fbpx
维基百科

斯特灵数

在數學中,史特靈數用於解決各種數學分析組合數學問題,史特靈數是兩組不同的數,均是18世紀由詹姆士·史特靈英语James Stirling (mathematician)引入並以其命名,以第一類史特靈數英语Stirling numbers of the first kind第二類史特靈數英语Stirling numbers of the second kind的稱呼區分。此外,有時候也將拉赫數英语Lah number稱爲第三類史特靈數[1]

第一類史特靈數

定義

第一類史特靈數英语Stirling numbers of the first kind可以定義爲對應遞降階乘展開式的各項係數,即

 
其中,  )即爲第一類史特靈數。例如:
 

 

於是    

由此可知, 代數數,或稱爲有符號(第一類)史特靈數(英語:signed Stirling numbers of the first kind)。

有符號史特靈數的絕對值 可以看作(或直接定義爲)把 個元素排列成 個非空圓圈(循環排列)的方法數目。所以 算術數,或稱爲無符號(第一類)史特靈數(英語:unsigned Stirling numbers of the first kind)。無符號史特靈數一般可以記爲  。例如:把   三個數排列成 個非空圓圈,顯然有零種方法;排列成 個非空圓圈,有  兩種方法;排列成 個非空圓圈,有      三種方法;排列成 個非空圓圈,有   一種方法,所以    。可以看到這和前面有符號史特靈數  時的結果一致(只是符號差異)。

與有符號史特靈數類似,無符號史特靈數可以定義爲對應遞進階乘展開式的各項係數,即

 

其中,  )即爲無符號史特靈數。不過要注意,這裏的記號 有時候會用來表示高斯二项式系数

有符號史特靈數和無符號史特靈數有如下關係:

 

拓展示例

無符號史特靈數有更多的應用。例如,將 個元素分成 組,每組內的元素再進行排列的方法數目即可用無符號史特靈數 求得。以 爲例:

  1. (A,B)(C,D)
  2. (A,C)(B,D)
  3. (A,D)(B,C)
  4. (A)(B,C,D)
  5. (A)(B,D,C)
  6. (B)(A,C,D)
  7. (B)(A,D,C)
  8. (C)(A,B,D)
  9. (C)(A,D,B)
  10. (D)(A,B,C)
  11. (D)(A,C,B)

或用有向圖[來源請求]表示如下:

 
s(4,2)=11

遞推關係式

無符號史特靈數有如下遞推關係式

 

其中, ,且初始條件爲    )。

有符號史特靈數有如下遞推關係式:

 

第一類史特靈數表

下表其實是一部分無符號史特靈數,要想獲得有符號史特靈數,可以通過它們之間的關係式:

 

求得。

 k
n 
0 1 2 3 4 5 6
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15 1

簡單性質

觀察前面的“第一類史特靈數表”,我們可以得到一些簡單的性質:

   )。

如果 ,我們有

 

或更一般地,如果 ,我們有

 

還有

 
 
 
 
 

注:這裏記號 表示组合数

其他性質

第二類史特靈數

定義

第二類史特靈數英语Stirling numbers of the second kind與第一類史特靈數類似,可以用遞降階乘定義爲

 

其中, [2][3]即爲第二類史特靈數,也可以記爲 [4]。例如:

 

 

將遞降階乘展開並合併同類項,得

 

比較等式兩邊係數,得

 

解得

    

第二類史特靈數計算的是將含有 個元素的集合拆分爲 個非空子集的方法數目[5]。例如:對於集合 ,若拆分爲 個非空子集,顯然有零種方法;拆分爲 個非空子集,只有 一種方法;拆分爲 個非空子集,有      三種方法;拆分爲 個非空子集,有   一種方法。於是    

第二類史特靈數可以使用以下公式進行計算:[6]

 

 進行驗算,有

 

 

於是

 

拓展示例

 個人分成 組的分組方法的數目。例如有甲、乙、丙、丁四人,若所有人分成 組,只能所有人在同一組,因此 ;若所有人分成 組,只能每人獨立一組,因此 ;若分成 組,可以是甲乙一組、丙丁一組,或甲丙一組、乙丁一組,或甲丁一組、乙丙一組,或其中三人同一組另一人獨立一組,即:

  1. {甲, 乙}{丙, 丁}
  2. {甲, 丙}{乙,丁}
  3. {甲, 丁}{乙, 丙}
  4. {甲}{乙, 丙, 丁}
  5. {乙}{甲, 丙, 丁}
  6. {丙}{甲, 乙, 丁}
  7. {丁}{甲, 乙, 丙}

因此 。同理,可以得到 

遞推關係式

第二類史特靈數有與第一類史特靈數類似的遞推關係式:

 

