question* Finding Nature's Deep Design. Penguin Books Limited. 16 July 2015 [2021-03-28]. ISBN 978-1-84614-702-9. (原始内容于2019-12-15). 

出版物 编辑

  • Aalto University. Physicists discover quantum-mechanical monopoles. phys.org. Science X. 30 April 2015 [2019-01-14]. (原始内容存档于2015-04-30). 
  • Aitchison, Ian. Observing the Unobservable. New Scientist. 19 November 1981, 92 (1280): 540–541 [2021-03-28]. ISSN 0262-4079. (原始内容于2020-08-19). 
  • Amherst College. Physicists create synthetic magnetic monopole predicted more than 80 years ago. phys.org. Science X. 29 January 2014 [2019-01-14]. (原始内容存档于2014-01-29). 
  • Aron, Jacob. Computer that could outlive the universe a step closer. newscientist.com. New Scientist. 6 July 2012 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Ball, Philip. Focus* New Crystal Type is Always in Motion. physics.aps.org. APS Physics. 8 January 2016 [2019-01-14]. (原始内容存档于2017-02-03). 
  • Ball, Philip. Scepticism greets pitch to detect dark energy in the lab. Nature. 8 July 2004, 430 (6996): 126–126 [2021-03-28]. Bibcode:2004Natur.430..126B. ISSN 0028-0836. doi:10.1038/430126b. (原始内容于2019-04-22). 
  • Cartlidge, Edwin. Scientists build heat engine from a single atom. sciencemag.org. Science Magazine. 21 October 2015 [2019-01-14]. (原始内容存档于2017-02-01). 
  • Chandler, David. Topological insulators* Persuading light to mix it up with matter. phys.org. Science X. 24 October 2014 [2019-01-14]. (原始内容存档于2017-02-08). 
  • Coleman, Piers. Quantum physics* Time crystals. Nature. 9 January 2013, 493 (7431): 166–167. Bibcode:2013Natur.493..166C. ISSN 0028-0836. doi:10.1038/493166a. 
  • Cowen, Ron. "Time Crystals" Could Be a Legitimate Form of Perpetual Motion. scientificamerican.com. Scientific American. 27 February 2012 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Daghofer, Maria. Viewpoint* Toward Fractional Quantum Hall Physics with Cold Atoms. physics.aps.org. APS Physics. 29 April 2013 [2019-01-14]. (原始内容存档于2017-02-07). 
  • Gibney, Elizabeth. The quest to crystallize time. Nature. 2017, 543 (7644): 164–166 [2021-03-28]. Bibcode:2017Natur.543..164G. ISSN 0028-0836. doi:10.1038/543164a. (原始内容存档于2017-03-13). 
  • Grossman, Lisa. Death-defying time crystal could outlast the universe. newscientist.com. New Scientist. 18 January 2012 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Hackett, Jennifer. Curious Crystal Dances for Its Symmetry. scientificamerican.com. Scientific American. 22 February 2016 [2019-01-14]. (原始内容存档于2017-02-03). 
  • Hewitt, John. Creating time crystals with a rotating ion ring. phys.org. Science X. 3 May 2013 [2019-01-14]. (原始内容存档于2013-07-04). 
  • Johnston, Hamish. 'Choreographic crystals' have all the right moves. physicsworld.com. Institute of Physics. 18 January 2016 [2019-01-14]. (原始内容存档于2017-02-03). 
  • Johannes Gutenberg Universitaet Mainz. Prototype of single ion heat engine created. sciencedaily.com. ScienceDaily. 3 February 2014 [2019-01-14]. (原始内容存档于2017-02-01). 
  • Joint Quantum Institute. Floquet Topological Insulators. jqi.umd.edu. Joint Quantum Institute. 22 March 2011 [2019-01-14]. (原始内容于2019-04-03). 
  • Morgan, James. Elusive magnetic 'monopole' seen in quantum system. bbc.co.uk. BBC. 30 January 2014 [2019-01-14]. (原始内容存档于2014-01-30). 
  • Moskowitz, Clara. New Particle Is Both Matter and Antimatter. scientificamerican.com. Scientific American. 2 October 2014 [2019-01-14]. (原始内容存档于2014-10-09). 
  • Ouellette, Jennifer. World’s first time crystals cooked up using new recipe. newscientist.com. New Scientist. 31 January 2017 [2019-01-14]. (原始内容存档于2017-02-01). 
  • Pilkington, Mark. Zero point energy. theguardian.com (The Guardian). 17 July 2003 [2019-01-14]. (原始内容存档于2017-02-07). 
  • Powell, Devin. Can matter cycle through shapes eternally?. Nature. 2013 [2021-03-28]. ISSN 1476-4687. doi:10.1038/nature.2013.13657. (原始内容存档于2017-02-03). 
  • Rao, Achintya. BaBar makes first direct measurement of time-reversal violation. physicsworld.com. Institute of Physics. 21 November 2012 [2019-01-14]. (原始内容存档于2015-03-24). 
  • Richerme, Phil. Viewpoint* How to Create a Time Crystal. physics.aps.org. APS Physics. 18 January 2017 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Thomas, Jessica. Notes from the Editors* The Aftermath of a Controversial Idea. physics.aps.org. APS Physics. 15 March 2013 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Qi, Xiao-Liang; Zhang, Shou-Cheng. The quantum spin Hall effect and topological insulators (PDF). Physics Today. 2010, 63 (1): 33–38 [2021-03-28]. Bibcode:2010PhT....63a..33Q. ISSN 0031-9228. arXiv:1001.1602 . doi:10.1063/1.3293411. (原始内容 (PDF)于2017-08-12). 
  • University of California, Berkeley. Physicists unveil new form of matter—time crystals. phys.org. Science X. 26 January 2017 [2019-01-14]. (原始内容存档于2017-01-28). 
  • Weiner, Sophie. Scientists Create A New Kind Of Matter* Time Crystals. popularmechanics.com. Popular mechanics. 28 January 2017 [2019-01-14]. (原始内容存档于2017-02-03). 