其中, ,且初始條件爲    )。

第二類史特靈數表

下面爲部分第二類史特靈數:

 k
n 
0 1 2 3 4 5 6
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1

簡單性質

觀察前面的“第二類史特靈數表”,我們可以得到一些簡單的性質:

   )。

如果 ,我們有

 

或更一般地,如果 ,我們有

 

還有

 
 
 
 
 
 
 

其他性質

貝爾數和第二類史特靈數有如下關係:

 

兩類之間的關係

第一類和第二類史特靈數可以看作互爲逆矩陣的關係:

 

以及

 

其中, 克羅內克爾δ

拉赫數

定義

拉赫數英语Lah number是由伊沃·拉赫英语Ivo Lah在1954年發現的[7][8],因爲拉赫數與史特靈數關係密切,所以有時拉赫數也被稱爲第三類史特靈數。可以用遞進階乘和遞降階乘定義爲

 

 

其中,  即爲拉赫數。例如:

 

 

等式兩邊展開並合併同類項,得

 

比較等式兩邊係數,得

 

解得     

 

 

等式兩邊展開並合併同類項,得

 

比較等式兩邊係數,得

 

解得     

以上定義的拉赫數是無符號拉赫數(英語: signed Lah numbers),有符號拉赫數(英語:signed Lah numbers)的定義如下:

 

 

無符號拉赫數計算的是將含有 個元素的集合拆分爲 個非空線性有序子集的方法數目[9]。例如:對於集合 ,若拆分爲 個非空線性有序子集,顯然有零種方法;拆分爲 個非空線性有序子集,有      六種方法;拆分爲 個非空線性有序子集,有            六種方法;拆分爲 個非空線性有序子集,有   一種方法。於是    

無符號拉赫數可以使用以下公式進行計算:

 

有符號拉赫數可以使用以下公式進行計算:

 

拓展示例

 
無符號拉赫數(nk取1到4)

遞推關係式

無符號拉赫數有如下遞推關係:

 

 

其中,    ), 

拉赫數表

下面爲部分無符號拉赫數:

 k
n 
0 1 2 3 4 5 6
0 1
1 0 1
2 0 2 1
3 0 6 6 1
4 0 24 36 12 1
5 0 120 240 120 20 1
6 0 720 1800 1200 300 30 1

簡單性質

觀察前面的“拉赫數表”,我們可以得到一些簡單性質:

   

如果 ,有   

還有

 
 
 
 
 
 

其他性質

無符號拉赫數計算公式可以作進一步拓展:

 
 

無符號拉赫數與兩類史特靈數都有關係[10],關係如下:

 

 進行驗算,有

 

 

於是

 

由無符號拉赫數與兩類史特靈數之間的關係,考慮到兩類史特靈數之間的關係,有

 

其中, 克羅內克爾δ

三類之間的關係

三類史特靈數以及乘方、階乘之間的關係可以用下圖表示:

 

參考資料

  1. ^ Sándor, Jozsef; Crstici, Borislav. Handbook of Number Theory II. Kluwer Academic Publishers. 2004: 464. ISBN 9781402025464. 
  2. ^ Transformation of Series by a Variant of Stirling's Numbers. Imanuel Marx, The American Mathematical Monthly 69, #6 (June–July 1962). : 530–532,. JSTOR 2311194.. 
  3. ^ Antonio Salmeri (编). Introduzione alla teoria dei coefficienti fattoriali, Giornale di Matematiche di Battaglini 90 (1962). : pp. 44–54. 
  4. ^ Knuth, D.E. (1992) (编). "Two notes on notation", Amer. Math. Monthly, 99. : 403-422. JSTOR 2325085. arXiv:math/9205211 . doi:10.2307/2325085. 
  5. ^ Brualdi,R.A. (编). 组合数学(原书第5版). 由冯速等人翻译. 北京: 机械工业出版社. 2012.4: 176页. ISBN 978-7-111-37787-0. 
  6. ^ Weisstein, Eric W. (编). "Stirling Number of the Second Kind". at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2019-06-06]. (原始内容于2019-06-06) (英语). 
  7. ^ Lah, Ivo. A new kind of numbers and its application in the actuarial mathematics 9. 1954: 7–15.  |journal=被忽略 (帮助)
  8. ^ John Riordan, Introduction to Combinatorial Analysis (页面存档备份,存于互联网档案馆), Princeton University Press (1958, reissue 1980) ISBN 978-0-691-02365-6 (reprinted again in 2002 by Dover Publications).
  9. ^ Petkovsek, Marko; Pisanski, Tomaz. Combinatorial Interpretation of Unsigned Stirling and Lah Numbers 12. Fall 2007: 417–424. JSTOR 24340704.  |journal=被忽略 (帮助); |number=被忽略 (帮助)
  10. ^ Comtet, Louis. Advanced Combinatorics. Dordrecht, Holland: Reidel. 1974: 156. 