  • Wolchover, Natalie. Perpetual Motion Test Could Amend Theory of Time. quantamagazine.org. Simons Foundation. 25 April 2013 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Wolchover, Natalie. Forging a Qubit to Rule Them All. quantamagazine.org. Simmons Foundation. 15 May 2014 [2019-01-14]. (原始内容存档于2016-03-15). 
  • Wood, Charlie. Time crystals realize new order of space-time. csmonitor.com. Christian Science Monitor. 31 January 2017 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Yirka, Bob. Physics team proposes a way to create an actual space-time crystal. phys.org. Science X. 9 July 2012 [2019-01-14]. (原始内容存档于2013-04-15). 
  • Zakrzewski, Jakub. Viewpoint* Crystals of Time. physics.aps.org. APS Physics. 15 October 2012 [2019-01-14]. (原始内容存档于2017-02-02). 
  • Zeller, Michael. Viewpoint* Particle Decays Point to an Arrow of Time. physics.aps.org. APS Physics. 19 November 2012 [2019-01-14]. (原始内容存档于2017-02-04). 
  • Zyga, Lisa. Time crystals could behave almost like perpetual motion machines. phys.org. Science X. 20 February 2012 [2019-01-14]. (原始内容存档于2017-02-03). 
  • Zyga, Lisa. Physicist proves impossibility of quantum time crystals. phys.org. Space X. 22 August 2013 [2019-01-14]. (原始内容存档于2017-02-03). 
  • Zyga, Lisa. Nanoscale heat engine exceeds standard efficiency limit. phys.org. Science X. 27 January 2014 [2019-01-14]. (原始内容存档于2015-04-04). 
  • Zyga, Lisa. Physicists propose new definition of time crystals—then prove such things don't exist. phys.org. Science X. 9 July 2015 [2019-01-14]. (原始内容存档于2015-07-09). 
  • Zyga, Lisa. Time crystals might exist after all (Update). phys.org. Science X. 9 September 2016 [2019-01-14]. (原始内容存档于2016-09-11). 

時間晶體, 英語, time, crystal, 乃一開放系統, 其與周圍環境保持非平衡態, 呈現時間平移對稱破缺, 英語, time, translation, symmetry, breaking, 的特性, 2017年3月的科學報導指出, 此一理論概念已在實驗上獲得證實, 隨著時間演進, 仍無法與環境達到熱平衡, 的概念首先由諾貝爾物理學獎得主弗朗克, 韋爾切克於2012年提出, 相對於尋常晶體在空間上呈週期性重複, 則在時間上呈週期性重複而呈現永動狀態, 在時間平移對稱上具有自發對稱破缺現象, 也與零點能量. 時間晶體 英語 time crystal 乃一開放系統 其與周圍環境保持非平衡態 呈現時間平移對稱破缺 英語 time translation symmetry breaking 的特性 2017年3月的科學報導指出 此一理論概念已在實驗上獲得證實 隨著時間演進 時間晶體仍無法與環境達到熱平衡 1 2 時間晶體的概念首先由諾貝爾物理學獎得主弗朗克 韋爾切克於2012年提出 相對於尋常晶體在空間上呈週期性重複 時間晶體則在時間上呈週期性重複而呈現永動狀態 時間晶體在時間平移對稱上具有自發對稱破缺現象 時間晶體也與零點能量和動態卡西米爾效應有關 2016年 姚穎 英語 Norman Y Yao 與加州大學柏克萊分校物理系的同僚提出在實驗室建構時間晶體的藍圖 3 隨後此藍圖經兩組人馬採用 包括馬里蘭大學的Christopher Monroe以及哈佛大學的Mikhail Lukin 兩團隊皆成功創造出時間晶體 實驗成果於2017年3月發表在 自然 期刊 4 5 常规晶体是一个三维物体 它们的内部原子按照有规则的顺序重复排列而构成 时间晶体是一种四维以上晶体 在时空中拥有一种周期性结构 一个时间晶体能自发破坏时间平移的对称性 做空间的非平移运动 时间晶体的构成以 空间 非定域的粒子交叉存在做相互关联运动 是能效粒子的 额外维 超出 定域空间 的能动量 时间晶体的存在同样揭示了 超额外维度 的存在意义 它可以随着时间改变 但是会持续回到它开始时的相同形态 就如一个钟的移动的指针周期性的回到它的原始位置 与普通的钟或者其他周期性的过程不同的是 时间晶体和空间晶体一样会是最低限度的能量的一种状态 可以将它看作是一只可以永远保持走时精确无误的钟 即便是在宇宙达到热寂之后也是如此 目录 1 主要特点 2 设计方法 3 意义 4 參考文獻 5 延伸阅读 5 1 学術論文 5 2 書籍 5 3 出版物主要特点 编辑时间晶体的运动应该不消耗任何能量 相反 它应该处于一种稳定的最小能量状态 就像钻石和其他传统的晶体一样 即使这样 它仍然是处于一种永动状态 时间晶体并不违背能量守恒定律 通常情况下永动机不会长久 因为它们并不是处于一种基态 它们的能量会随着运动而消耗 最终能量会消耗殆尽 在时间晶体中 能量是守恒的 因为没有任何能量被移走 在这些物体中 原子的运动速率并非为零 设计方法 编辑2012年7月 来自美国加州大学伯克利分校的李统藏博士以及他来自密歇根大学和清华大学的同事们提出了一种新的方案 有可能实现时间晶体的设想 首先需要一个离子阱 这是一种利用电场来将某一带电粒子固定在某一位置上的装置 这样做将可以让这些离子形成一个环状的晶体 这是因为当离子在极低温度条件下被捕获时 它们会相互排斥 随后科学家施加一个微弱的静磁场 它将驱动电子自旋 量子力学指出 离子的自旋能量必须大于0 即便是在这个电子环已经被冷冻至最低能级的情况下也是如此 在这种状态下 已经不需要电场和磁场来帮助维持这一晶体的形状以及组成它的各个离子的自旋 这样做的结果就是获得一个时间晶体 或者更准确的说是一个时空晶体 因为这个离子环不但在时间上 在空间上也是不断重复着自身 研究人员从理论上推理认为 这种时间晶体可以被用作计算机 它可以用不同的自旋状态当做传统计算法中的0和1 利用该系统方案 这一设想将是可能的 6 该方案是基于电场离子阱和粒子之间的库伦斥力构建的 离子阱的电场将带电粒子固定住 而库伦斥力让它们自发地形成一个空间环状晶体 在一个微弱的静态磁场作用下 这一环状离子晶体将开始永无止境的转动 由于这一时空晶体已经位于最低量子能态 其时间序列 从理论上说将会永远持续 即便是当宇宙达到熵的极大值 也就是达到 热寂 状态时 情况也是一样 制造方法 将10个镱原子排成一列 然后用两束激光交替轰击它们 使得这些原子进入一种稳定且重复的自旋翻转模式 符合 时间晶体 的定义 另一个来自哈佛大学的研究团队则通过向钻石中密集充入氮气的方式 也制造出了 时间晶体 意义 编辑构建一个时空晶体 存在着实际和重要的科学理由 有了这种4维晶体 科学家们将拥有一种全新的 更加有效的手段对复杂的物理属性和大量粒子的复杂相互作用行为进行研究 或者是研究物理学中所谓的 多体问题 这种时空晶体同样可以被用来对量子世界进行研究 如量子纠缠现象 在这种状态中 当对其中一个粒子进行操作时 另外一个粒子也会相应地发生变化 即便这两个粒子之间隔开着巨大的距离 參考文獻 编辑 Ghose Tia Time Crystals Created Suspending Laws of Physics Live Science Purch 2017 03 08 2017 03 16 原始内容存档于2021 03 18 Researcher unveils time crystal as new form of matter Xinhua English news 2021 11 15 原始内容存档于2021 05 24 时间晶体 不再是科幻 中国青年网 