斯特灵数, 在數學中, 史特靈數用於解決各種數學分析和組合數學問題, 史特靈數是兩組不同的數, 均是18世紀由詹姆士, 史特靈, 英语, james, stirling, mathematician, 引入並以其命名, 以第一類史特靈數, 英语, stirling, numbers, first, kind, 和第二類史特靈數, 英语, stirling, numbers, second, kind, 的稱呼區分, 此外, 有時候也將拉赫數, 英语, number, 稱爲第三類史特靈數, 目录, 第一類史特靈數, . 在數學中 史特靈數用於解決各種數學分析和組合數學問題 史特靈數是兩組不同的數 均是18世紀由詹姆士 史特靈 英语 James Stirling mathematician 引入並以其命名 以第一類史特靈數 英语 Stirling numbers of the first kind 和第二類史特靈數 英语 Stirling numbers of the second kind 的稱呼區分 此外 有時候也將拉赫數 英语 Lah number 稱爲第三類史特靈數 1 目录 1 第一類史特靈數 1 1 定義 1 2 拓展示例 1 3 遞推關係式 1 4 第一類史特靈數表 1 5 簡單性質 1 6 其他性質 2 第二類史特靈數 2 1 定義 2 2 拓展示例 2 3 遞推關係式 2 4 第二類史特靈數表 2 5 簡單性質 2 6 其他性質 3 兩類之間的關係 4 拉赫數 4 1 定義 4 2 拓展示例 4 3 遞推關係式 4 4 拉赫數表 4 5 簡單性質 4 6 其他性質 5 三類之間的關係 6 參考資料第一類史特靈數 编辑定義 编辑 第一類史特靈數 英语 Stirling numbers of the first kind 可以定義爲對應遞降階乘展開式的各項係數 即 x n k 0 n s n k x k displaystyle x n sum k 0 n s n k x k 其中 s n k displaystyle s n k 0 k n displaystyle 0 leq k leq n 即爲第一類史特靈數 例如 x 3 x x 1 x 2 displaystyle x 3 x x 1 x 2 則 x 3 0 x 0 2 x 3 x 2 1 x 3 displaystyle x 3 0 cdot x 0 2 cdot x 3 cdot x 2 1 cdot x 3 於是s 3 0 0 displaystyle s 3 0 0 s 3 1 2 displaystyle s 3 1 2 s 3 2 3 displaystyle s 3 2 3 s 3 3 1 displaystyle s 3 3 1 由此可知 s n k displaystyle s n k 是代數數 或稱爲有符號 第一類 史特靈數 英語 signed Stirling numbers of the first kind 有符號史特靈數的絕對值 s n k displaystyle s n k 可以看作 或直接定義爲 把n displaystyle n 個元素排列成k displaystyle k 個非空圓圈 循環排列 的方法數目 所以 s n k displaystyle s n k 是算術數 或稱爲無符號 第一類 史特靈數 英語 unsigned Stirling numbers of the first kind 無符號史特靈數一般可以記爲c n k displaystyle c n k 或 n k displaystyle left begin matrix n k end matrix right 例如 把1 displaystyle 1 2 displaystyle 2 3 displaystyle 3 三個數排列成0 displaystyle 0 個非空圓圈 顯然有零種方法 排列成1 displaystyle 1 個非空圓圈 有 1 2 3 displaystyle left begin matrix amp 1 amp 2 amp amp 3 end matrix right 1 3 2 displaystyle left begin matrix amp 1 amp 3 amp amp 2 end matrix right 兩種方法 排列成2 displaystyle 2 個非空圓圈 有 1 displaystyle left begin matrix 1 end matrix right 2 3 displaystyle left begin matrix 2 amp 3 end matrix right 1 2 displaystyle left begin matrix 1 amp 2 end matrix right 3 displaystyle left begin matrix 3 end matrix right 和 1 3 displaystyle left begin matrix 1 amp 3 end matrix right 2 displaystyle left begin matrix 2 end matrix right 三種方法 排列成3 displaystyle 3 個非空圓圈 有 1 displaystyle left begin matrix 1 end matrix right 2 displaystyle left begin matrix 2 end matrix right 3 displaystyle left begin matrix 3 end matrix right 一種方法 所以 3 0 0 displaystyle left begin matrix 3 0 end matrix right 0 3 1 2 displaystyle left begin matrix 3 1 end matrix right 2 3 2 3 displaystyle left begin matrix 3 2 end matrix right 3 3 3 1 displaystyle left begin matrix 3 3 end matrix right 1 可以看到這和前面有符號史特靈數s n k displaystyle s n k 在n 3 displaystyle n 3 時的結果一致 只是符號差異 與有符號史特靈數類似 無符號史特靈數可以定義爲對應遞進階乘展開式的各項係數 即 x n k 0 n n k x k displaystyle x overline n sum k 0 n left begin matrix n k end matrix right x k 其中 n k displaystyle left begin matrix n k end matrix right 0 k n displaystyle 0 leq k leq n 即爲無符號史特靈數 不過要注意 這裏的記號 n k displaystyle left begin matrix n k end matrix right 有時候會用來表示高斯二项式系数 有符號史特靈數和無符號史特靈數有如下關係 s n k 1 n k n k displaystyle s n k 1 n k left begin matrix n k end matrix right 拓展示例 编辑 無符號史特靈數有更多的應用 例如 將n displaystyle n 個元素分成k displaystyle k 組 每組內的元素再進行排列的方法數目即可用無符號史特靈數 n k displaystyle left begin matrix n k end matrix right 求得 以 4 2 11 displaystyle left begin matrix 4 2 end matrix right 11 爲例 A B C D A C B D A D B C A B C D A B D C B A C D B A D C C A B D C A D B D A B C D A C B 或用有向圖 來源請求 表示如下 s 4 2 11 遞推關係式 编辑 無符號史特靈數有如下遞推關係式 n 1 k n n k n k 1 displaystyle left begin matrix n 1 k end matrix right n left begin matrix n k end matrix right left begin matrix n k 1 end matrix right 其中 k gt 0 displaystyle k gt 0 且初始條件爲 0 0 1 displaystyle left begin matrix 0 0 end matrix right 1 n 0 0 n 0 displaystyle left begin matrix n 0 end matrix right left begin matrix 0 n end matrix right 0 n gt 0 displaystyle n gt 0 有符號史特靈數有如下遞推關係式 s n 1 k n s n k s n k 1 displaystyle s n 1 k ns n k s n k 1 第一類史特靈數表 编辑 下表其實是一部分無符號史特靈數 要想獲得有符號史特靈數 可以通過它們之間的關係式 s n k 1 n k n k displaystyle s n k 1 n k left begin matrix n k end matrix right 求得 kn 0 1 2 3 4 5 60 11 0 12 0 1 13 0 2 3 14 0 6 11 6 15 0 24 50 35 10 16 0 120 274 225 85 15 1簡單性質 编辑 觀察前面的 第一類史特靈數表 我們可以得到一些簡單的性質 0 0 1 displaystyle left begin matrix 0 0 end matrix right 1 n 0 0 displaystyle left begin matrix n 0 end matrix right 0 n gt 0 displaystyle n gt 0 如果k gt 0 displaystyle k gt 0 我們有 0 k 0 displaystyle left begin matrix 0 k end matrix right 0 或更一般地 如果k gt n displaystyle k gt n 我們有 n k 0 displaystyle left begin matrix n k end matrix right 0 還有 n 1 n 1 displaystyle left begin matrix n 1 end matrix right n 1 n n 1 displaystyle left begin matrix n n end matrix right 1 n n 1 n 2 displaystyle left begin matrix n n 1 end matrix right n choose 2 n n 2 1 4 3 n 1 n 3 displaystyle left begin matrix n n 2 end matrix right frac 1 4 3n 1 n choose 3 n n 3 n 2 n 4 displaystyle left begin matrix n n 3 end matrix right n choose 2 n choose 4 注 這裏記號 n k displaystyle n choose k 表示组合数 其他性質 编辑第二類史特靈數 编辑定義 编辑 第二類史特靈數 英语 Stirling numbers of the second kind 與第一類史特靈數類似 可以用遞降階乘定義爲 x n k 0 n n k x k displaystyle x n sum k 0 n left begin matrix n k end matrix right x k 其中 n k displaystyle left begin matrix n k end matrix right 2 3 即爲第二類史特靈數 也可以記爲S n k displaystyle S n k 4 例如 x 3 3 0 x 0 3 1 x 1 3 2 x 2 3 3 x 3 displaystyle x 3 left begin matrix 3 0 end matrix right x 0 left begin matrix 3 1 end matrix right x 1 left begin matrix 3 2 end matrix right x 2 left begin matrix 3 3 end matrix right x 3 即 x 3 3 0 3 1 x 3 2 x x 1 3 3 x x 1 x 2 displaystyle x 3 left begin matrix 3 0 end matrix right left begin matrix 3 1 end matrix right x left begin matrix 3 2 end matrix right x x 1 left begin matrix 3 3 end matrix right x x 1 x 2 將遞降階乘展開並合併同類項 得 x 3 3 0 3 1 3 2 2 3 3 x 3 2 3 3 3 x 2 3 3 x 3 displaystyle x 3 left begin matrix 3 0 end matrix right left left begin matrix 3 1 end matrix right left begin matrix 3 2 end matrix right 2 left begin matrix 3 3 end matrix right right x left left begin