2021 11 15 原始内容存档于2021 11 17 时间晶体 不再是科幻 人民网 2021 11 15 原始内容存档于2021 11 15 Choi Soonwon Choi Joonhee Landig Renate Kucsko Georg Zhou Hengyun Isoya Junichi Jelezko Fedor Onoda Shinobu Sumiya Hitoshi Khemani Vedika von Keyserlingk Curt Yao Norman Y Demler Eugene Lukin Mikhail D Observation of discrete time crystalline order in a disordered dipolar many body system PDF Nature 2017 543 7644 221 225 2017 03 23 Bibcode 2016arXiv161008057C ISSN 0028 0836 arXiv 1610 08057v1 nbsp doi 10 1038 nature21426 原始内容存档 PDF 于2019 05 10 科学家打造超宇宙寿命 时空晶体 科学探索 科技时代 新浪网 2019 04 20 原始内容存档于2019 06 04 延伸阅读 编辑学術論文 编辑 Beck Christian Mackey Michael C Could dark energy be measured in the lab PDF Physics Letters B 2005 605 3 4 295 300 2021 03 28 Bibcode 2005PhLB 605 295B ISSN 0370 2693 arXiv astro ph 0406504v2 nbsp doi 10 1016 j physletb 2004 11 060 原始内容存档 PDF 于2019 10 15 Boyle Latham Khoo Jun Yong Smith Kendrick Symmetric Satellite Swarms and Choreographic Crystals PDF Physical Review Letters 2016 116 1 015503 2021 03 28 Bibcode 2016PhRvL 116a5503B ISSN 0031 9007 PMID 26799028 arXiv 1407 5876v2 nbsp doi 10 1103 PhysRevLett 116 015503 原始内容存档 PDF 于2017 02 11 Bruno Patrick Comment on Quantum Time Crystals PDF Physical Review Letters 2013a 110 11 118901 2021 03 28 Bibcode 2013PhRvL 110k8901B ISSN 0031 9007 PMID 25166585 arXiv 1210 4128v1 nbsp doi 10 1103 PhysRevLett 110 118901 原始内容存档 PDF 于2017 02 11 Bruno Patrick Comment on Space Time Crystals of Trapped Ions PDF Physical Review Letters 2013b 111 2 2021 03 28 Bibcode 2013PhRvL 111b9301B ISSN 0031 9007 arXiv 1211 4792v1 nbsp doi 10 1103 PhysRevLett 111 029301 原始内容存档 PDF 于2017 02 11 Campisi Michele Hanggi Peter Talkner Peter Colloquium Quantum fluctuation relations Foundations and applications PDF Reviews of Modern Physics 2011 83 3 771 791 2021 03 28 Bibcode 2011RvMP 83 771C ISSN 0034 6861 arXiv 1012 2268v5 nbsp doi 10 1103 RevModPhys 83 771 原始内容存档 PDF 于2019 01 27 Choi Soonwon Choi Joonhee Landig Renate Kucsko Georg Zhou Hengyun Isoya Junichi Jelezko Fedor Onoda Shinobu Sumiya Hitoshi Khemani Vedika von Keyserlingk Curt Yao Norman Y Demler Eugene Lukin Mikhail D Observation of discrete time crystalline order in a disordered dipolar many body system PDF Nature 2017 543 7644 221 225 2017 03 23 Bibcode 2017Natur 543 221C ISSN 0028 0836 arXiv 1610 08057v1 nbsp doi 10 1038 nature21426 原始内容存档 PDF 于2019 05 10 Chernodub M N Permanently rotating devices extracting rotation from quantum vacuum fluctuations PDF 2012 2021 03 28 Bibcode 2012arXiv1203 6588C arXiv 1203 6588v1 nbsp 原始内容存档 PDF 于2019 10 24 Chernodub M N Zero point fluctuations in rotation Perpetuum mobile of the fourth kind without energy transfer PDF Nuovo Cimento C 2013a 5 36 53 63 2021 03 28 Bibcode 2013arXiv1302 0462C arXiv 1302 0462v1 nbsp doi 10 1393 ncc i2013 11523 5 原始内容存档 PDF 于2019 08 14 Chernodub M N Rotating Casimir systems Magnetic field enhanced perpetual motion possible realization in doped nanotubes and laws of thermodynamics PDF Physical Review D 2013b 87 2 2021 03 28 Bibcode 2013PhRvD 87b5021C ISSN 1550 7998 arXiv 1207 3052v2 nbsp doi 10 1103 PhysRevD 87 025021 原始内容存档 PDF 于2019 10 23 Copeland Edmund J Sami M Tsujikawa Shinji Dynamics of dark energy PDF International Journal of Modern Physics D 2006 15 11 1753 1935 2021 03 28 Bibcode 2006IJMPD 15 1753C ISSN 0218 2718 arXiv hep th 0603057 nbsp doi 10 1142 S021827180600942X 原始内容存档 PDF 于2017 02 11 Dillenschneider R Lutz E Energetics of quantum correlations PDF EPL 2009 88 5 50003 2021 03 28 Bibcode 2009EL 8850003D ISSN 0295 5075 arXiv 0803 4067 nbsp doi 10 1209 0295 5075 88 50003 原始内容存档 PDF 于2019 10 01 Else Dominic V Bauer Bela Nayak Chetan Floquet Time Crystals PDF Physical Review Letters 2016 117 9 090402 2021 03 28 Bibcode 2016PhRvL 117i0402E ISSN 0031 9007 PMID 27610834 arXiv 1603 08001v4 nbsp doi 10 1103 PhysRevLett 117 090402 原始内容存档 PDF 于2019 10 16 Esposito Massimiliano Harbola Upendra Mukamel Shaul Nonequilibrium fluctuations fluctuation theorems and counting statistics in quantum systems PDF Reviews of Modern Physics 2009 81 4 1665 1702 2021 03 28 Bibcode 2009RvMP 81 1665E ISSN 0034 6861 arXiv 0811 3717v2 nbsp doi 10 1103 RevModPhys 81 1665 原始内容存档 PDF 于2017 02 11 Grifoni Milena Hanggi Peter Driven quantum tunneling PDF Physics Reports 1998 304 5 6 229 354 2021 03 28 Bibcode 1998PhR 304 229G ISSN 0370 1573 doi 10 1016 S0370 1573 98 00022 2 原始内容 PDF 存档于2017 02 11 Guo Lingzhen Marthaler Michael Schon Gerd Phase Space Crystals A New Way to Create a Quasienergy Band Structure PDF Physical Review Letters 2013 111 20 2021 03 28 Bibcode 2013PhRvL 111t5303G ISSN 0031 9007 arXiv 1305 1800v3 nbsp doi 10 1103 PhysRevLett 111 205303 原始内容存档 PDF 于2017 02 11 Hasan M Z Kane C L Colloquium Topological insulators PDF Reviews of Modern Physics 2010 82 4 3045 3067 2021 03 28 Bibcode 2010RvMP 82 3045H ISSN 0034 6861 arXiv 1002 3895v2 nbsp doi 10 1103 RevModPhys 82 3045 原始内容存档 PDF 于2017 02 11 Horodecki Ryszard Horodecki Pawel Horodecki Michal Horodecki Karol Quantum entanglement PDF Reviews of Modern Physics 2009 81 2 865 942 2021 03 28 Bibcode 2009RvMP 81 865H ISSN 0034 6861 arXiv quant ph 0702225v2 nbsp doi 10 1103 RevModPhys 81 865 原始内容存档 PDF 于2017 02 11 Jaffe R L Casimir effect and the quantum vacuum PDF Physical Review D 2005 72 2 021301 2021 03 28 Bibcode 2005PhRvD 72b1301J arXiv hep th 0503158 nbsp doi 10 1103 PhysRevD 72 021301 原始内容存档 PDF 于2017 11 05 Jarzynski Christopher Equalities and Inequalities Irreversibility and the Second Law of Thermodynamics at the Nanoscale PDF Annual Review of Condensed Matter Physics 2011 2 1 329 351 2021 03 28 Bibcode 2011ARCMP 2 329J ISSN 1947 5454 doi 10 1146 annurev conmatphys 062910 140506 原始内容存档 PDF 于2017 02 11 Jetzer Philippe Straumann Norbert Josephson junctions and dark energy PDF Physics Letters B 2006 639 2 57 58 2021 03 28 Bibcode 2006PhLB 639 57J ISSN 0370 2693 arXiv astro ph 0604522 nbsp doi 10 1016 j physletb 2006 06 020 原始内容存档 PDF 于2019 01 27 Khemani Vedika Lazarides Achilleas Moessner Roderich Sondhi S L Phase Structure of Driven Quantum Systems PDF Physical Review Letters 2016 116 25 2021 03 28 Bibcode 2016PhRvL 116y0401K ISSN 0031 9007 arXiv 1508 03344v3 nbsp doi 10 1103 PhysRevLett 116 250401 原始内容存档 PDF 于2019 10 22 Lees J P Observation of Time Reversal Violation in the B0 Meson System PDF Physical Review Letters 2012 109 21 2021 03 28 Bibcode 2012PhRvL 109u1801L ISSN 0031 9007 arXiv 1207 5832v4 nbsp doi 10 1103 PhysRevLett 109 211801 原始内容存档 PDF 于2019 01 27 Li Tongcang Gong Zhe Xuan Yin Zhang Qi Quan H T Yin Xiaobo Zhang Peng Duan L M Zhang Xiang Space Time Crystals of Trapped Ions PDF Physical Review Letters 2012a 109 16 2021 03 28 Bibcode 2012PhRvL 109p3001L ISSN 0031 9007 arXiv 1206 4772v2 nbsp doi 10 1103 PhysRevLett 109 163001 原始内容存档 PDF 于2017 02 11 Li Tongcang Gong Zhe Xuan Yin Zhang Qi Quan H T Yin Xiaobo Zhang Peng Duan L M Zhang Xiang Reply to Comment on Space Time Crystals of Trapped Ions PDF 2012b 2021 03 28 Bibcode 2012arXiv1212 6959L arXiv 1212 6959v2 nbsp 原始内容存档 PDF 于2017 02 11 Lindner Netanel H Refael Gil Galitski Victor Floquet topological insulator in semiconductor quantum wells PDF Nature Physics 2011 7 6 490 495 2021 03 28 Bibcode 2011NatPh 7 490L ISSN 1745 2473 arXiv 1008 1792v2 nbsp doi 10 1038 nphys1926 原始内容存档 PDF 于2019 10 13 Nadj Perge S Drozdov I K Li J Chen H Jeon S Seo J MacDonald A H Bernevig B A Yazdani A Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor PDF Science 2014 346 6209 602 607 2021 03 28 Bibcode 2014Sci 346 602N ISSN 0036 8075 PMID 25278507 arXiv 1410 0682v1 nbsp doi 10 1126 science 1259327 原始内容存档 PDF 于2017 02 11 Nozieres Philippe Time crystals Can diamagnetic currents drive a charge density wave into rotation PDF EPL 2013 103 5 57008 2021 03 28 Bibcode 2013EL 10357008N ISSN 0295 5075 arXiv 1306 6229v1 nbsp doi 10 1209 0295 5075 103 57008 原始内容存档 PDF 于2019 10 21 Sacha Krzysztof Modeling spontaneous breaking of time translation symmetry PDF Physical Review A 2015 91 3 2021 03 28 Bibcode 2015PhRvA 91c3617S ISSN 1050 2947 arXiv 1410 3638v3 nbsp doi 10 1103 PhysRevA 91 033617 原始内容存档 PDF 于2017 02 11 Schwinger Julian Casimir effect in source theory Letters in Mathematical