matrix 3 2 end matrix right 3 left begin matrix 3 3 end matrix right right x 2 left begin matrix 3 3 end matrix right x 3 比較等式兩邊係數 得 3 0 0 3 1 3 2 2 3 3 0 3 2 3 3 3 0 3 3 1 displaystyle begin cases left begin matrix 3 0 end matrix right 0 left begin matrix 3 1 end matrix right left begin matrix 3 2 end matrix right 2 left begin matrix 3 3 end matrix right 0 left begin matrix 3 2 end matrix right 3 left begin matrix 3 3 end matrix right 0 left begin matrix 3 3 end matrix right 1 end cases 解得 3 0 0 displaystyle left begin matrix 3 0 end matrix right 0 3 1 1 displaystyle left begin matrix 3 1 end matrix right 1 3 2 3 displaystyle left begin matrix 3 2 end matrix right 3 3 3 1 displaystyle left begin matrix 3 3 end matrix right 1 第二類史特靈數計算的是將含有n displaystyle n 個元素的集合拆分爲k displaystyle k 個非空子集的方法數目 5 例如 對於集合 1 2 3 displaystyle left 1 2 3 right 若拆分爲0 displaystyle 0 個非空子集 顯然有零種方法 拆分爲1 displaystyle 1 個非空子集 只有 1 2 3 displaystyle left 1 2 3 right 一種方法 拆分爲2 displaystyle 2 個非空子集 有 1 displaystyle left 1 right 2 3 displaystyle left 2 3 right 1 2 displaystyle left 1 2 right 3 displaystyle left 3 right 2 displaystyle left 2 right 1 3 displaystyle left 1 3 right 三種方法 拆分爲3 displaystyle 3 個非空子集 有 1 displaystyle left 1 right 2 displaystyle left 2 right 3 displaystyle left 3 right 一種方法 於是 3 0 0 displaystyle left begin matrix 3 0 end matrix right 0 3 1 1 displaystyle left begin matrix 3 1 end matrix right 1 3 2 3 displaystyle left begin matrix 3 2 end matrix right 3 3 3 1 displaystyle left begin matrix 3 3 end matrix right 1 第二類史特靈數可以使用以下公式進行計算 6 n k 1 k i 0 k 1 i k i k i n displaystyle left begin matrix n k end matrix right frac 1 k sum i 0 k 1 i left begin matrix k i end matrix right k i n 取 3 2 displaystyle left begin matrix 3 2 end matrix right 進行驗算 有 3 2 1 2 i 0 2 1 i 2 i 2 i 3 displaystyle left begin matrix 3 2 end matrix right frac 1 2 sum i 0 2 1 i left begin matrix 2 i end matrix right 2 i 3 即 3 2 1 2 2 0 2 3 2 1 1 3 2 2 0 3 displaystyle left begin matrix 3 2 end matrix right frac 1 2 left left begin matrix 2 0 end matrix right times 2 3 left begin matrix 2 1 end matrix right times 1 3 left begin matrix 2 2 end matrix right times 0 3 right 於是 3 2 1 2 1 8 2 1 1 0 3 displaystyle left begin matrix 3 2 end matrix right frac 1 2 left 1 times 8 2 times 1 1 times 0 right 3 拓展示例 编辑 將n displaystyle n 個人分成k displaystyle k 組的分組方法的數目 例如有甲 乙 丙 丁四人 若所有人分成1 displaystyle 1 組 只能所有人在同一組 因此 4 1 1 displaystyle left begin matrix 4 1 end matrix right 1 若所有人分成4 displaystyle 4 組 只能每人獨立一組 因此 4 4 1 displaystyle left begin matrix 4 4 end matrix right 1 若分成2 displaystyle 2 組 可以是甲乙一組 丙丁一組 或甲丙一組 乙丁一組 或甲丁一組 乙丙一組 或其中三人同一組另一人獨立一組 即 甲 乙 丙 丁 甲 丙 乙 丁 甲 丁 乙 丙 甲 乙 丙 丁 乙 甲 丙 丁 丙 甲 乙 丁 丁 甲 乙 丙 因此 4 2 7 displaystyle left begin matrix 4 2 end matrix right 7 同理 可以得到 4 3 6 displaystyle left begin matrix 4 3 end matrix right 6 遞推關係式 编辑 第二類史特靈數有與第一類史特靈數類似的遞推關係式 n 1 k k n k n k 1 displaystyle left begin matrix n 1 k end matrix right k left begin matrix n k end matrix right left begin matrix n k 1 end matrix right 