Physics 1975 1 1 43 47 Bibcode 1975LMaPh 1 43S doi 10 1007 BF00405585 Schwinger Julian DeRaad Lester L Milton Kimball A Casimir effect in dielectrics Annals of Physics 1978 115 1 1 23 Bibcode 1978AnPhy 115 1S doi 10 1016 0003 4916 78 90172 0 Scully Marlan O Extracting Work from a Single Thermal Bath via Quantum Negentropy Physical Review Letters 2001 87 22 220601 Bibcode 2001PhRvL 87v0601S ISSN 0031 9007 PMID 11736390 doi 10 1103 PhysRevLett 87 220601 Scully Marlan O Zubairy M Suhail Agarwal Girish S Walther Herbert Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence Science 2003 299 5608 862 864 Bibcode 2003Sci 299 862S ISSN 0036 8075 PMID 12511655 doi 10 1126 science 1078955 Seifert Udo Stochastic thermodynamics fluctuation theorems and molecular machines PDF Reports on Progress in Physics 2012 75 12 126001 2021 03 28 Bibcode 2012RPPh 75l6001S ISSN 0034 4885 arXiv 1205 4176v1 nbsp doi 10 1088 0034 4885 75 12 126001 原始内容存档 PDF 于2017 02 11 Senitzky I R Dissipation in Quantum Mechanics The Harmonic Oscillator Physical Review 1960 119 2 670 679 Bibcode 1960PhRv 119 670S ISSN 0031 899X doi 10 1103 PhysRev 119 670 Shapere Alfred Wilczek Frank Classical Time Crystals PDF Physical Review Letters 2012 109 16 2021 03 28 Bibcode 2012PhRvL 109p0402S ISSN 0031 9007 arXiv 1202 2537v2 nbsp doi 10 1103 PhysRevLett 109 160402 原始内容存档 PDF 于2017 02 11 Shirley Jon H Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time Physical Review 1965 138 4B B979 B987 Bibcode 1965PhRv 138 979S ISSN 0031 899X doi 10 1103 PhysRev 138 B979 Smith J Lee A Richerme P Neyenhuis B Hess P W Hauke P Heyl M Huse D A Monroe C Many body localization in a quantum simulator with programmable random disorder PDF Nature Physics 2016 12 10 907 911 2021 03 28 Bibcode 2016NatPh 12 907S ISSN 1745 2473 arXiv 1508 07026v1 nbsp doi 10 1038 nphys3783 原始内容存档 PDF 于2017 02 11 Maruyama Koji Nori Franco Vedral Vlatko Colloquium The physics of Maxwell s demon and information PDF Reviews of Modern Physics 2009 81 1 1 23 2021 03 28 Bibcode 2009RvMP 81 1M ISSN 0034 6861 arXiv 0707 3400 nbsp doi 10 1103 RevModPhys 81 1 原始内容存档 PDF 于2017 02 11 Mendonca J T Dodonov V V Time Crystals in Ultracold Matter PDF Journal of Russian Laser Research 2014 35 1 93 100 2021 03 28 ISSN 1071 2836 doi 10 1007 s10946 014 9404 9 原始内容存档 PDF 于2018 06 23 Modi Kavan Brodutch Aharon Cable Hugo Paterek Tomasz Vedral Vlatko The classical quantum boundary for correlations Discord and related measures PDF Reviews of Modern Physics 2012 84 4 1655 1707 2021 03 28 Bibcode 2012RvMP 84 1655M ISSN 0034 6861 arXiv 1112 6238 nbsp doi 10 1103 RevModPhys 84 1655 原始内容存档 PDF 于2017 02 11 Ray M W Ruokokoski E Kandel S Mottonen M Hall D S Observation of Dirac monopoles in a synthetic magnetic field PDF Nature 2014 505 7485 657 660 2021 03 28 Bibcode 2014Natur 505 657R ISSN 0028 0836 PMID 24476889 arXiv 1408 3133v1 nbsp doi 10 1038 nature12954 原始内容存档 PDF 于2019 10 20 Ray M W Ruokokoski E Tiurev K Mottonen M Hall D S Observation of isolated monopoles in a quantum field PDF Science 2015 348 6234 544 547 2021 03 28 Bibcode 2015Sci 348 544R ISSN 0036 8075 doi 10 1126 science 1258289 原始内容存档 PDF 于2017 08 08 Reimann Peter Grifoni Milena Hanggi Peter Quantum Ratchets PDF Physical Review Letters 1997 79 1 10 13 2021 03 28 Bibcode 1997PhRvL 79 10R ISSN 0031 9007 doi 10 1103 PhysRevLett 79 10 原始内容 PDF 存档于2017 02 11 Rossnagel J Abah O Schmidt Kaler F Singer K Lutz E Nanoscale Heat Engine Beyond the Carnot Limit PDF Physical Review Letters 2014 112 3 030602 2021 03 28 Bibcode 2014PhRvL 112c0602R ISSN 0031 9007 PMID 24484127 arXiv 1308 5935 nbsp doi 10 1103 PhysRevLett 112 030602 原始内容存档 PDF 于2016 06 16 Rossnagell J Dawkins S T Tolazzi K N Abah O Lutz E Schmidt Kaler F Singer K A single atom heat engine PDF Science 2016 352 6283 325 329 2021 03 28 Bibcode 2016Sci 352 325R ISSN 0036 8075 arXiv 1510 03681 nbsp doi 10 1126 science aad6320 原始内容存档 PDF 于2017 02 11 Tatara Gen Kikuchi Makoto Yukawa Satoshi Matsukawa Hiroshi Dissipation Enhanced Asymmetric Transport in Quantum Ratchets PDF Journal of the Physical Society of Japan 1998 67 4 1090 1093 2021 03 28 Bibcode 1998JPSJ 67 1090T ISSN 0031 9015 arXiv cond mat 9711045 nbsp doi 10 1143 JPSJ 67 1090 原始内容存档 PDF 于2019 10 01 Volovik G E On the broken time translation symmetry in macroscopic systems Precessing states and off diagonal long range order PDF JETP Letters 2013 98 8 491 495 2021 03 28 Bibcode 2013JETPL 98 491V ISSN 0021 3640 arXiv 1309 1845v2 nbsp doi 10 1134 S0021364013210133 原始内容存档 PDF 于2019 01 27 von Keyserlingk C W Khemani Vedika Sondhi S L Absolute stability and spatiotemporal long range order in Floquet systems PDF Physical Review B 2016 94 8 2021 03 28 Bibcode 2016PhRvB 94h5112V ISSN 2469 9950 arXiv 1605 00639v3 nbsp doi 10 1103 PhysRevB 94 085112 原始内容存档 PDF 于2019 10 21 Wang Y H Steinberg H Jarillo Herrero P Gedik N Observation of Floquet Bloch States on the Surface of a Topological Insulator PDF Science 2013 342 6157 453 457 2021 03 28 Bibcode 2013Sci 342 453W ISSN 0036 8075 arXiv 1310 7563v1 nbsp doi 10 1126 science 1239834 原始内容存档 PDF 于2019 10 19 Watanabe Haruki Oshikawa Masaki Absence of Quantum Time Crystals PDF Physical Review Letters 2015 114 25 251603 2021 03 28 Bibcode 2015PhRvL 114y1603W ISSN 0031 9007 PMID 26197119 arXiv 1410 2143v3 nbsp doi 10 1103 PhysRevLett 114 251603 原始内容存档 PDF 于2019 10 12 Wilczek Frank Quantum Time Crystals PDF Physical Review Letters 2012 109 16 2021 03 28 Bibcode 2012PhRvL 109p0401W ISSN 0031 9007 arXiv 1202 2539v2 nbsp doi 10 1103 PhysRevLett 109 160401 原始内容存档 PDF 于2019 10 16 Wilczek Frank Wilczek Reply PDF Physical Review Letters 2013a 110 11 2021 03 28 Bibcode 2013PhRvL 110k8902W ISSN 0031 9007 doi 10 1103 PhysRevLett 110 118902 原始内容存档 PDF 于2017 02 11 Wilczek Frank Superfluidity and Space Time Translation Symmetry Breaking PDF Physical Review Letters 2013b 111 25 2021 03 28 Bibcode 2013PhRvL 111y0402W ISSN 0031 9007 arXiv 1308 5949v1 nbsp doi 10 1103 PhysRevLett 111 250402 原始内容存档 PDF 于2019 10 18 Willett R L Nayak C Shtengel K Pfeiffer L N West K W Magnetic Field Tuned Aharonov Bohm Oscillations and Evidence for Non Abelian Anyons atn 5 2 PDF Physical Review Letters 2013 111 18 2021 03 28 Bibcode 2013PhRvL 111r6401W ISSN 0031 9007 arXiv 1301 2639v1 nbsp doi 10 1103 PhysRevLett 111 186401 原始内容存档 PDF 于2016 06 02 Yao N Y Potter A C Potirniche I D Vishwanath A Discrete Time Crystals Rigidity Criticality and Realizations PDF Physical Review Letters 2017 118 3 2021 03 28 Bibcode 2017PhRvL 118c0401Y ISSN 0031 9007 arXiv 1608 02589v2 nbsp doi 10 1103 PhysRevLett 118 030401 原始内容存档 PDF 于2019 01 27 Yoshii Ryosuke Takada Satoshi Tsuchiya Shunji Marmorini Giacomo Hayakawa Hisao Nitta Muneto Fulde Ferrell Larkin Ovchinnikov states in a superconducting ring with magnetic fields Phase diagram and the first order phase transitions PDF Physical Review B 2015 92 22 2021 03 28 Bibcode 2015PhRvB 92v4512Y ISSN 1098 0121 arXiv 1404 3519v2 nbsp doi 10 1103 PhysRevB 92 224512 原始内容存档 PDF 于2017 02 11 Yukawa Satoshi Kikuchi Macoto Tatara Gen Matsukawa Hiroshi Quantum Ratchets PDF Journal of the Physical Society of Japan 1997 66 10 2953 2956 2021 03 28 Bibcode 1997JPSJ 66 2953Y ISSN 0031 9015 arXiv cond mat 9706222 nbsp doi 10 1143 JPSJ 66 2953 原始内容存档 PDF 于2017 02 11 Yukawa Satoshi A Quantum Analogue of the Jarzynski Equality PDF Journal of the Physical Society of Japan 2000 69 8 2367 2370 2021 03 28 Bibcode 2000JPSJ 69 2367Y ISSN 0031 9015 arXiv cond mat 0007456 nbsp doi 10 1143 JPSJ 69 2367 原始内容存档 PDF 于2019 01 27 Zel Dovich Y B The quasienergy of a quantum mechanical system subjected to a periodic action PDF Soviet Physics JETP 1967 24 5 1006 1008 2021 03 28 Bibcode 1967JETP 24 1006Z 原始内容存档 PDF 于2017 02 11 Zhang J Hess P W Kyprianidis A Becker P Lee A Smith J Pagano G Potirniche I D Potter A C Vishwanath A Yao N Y Monroe C Observation of a Discrete Time Crystal PDF Nature 2017 543 7644 217 220 2021 03 28 Bibcode 2017Natur 543 217Z ISSN 0028 0836 arXiv 1609 08684v1 nbsp doi 10 1038 nature21413 原始内容存档 PDF 于2019 10 20 書籍 编辑 Bordag M Mohideen U Mostepanenko V M New developments in the Casimir effect PDF Physics Reports 2001 