其中 k gt 0 displaystyle k gt 0 且初始條件爲 0 0 1 displaystyle left begin matrix 0 0 end matrix right 1 n 0 0 n 0 displaystyle left begin matrix n 0 end matrix right left begin matrix 0 n end matrix right 0 n gt 0 displaystyle n gt 0 第二類史特靈數表 编辑 下面爲部分第二類史特靈數 kn 0 1 2 3 4 5 60 11 0 12 0 1 13 0 1 3 14 0 1 7 6 15 0 1 15 25 10 16 0 1 31 90 65 15 1簡單性質 编辑 觀察前面的 第二類史特靈數表 我們可以得到一些簡單的性質 0 0 1 displaystyle left begin matrix 0 0 end matrix right 1 n 0 0 displaystyle left begin matrix n 0 end matrix right 0 n gt 0 displaystyle n gt 0 如果k gt 0 displaystyle k gt 0 我們有 0 k 0 displaystyle left begin matrix 0 k end matrix right 0 或更一般地 如果k gt n displaystyle k gt n 我們有 n k 0 displaystyle left begin matrix n k end matrix right 0 還有 n 1 1 displaystyle left begin matrix n 1 end matrix right 1 n 2 2 n 1 1 displaystyle left begin matrix n 2 end matrix right 2 n 1 1 n 3 1 2 3 n 1 1 2 n 1 displaystyle left begin matrix n 3 end matrix right frac 1 2 3 n 1 1 2 n 1 n n 1 displaystyle left begin matrix n n end matrix right 1 n n 1 n 2 displaystyle left begin matrix n n 1 end matrix right n choose 2 n n 2 n 3 3 n 4 displaystyle left begin matrix n n 2 end matrix right n choose 3 3 n choose 4 n n 3 n 4 10 n 5 15 n 6 displaystyle left begin matrix n n 3 end matrix right n choose 4 10 n choose 5 15 n choose 6 其他性質 编辑 貝爾數和第二類史特靈數有如下關係 B n k 0 n n k displaystyle B n sum k 0 n left begin matrix n k end matrix right 兩類之間的關係 编辑第一類和第二類史特靈數可以看作互爲逆矩陣的關係 j 0 s n j S j k j 0 1 n j n j j k d n k j 0 s n j S j k j 0 1 n j n j j k d n k displaystyle sum j geq 0 s n j S j k sum j geq 0 1 n j begin bmatrix n j end bmatrix begin Bmatrix j k end Bmatrix delta nk displaystyle sum j geq 0 s n j S j k sum j geq 0 1 n j begin bmatrix n j end bmatrix begin Bmatrix j k end Bmatrix delta nk 以及 j 0 S n j s j k j 0 1 j k n j j k d n k j 0 S n j s j k j 0 1 j k n j j k d n k displaystyle sum j geq 0 S n j s j k sum j geq 0 1 j k begin Bmatrix n j end Bmatrix begin bmatrix j k end bmatrix delta nk displaystyle sum j geq 0 S n j s j k sum j geq 0 1 j k begin Bmatrix n j end Bmatrix begin bmatrix j k end bmatrix delta nk 其中 d n k displaystyle delta nk 是克羅內克爾d 拉赫數 编辑定義 编辑 拉赫數 英语 Lah number 是由伊沃 拉赫 英语 Ivo Lah 在1954年發現的 7 8 因爲拉赫數與史特靈數關係密切 所以有時拉赫數也被稱爲第三類史特靈數 可以用遞進階乘和遞降階乘定義爲 x n k 0 n L n k x k displaystyle x n sum k 0 n L n k x k 或 x n k 0 n 1 n k L n k x k displaystyle x n sum k 0 n 1 n k L n k x k 其中 L n k displaystyle L n k 即爲拉赫數 例如 x 3 k 0 3 L 3 k x k displaystyle x 3 sum k 0 3 L 3 k x k 即 x x 1 x 2 L 3 0 1 L 3 1 x L 3 2 x x 1 L 3 3 x x 1 x 2 displaystyle x x 1 x 2 L 3 0 cdot 1 L 3 1 cdot x L 3 2 cdot x x 1 L 3 3 cdot x x 1 x 2 等式兩邊展開並合併同類項 得 0 x 0 2 x 3 x 2 1 x 3 L 3 0 L 3 1 L 3 2 2 L 3 3 x L 3 2 3 L 3 3 x 2 L 3 3 x 3 displaystyle 0 cdot x 0 2 cdot x 3 cdot x 2 1 cdot x 3 L 3 0 L 3 1 L 3 2 2L 3 3 cdot x L 3 2 3L 3 3 cdot x 2 L 3 3 cdot x 3 比較等式兩邊係數 得 L 3 0 0 L 3 1 L 3 2 2 L 3 3 2 L 3 2 3 L 3 3 3 L 3 3 1 displaystyle begin cases L 3 0 0 L 3 1 L 3 2 2L 3 3 2 L 3 2 3L 3 3 3 L 3 3 1 end cases 解得 L 3 0 0 displaystyle L 3 0 0 L 