353 1 3 1 205 2021 03 28 Bibcode 2001PhR 353 1B ISSN 0370 1573 arXiv quant ph 0106045 nbsp doi 10 1016 S0370 1573 01 00015 1 原始内容存档 PDF 于2017 02 11 Bordag M Mohideen U Mostepanenko V M Klimchitskaya G L Advances in the Casimir Effect Oxford Oxford University Press 28 May 2009 2021 03 28 ISBN 978 0 19 157988 2 原始内容存档于2019 03 31 Cao Tian Yu Conceptual Foundations of Quantum Field Theory Cambridge Cambridge University Press 25 March 2004 2021 03 28 ISBN 978 0 521 60272 3 原始内容存档于2019 12 15 Enz Charles P Is the Zero Point Energy Real Enz C P Mehra J 编 Physical Reality and Mathematical Description Dordrecht D Reidel Publishing Company 1974 124 132 ISBN 978 94 010 2274 3 doi 10 1007 978 94 010 2274 3 8 Greiner Walter Muller B Rafelski J Quantum Electrodynamics of Strong Fields With an Introduction into Modern Relativistic Quantum Mechanics Springer 2012 2021 03 28 ISBN 978 3 642 82274 2 doi 10 1007 978 3 642 82272 8 原始内容存档于2020 08 20 Lee T D Particle Physics CRC Press 15 August 1981 2021 03 28 ISBN 978 3 7186 0033 5 原始内容存档于2020 08 19 Feng Duan Jin Guojun Introduction to Condensed Matter Physics singapore World Scientific 2005 2021 03 28 ISBN 978 981 238 711 0 原始内容存档于2019 03 31 Milonni Peter W The Quantum Vacuum An Introduction to Quantum Electrodynamics London Academic Press 1994 2021 03 28 ISBN 978 0 124 98080 8 原始内容存档于2020 08 20 Pade Jochen Quantum Mechanics for Pedestrians 2 Applications and Extensions Dordrecht Springer 2014 2021 03 28 ISBN 978 3 319 00813 4 ISSN 2192 4791 doi 10 1007 978 3 319 00813 4 原始内容存档于2020 08 19 Schwinger Julian Particles Sources And Fields Volume 1 v 1 Advanced Books Classics Perseus 1998a ISBN 978 0 738 20053 8 Schwinger Julian Particles Sources And Fields Volume 2 v 2 Advanced Books Classics Perseus 1998b ISBN 978 0 738 20054 5 Schwinger Julian Particles Sources And Fields Volume 3 v 3 Advanced Books Classics Perseus 1998c ISBN 978 0 738 20055 2 Solyom Jeno Fundamentals of the Physics of Solids Volume 1 Structure and Dynamics Springer 19 September 2007 2021 03 28 ISBN 978 3 540 72600 5 原始内容存档于2019 03 31 Wilczek Frank A Beautiful Question Finding Nature s Deep Design Penguin Books Limited 16 July 2015 2021 03 28 ISBN 978 1 84614 702 9 原始内容存档于2019 12 15 出版物 编辑 Aalto University Physicists discover quantum mechanical monopoles phys org Science X 30 April 2015 2019 01 14 原始内容存档于2015 04 30 Aitchison Ian Observing the Unobservable New Scientist 19 November 1981 92 1280 540 541 2021 03 28 ISSN 0262 4079 原始内容存档于2020 08 19 Amherst College Physicists create synthetic magnetic monopole predicted more than 80 years ago phys org Science X 29 January 2014 2019 01 14 原始内容存档于2014 01 29 Aron Jacob Computer that could outlive the universe a step closer newscientist com New Scientist 6 July 2012 2019 01 14 原始内容存档于2017 02 02 Ball Philip Focus New Crystal Type is Always in Motion physics aps org APS Physics 8 January 2016 2019 01 14 原始内容存档于2017 02 03 Ball Philip Scepticism greets pitch to detect dark energy in the lab Nature 8 July 2004 430 6996 126 126 2021 03 28 Bibcode 2004Natur 430 126B ISSN 0028 0836 doi 10 1038 430126b 原始内容存档于2019 04 22 Cartlidge Edwin Scientists build heat engine from a single atom sciencemag org Science Magazine 21 October 2015 2019 01 14 原始内容存档于2017 02 01 Chandler David Topological insulators Persuading light to mix it up with matter phys org Science X 24 October 2014 2019 01 14 原始内容存档于2017 02 08 Coleman Piers Quantum physics Time crystals Nature 9 January 2013 493 7431 166 167 Bibcode 2013Natur 493 166C ISSN 0028 0836 doi 10 1038 493166a 使用 accessdate 需要含有 url 帮助 Cowen Ron Time Crystals Could Be a Legitimate Form of Perpetual Motion scientificamerican com Scientific American 27 February 2012 2019 01 14 原始内容存档于2017 02 02 Daghofer Maria Viewpoint Toward Fractional Quantum Hall Physics with Cold Atoms physics aps org APS Physics 29 April 2013 2019 01 14 原始内容存档于2017 02 07 Gibney Elizabeth The quest to crystallize time Nature 2017 543 7644 164 166 2021 03 28 Bibcode 2017Natur 543 164G ISSN 0028 0836 doi 10 1038 543164a 原始内容存档于2017 03 13 Grossman Lisa Death defying