3 1 6 displaystyle L 3 1 6 L 3 2 6 displaystyle L 3 2 6 L 3 3 1 displaystyle L 3 3 1 或 x 3 k 0 3 1 3 k L 3 k x 3 displaystyle x 3 sum k 0 3 1 3 k L 3 k x 3 即 x x 1 x 2 L 3 0 1 L 3 1 x L 3 2 x x 1 L 3 3 x x 1 x 2 displaystyle x x 1 x 2 L 3 0 cdot 1 L 3 1 cdot x L 3 2 cdot x x 1 L 3 3 cdot x x 1 x 2 等式兩邊展開並合併同類項 得 0 x 0 2 x 3 x 2 1 x 3 L 3 0 L 3 1 L 3 2 2 L 3 3 x L 3 2 3 L 3 3 x 2 L 3 3 x 3 displaystyle 0 cdot x 0 2 cdot x 3 cdot x 2 1 cdot x 3 L 3 0 L 3 1 L 3 2 2L 3 3 cdot x L 3 2 3L 3 3 cdot x 2 L 3 3 cdot x 3 比較等式兩邊係數 得 L 3 0 0 L 3 1 L 3 2 2 L 3 3 2 L 3 2 3 L 3 3 3 L 3 3 1 displaystyle begin cases L 3 0 0 L 3 1 L 3 2 2L 3 3 2 L 3 2 3L 3 3 3 L 3 3 1 end cases 解得 L 3 0 0 displaystyle L 3 0 0 L 3 1 6 displaystyle L 3 1 6 L 3 2 6 displaystyle L 3 2 6 L 3 3 1 displaystyle L 3 3 1 以上定義的拉赫數是無符號拉赫數 英語 signed Lah numbers 有符號拉赫數 英語 signed Lah numbers 的定義如下 x n 1 n k 0 n L n k x k displaystyle x n 1 n sum k 0 n L n k x k 或 x n k 0 n 1 k L n k x k displaystyle x n sum k 0 n 1 k L n k x k 無符號拉赫數計算的是將含有n displaystyle n 個元素的集合拆分爲k displaystyle k 個非空線性有序子集的方法數目 9 例如 對於集合 1 2 3 displaystyle left 1 2 3 right 若拆分爲0 displaystyle 0 個非空線性有序子集 顯然有零種方法 拆分爲1 displaystyle 1 個非空線性有序子集 有 1 2 3 displaystyle left 1 2 3 right 1 3 2 displaystyle left 1 3 2 right 2 1 3 displaystyle left 2 1 3 right 2 3 1 displaystyle left 2 3 1 right 3 1 2 displaystyle left 3 1 2 right 3 2 1 displaystyle left 3 2 1 right 六種方法 拆分爲2 displaystyle 2 個非空線性有序子集 有 1 displaystyle left 1 right 2 3 displaystyle left 2 3 right 1 displaystyle left 1 right 3 2 displaystyle left 3 2 right 2 displaystyle left 2 right 1 3 displaystyle left 1 3 right 2 displaystyle left 2 right 3 1 displaystyle left 3 1 right 3 displaystyle left 3 right 1 2 displaystyle left 1 2 right 3 displaystyle left 3 right 2 1 displaystyle left 2 1 right 六種方法 拆分爲3 displaystyle 3 個非空線性有序子集 有 1 displaystyle left 1 right 2 displaystyle left 2 right 3 displaystyle left 3 right 一種方法 於是L 3 0 0 displaystyle L 3 0 0 L 3 1 6 displaystyle L 3 1 6 L 3 2 6 displaystyle L 3 2 6 L 3 3 1 displaystyle L 3 3 1 無符號拉赫數可以使用以下公式進行計算 L n k n 1 k 1 n k displaystyle L n k n 1 choose k 1 frac n k 有符號拉赫數可以使用以下公式進行計算 L n k 1 n n 1 k 1 n k displaystyle L n k 1 n n 1 choose k 1 frac n k 拓展示例 编辑 無符號拉赫數 n和k取1到4 遞推關係式 编辑 無符號拉赫數有如下遞推關係 L n k 1 n k k k 1 L n k displaystyle L n k 1 frac n k k k 1 L n k 或 L n 1 k n k L n k L n k 1 displaystyle L n 1 k n k L n k L n k 1 其中 L n 0 0 displaystyle L n 0 0 L n 0 0 displaystyle L n 0 0 L n k 0 displaystyle L n k 0 k gt n displaystyle k gt n L 1 1 1 displaystyle L 1 1 1 拉赫數表 编辑 下面爲部分無符號拉赫數 kn 0 1 2 3 4 5 60 11 0 12 0 2 13 0 6 6 14 0 24 36 12 15 0 120 240 120 20 16 0 720 1800 1200 300 30 1簡單性質 编辑 觀察前面的 拉赫數表 我們可以得到一些簡單性質 L 0 0 1 displaystyle L 0 0 1 L n 0 0 displaystyle L n 0 0 n gt 0 displaystyle n gt 0 如果k gt n displaystyle k gt n 有 L 0 0 1 displaystyle L 0 0 1 L n k 0 displaystyle L n k 0 還有 L n 1 n displaystyle L n 1 n L n 2 n 1 n 2 displaystyle L n 2 frac n 1 n 2 L n 3 n 2 n 1 n 12 displaystyle L n 3 frac n 2 n 1 n 12 L n n 1 n n 1 