time crystal could outlast the universe newscientist com New Scientist 18 January 2012 2019 01 14 原始内容存档于2017 02 02 Hackett Jennifer Curious Crystal Dances for Its Symmetry scientificamerican com Scientific American 22 February 2016 2019 01 14 原始内容存档于2017 02 03 Hewitt John Creating time crystals with a rotating ion ring phys org Science X 3 May 2013 2019 01 14 原始内容存档于2013 07 04 Johnston Hamish Choreographic crystals have all the right moves physicsworld com Institute of Physics 18 January 2016 2019 01 14 原始内容存档于2017 02 03 Johannes Gutenberg Universitaet Mainz Prototype of single ion heat engine created sciencedaily com ScienceDaily 3 February 2014 2019 01 14 原始内容存档于2017 02 01 Joint Quantum Institute Floquet Topological Insulators jqi umd edu Joint Quantum Institute 22 March 2011 2019 01 14 原始内容存档于2019 04 03 Morgan James Elusive magnetic monopole seen in quantum system bbc co uk BBC 30 January 2014 2019 01 14 原始内容存档于2014 01 30 Moskowitz Clara New Particle Is Both Matter and Antimatter scientificamerican com Scientific American 2 October 2014 2019 01 14 原始内容存档于2014 10 09 Ouellette Jennifer World s first time crystals cooked up using new recipe newscientist com New Scientist 31 January 2017 2019 01 14 原始内容存档于2017 02 01 Pilkington Mark Zero point energy theguardian com The Guardian 17 July 2003 2019 01 14 原始内容存档于2017 02 07 Powell Devin Can matter cycle through shapes eternally Nature 2013 2021 03 28 ISSN 1476 4687 doi 10 1038 nature 2013 13657 原始内容存档于2017 02 03 Rao Achintya BaBar makes first direct measurement of time reversal violation physicsworld com Institute of Physics 21 November 2012 2019 01 14 原始内容存档于2015 03 24 Richerme Phil Viewpoint How to Create a Time Crystal physics aps org APS Physics 18 January 2017 2019 01 14 原始内容存档于2017 02 02 Thomas Jessica Notes from the Editors The Aftermath of a Controversial Idea physics aps org APS Physics 15 March 2013 2019 01 14 原始内容存档于2017 02 02 Qi Xiao Liang Zhang Shou Cheng The quantum spin Hall effect and topological insulators PDF Physics Today 2010 63 1 33 38 2021 03 28 Bibcode 2010PhT 63a 33Q ISSN 0031 9228 arXiv 1001 1602 nbsp doi 10 1063 1 3293411 原始内容存档 PDF 于2017 08 12 University of California Berkeley Physicists unveil new form of matter time crystals phys org Science X 26 January 2017 2019 01 14 原始内容存档于2017 01 28 Weiner Sophie Scientists Create A New Kind Of Matter Time Crystals popularmechanics com Popular mechanics 28 January 2017 2019 01 14 原始内容存档于2017 02 03 Wolchover Natalie Perpetual Motion Test Could Amend Theory of Time quantamagazine org Simons Foundation 25 April 2013 2019 01 14 原始内容存档于2017 02 02 Wolchover Natalie Forging a Qubit to Rule Them All quantamagazine org Simmons Foundation 15 May 2014 2019 01 14 原始内容存档于2016 03 15 Wood Charlie Time crystals realize new order of space time csmonitor com Christian Science Monitor 31 January 2017 2019 01 14 原始内容存档于2017 02 02 Yirka Bob Physics team proposes a way to create an actual space time crystal phys org Science X 9 July 2012 2019 01 14 原始内容存档于2013 04 15 Zakrzewski Jakub Viewpoint Crystals of Time physics aps org APS Physics 15 October 2012 2019 01 14 原始内容存档于2017 02 02 Zeller Michael Viewpoint Particle Decays Point to an Arrow of Time physics aps org APS Physics 19 November 2012 2019 01 14 原始内容存档于2017 02 04 Zyga Lisa Time crystals could behave almost like perpetual motion machines phys org Science X 20 February 2012 2019 01 14 原始内容存档于2017 02 03 Zyga Lisa Physicist proves impossibility of quantum time crystals phys org Space X 22 August 2013 2019 01 14 原始内容存档于2017 02 03 Zyga Lisa Nanoscale heat engine exceeds standard efficiency limit phys org Science X 27 January 2014 2019 01 14 原始内容存档于2015 04 04 Zyga Lisa Physicists propose new definition of time crystals then prove such things don t exist phys org Science X 9 July 2015 2019 01 14 原始内容存档于2015 07 09 Zyga Lisa Time crystals might exist after all Update phys org Science X 9 September 2016 2019 01 14 原始内容存档于2016 09 11 取自 https zh wikipedia org w index php title 時間晶體 amp oldid 78947429, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。