displaystyle L n n 1 n n 1 L n n 1 displaystyle L n n 1 n k L n k x n n 1 k x 1 x k displaystyle sum n geq k L n k frac x n n frac 1 k left frac x 1 x right k 其他性質 编辑 無符號拉赫數計算公式可以作進一步拓展 L n k n 1 k 1 n k n k n 1 k 1 n k n 1 k 1 n k displaystyle L n k n 1 choose k 1 frac n k n choose k frac n 1 k 1 n choose k n 1 choose k 1 n k L n k n n 1 k k 1 1 n k n k 2 k n n k displaystyle L n k frac n n 1 k k 1 cdot frac 1 n k left frac n k right 2 frac k n n k 無符號拉赫數與兩類史特靈數都有關係 10 關係如下 L n k j 0 n n j j k displaystyle L n k sum j 0 n left begin matrix n j end matrix right left begin matrix j k end matrix right 取L 3 2 displaystyle L 3 2 進行驗算 有 L 3 2 j 0 3 3 j j 2 displaystyle L 3 2 sum j 0 3 left begin matrix 3 j end matrix right left begin matrix j 2 end matrix right 即 L 3 2 3 0 0 2 3 1 1 2 3 2 2 2 3 3 3 2 displaystyle L 3 2 left begin matrix 3 0 end matrix right left begin matrix 0 2 end matrix right left begin matrix 3 1 end matrix right left begin matrix 1 2 end matrix right left begin matrix 3 2 end matrix right left begin matrix 2 2 end matrix right left begin matrix 3 3 end matrix right left begin matrix 3 2 end matrix right 於是 L 3 2 3 2 2 2 3 3 3 2 3 1 1 3 6 displaystyle L 3 2 left begin matrix 3 2 end matrix right left begin matrix 2 2 end matrix right left begin matrix 3 3 end matrix right left begin matrix 3 2 end matrix right 3 times 1 1 times 3 6 由無符號拉赫數與兩類史特靈數之間的關係 考慮到兩類史特靈數之間的關係 有 j 0 L n j L j k d n k displaystyle sum j geq 0 L n j L j k delta nk 其中 d n k displaystyle delta nk 是克羅內克爾d 三類之間的關係 编辑三類史特靈數以及乘方 階乘之間的關係可以用下圖表示 參考資料 编辑 Sandor Jozsef Crstici Borislav Handbook of Number Theory II Kluwer Academic Publishers 2004 464 ISBN 9781402025464 Transformation of Series by a Variant of Stirling s Numbers Imanuel Marx The American Mathematical Monthly 69 6 June July 1962 530 532 JSTOR 2311194 Antonio Salmeri 编 Introduzione alla teoria dei coefficienti fattoriali Giornale di Matematiche di Battaglini 90 1962 pp 44 54 引文格式1维护 冗余文本 link Knuth D E 1992 编 Two notes on notation Amer Math Monthly 99 403 422 JSTOR 2325085 arXiv math 9205211 doi 10 2307 2325085 Brualdi R A 编 组合数学 原书第5版 由冯速等人翻译 北京 机械工业出版社 2012 4 176页 ISBN 978 7 111 37787 0 请检查 date 中的日期值 帮助 Weisstein Eric W 编 Stirling Number of the Second Kind at MathWorld A Wolfram Web Resource Wolfram Research Inc 2019 06 06 原始内容存档于2019 06 06 英语 Lah Ivo A new kind of numbers and its application in the actuarial mathematics 9 1954 7 15 journal 被忽略 帮助 John Riordan Introduction to Combinatorial Analysis 页面存档备份 存于互联网档案馆 Princeton University Press 1958 reissue 1980 ISBN 978 0 691 02365 6 reprinted again in 2002 by Dover Publications Petkovsek Marko Pisanski Tomaz Combinatorial Interpretation of Unsigned Stirling and Lah Numbers 12 Fall 2007 417 424 JSTOR 24340704 journal 被忽略 帮助 number 被忽略 帮助 Comtet Louis Advanced Combinatorics Dordrecht Holland Reidel 1974 156 取自 https zh wikipedia org w index php title 斯特灵数 amp oldid 74740902, 维基百科,wiki,书籍,书籍,图书馆,

文章

,阅读,下载,免费,免费下载,mp3,视频,mp4,3gp, jpg,jpeg,gif,png,图片,音乐,歌曲,电影,书籍,游戏,游戏。